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Partial Identification and Credible Inference

Statistical inference uses sample data to draw conclusions

about a population of interest. However, data alone do not

suffice. Inference always requires assumptions about the

population and the sampling process.

The usefulness of separating the identification and

statistical components of inference has long been

recognized.

It has been commonplace to think of identification as a

binary event—a parameter is either identified or it is not.

The traditional way to cope with sampling processes that

partially identify population parameters has been to

combine the available data with assumptions strong enough

to yield point identification. Such assumptions often are not

well motivated, and empirical researchers often debate their

validity.



I specify a sampling process generating the available data

and first ask what may be inferred about population

parameters of interest in the absence of assumptions

restricting the population distribution. I then ask how the

(typically) set-valued identification regions for these

parameters shrink if certain assumptions are imposed.

Conservative nonparametric analysis enables researchers to

learn from the available data without imposing untenable

assumptions. It enables establishment of a domain of

consensus among researchers who may hold disparate

beliefs about what assumptions are appropriate. It also

makes plain the limitations of the available data.



1. Missing Outcomes

Suppose that each member j of a population J has an

outcome yj in a space Y. The population is a probability

space (J, , P) and y: J  Y is a random variable with

distribution P(y). A sampling process draws persons at

random from J. A realization of y may or may not be

observable, as indicated by the realization of a binary

random variable z. Thus y is observable if z = 1 and not

observable if z = 0.

By the Law of Total Probability

 P(y)  =  P(y z = 1)P(z = 1) + P(y z = 0)P(z = 0).

The sampling process reveals P(y z = 1) and P(z), but is

uninformative regarding P(y z = 0). Hence, the empirical

evidence reveals that P(y) lies in the identification region

[P(y)]  [P(y z = 1)P(z = 1) + P(z = 0), Y],    

where Y is the space of all probability measures on Y.



Distributional Assumptions

Distributional assumptions may have identifying power.

One may assert that the distribution P(y z = 0) of missing

outcomes lies in some set 0Y Y. Then the identification

region shrinks from [P(y)] to

1[P(y)]  [P(y z = 1)P(z = 1) + P(z = 0), 0Y].    

Or one may assert that the distribution of interest, P(y), lies

in some set 0[P(y)] Y. Then the identification region

shrinks from [P(y)] to

1[P(y)]  0[P(y)]  [P(y)].                        

Assumptions of the former type are non-refutable but ones

of the latter type may be refutable.



Partial Identification of Parameters

A common objective of empirical research is to infer a

parameter of P(y).  Let ( ): Y  map probability

distributions on Y into a space  and consider the problem

of inference on the parameter [P(y)]. The identification

region for [P(y)] is 

{ [P(y)]} =  { ( ), [P(y)]}                          

if only the empirical evidence is available and is

1{ [P(y)]} =  { ( ), 1[P(y)]}                      

given distributional assumptions.



Statistical Inference

An empirical researcher observing a sample of finite size N

must contend with issues of statistical inference as well as

identification. The empirical distributions PN(y z = 1) and

PN(z) almost surely converge to P(y z = 1) and P(z)

respectively. Hence, a natural nonparametric estimate of the

identification region [P(y)] is the sample analog

N[P(y)]    [PN(y z = 1)PN(z = 1) + PN(z = 0), Y]

and a natural nonparametric estimate of { ( ), [P(y)]}

is { ( ), N[P(y)]}.



Identification Region for the Population Mean

Let R  [ , ].  Let G be the space of measurable

functions that map Y into R and that attain their lower and

upper bounds g0   inf y  Y g(y) and g1  sup y  Y g(y).

Let the problem of interest be to infer the expectation

E[g(y)] using only the empirical evidence. The Law of

Iterated Expectations gives

 E[g(y)]   =   E[g(y) z = 1]P(z = 1)  +  E[g(y) z = 0]P(z = 0).

The sampling process reveals E[g(y) z = 1] and P(z), but is

uninformative regarding E[g(y) z = 0], which can take any

value in the interval [g0, g1]. Hence

Proposition 1.1: Let g  G. Given the empirical evidence

alone, the identification region for E[g(y)] is the closed

interval

{E[g(y)]} =  [E[g(y) z = 1]P(z = 1) + g0P(z = 0),

             E[g(y) z = 1]P(z = 1) + g1P(z = 0)].     



Probabilities of Events

Let gB( ) be the indicator function gB(y)  1[y  B]. Then

Proposition 1.1 has this corollary.

Corollary 1.1.1: Let B be a non-empty, proper, and

measurable subset of Y. Given the empirical evidence

alone, the identification region for P(y  B) is the closed

interval

[P(y  B)]  =  [P(y  B z = 1)P(z = 1), 

                              P(y  B z = 1)P(z = 1) + P(z = 0)].    



Parameters that Respect Stochastic Dominance

Let R be the space of probability distributions on the

extended real line R.  Distribution F R stochastically

dominates distribution F R if F[ , t]  F [ , t] for all

t  R. An extended real-valued function D( ): R  R

respects stochastic dominance (is a D-parameter) if D(F)

 D(F ) whenever F stochastically dominates F .

Proposition 1.2: Let D( ) respect stochastic dominance. Let

g  G. Let Rg  [g(y), y  Y] be the range set of g. Let g

be the space of probability distributions on Rg. Let 0g g

and 1g g be the degenerate distributions that place all

mass on g0 and g1 respectively. Given the empirical

evidence alone, the smallest and largest points in the

identification region for D{P[g(y)]} are 

D{P[g(y) z = 1]P(z = 1) + 0gP(z = 0)}

and

D{P[g(y) z = 1]P(z = 1) + 1gP(z = 0)}.                             



Quantiles

The –quantile of P[g(y)] is

Q [g(y)]  min t: {P[g(y)  t] }.

The smallest feasible value of Q [g(y)] is the –quantile of

P[g(y) z = 1]P(z = 1) + 0gP(z = 0) and the largest is the

–quantile of P[g(y) z = 1]P(z = 1) + 1gP(z = 0).



Outer Bounds on Differences between D-Parameters

Sometimes the parameter of interest is the difference

between two D-parameters; that is, a parameter of the form

21{P[g(y)]}  D2{P[g(y)]}  D1{P[g(y)]}.

For example, the interquartile range Q0.75[g(y)]  Q0.25[g(y)]

is a familiar measure of the spread of a distribution.

In general, differences between D-parameters are not

themselves D-parameters. Nevertheless, Proposition 1.2

may be used to obtain informative outer bounds on such

differences. A lower bound on 21{P[g(y)]} is the

proposition’s lower bound on D2{P[g(y)]} minus its upper

bound on D1{P[g(y)]}; similarly, an upper bound on

21{P[g(y)]} is the proposition’s upper bound on

D2{P[g(y)]} minus its lower bound on D1{P[g(y)]}.

The bound on 21{P[g(y)]} obtained in this manner

generally is non-sharp; hence the term outer bound.



2. Instrumental Variables

Distributional assumptions may enable one to shrink

identification regions obtained using empirical evidence

alone. It has been particularly common to assert that

  P(y)  =  P(y z = 0)  =  P(y z = 1).

P(y z = 1) is revealed by the sampling process, so P(y) is

point-identified.

Researchers almost inevitably find this or other point-

identifying assumptions difficult to justify. This should not

be surprising. The empirical evidence reveals nothing about

the distribution of missing data. An assumption must be

strong to pick out one among all possible distributions.



There is a fundamental tension between the credibility and

strength of conclusions, which I have called the Law of

Decreasing Credibility.

The Law of Decreasing Credibility: The credibility of

inference decreases with the strength of the assumptions

maintained.

Inference using the empirical evidence alone sacrifices

strength of conclusions in order to maximize credibility.

Inference invoking point-identifying assumptions sacrifices

credibility in order to achieve strong conclusions. Between

these poles, there is a vast middle ground of possible modes

of inference asserting assumptions that may shrink the

identification region [P(y)] but not reduce it to a point.



Some Assumptions Using Instrumental Variables

Suppose that each person j is characterized by a covariate

vj in a space V. Let v: J  V be the random variable

mapping persons into covariates and let P(y, z, v) denote the

joint distribution of (y, z, v). Suppose that all realizations of

v are observable. Observability of v provides an instrument

or tool that may help to identify the outcome distribution

P(y). Thus v is said to be an instrumental variable.

The sampling process reveals P(z), P(y, v z = 1), and

P(v z = 0), but is uninformative about the distributions

[P(y v = v, z = 0), v  V]. The presence of an instrumental

variable does not, per se, help to identify P(y). However,

observability of v may be useful when combined with

distributional assumptions.



Outcomes Missing-at-Random (Assumption MAR):

        P(y v)  =  P(y v, z = 0)  =  P(y v, z = 1).

Statistical Independence of Outcomes and Instruments

(Assumption SI):

 P(y v)  =  P(y).

Means Missing-at-Random (Assumption MMAR):

  E[g(y) v]  =  E[g(y) v, z = 0]  =  E[g(y) v, z = 1]         

Mean Independence of Outcomes and Instruments

(Assumption MI):

  E[g(y) v]  = E[g(y)].                                      



Proposition 2.1: Let assumption MAR hold. Then P(y) is

point-identified with

  P(y)  = v  V P(y v = v, z = 1)P(v = v).

Assumption MAR is non-refutable.

Proposition 2.2: (a) Let assumption SI hold. Then the

identification region for P(y) is

SI[P(y)]   =                                   

   {P(y v = v, z = 1)P(z = 1 v = v) + v P(z = 0 v = v),
v  V

v Y}.

(b) Let the set SI[P(y)] be empty. Then assumption SI does

not hold.                



3.Conditional Prediction with Missing Data

A large part of statistical practice aims to predict outcomes

conditional on covariates. Suppose that each member j of

population J has an outcome yj in a space Y and a covariate

xj in a space X. Let the random variable (y, x): J  Y × X

have distribution P(y, x). In general terms, the objective is

to learn the conditional distributions P(y x = x), x X. A

particular objective may be to learn the conditional

expectation E(y x = x), conditional median M(y x = x), or

another point predictor of y conditional on an event {x = x}.

Suppose that a sampling process draws persons at random

from J and realizations of (y, x) may be observable in

whole, in part, or not at all. Two binary random variables

(zy, zx) now indicate observability. A realization of y is

observable if zy  = 1 but not if zy  = 0; a realization of x is

observable if zx  = 1 but not if zx  = 0.

The sampling process reveals P(zy, zx), P(y, x zy = 1, zx = 1),

P(y zy = 1, zx = 0), and P(x zy = 0, zx = 1). The problem is to

use this empirical evidence to infer P(y x = x), x  X.



Missing Outcomes

Recall identification of P(y) when some realizations of y are

missing. The results obtained there apply immediately to

P(y x = x) if realizations of  x are always observable. One

simply needs to redefine the population of interest to be the

sub-population of J for which {x = x}. Then the

identification region using the empirical evidence alone is

[P(y x = x)]  =             

[P(y x = x, zy = 1)P(zy = 1 x = x) + P(zy = 0 x = x),

Y].



Jointly Missing Outcomes and Covariates

Proposition 3.1: Let P(zy = zx = 1) + P(zy = zx = 0)  =  1.

Then

[P(y*x = x)]  =  {P(y*x = x, zyx = 1)r(x)  + [1 r(x)],

Y},

where

                              P(x = x*zyx = 1)P(zyx = 1)
    r(x) )))))))))))))))))))))))))) .

          P(x = x*zyx = 1)P(zyx = 1) + P(zyx = 0)

Proposition 3.2: Let D respect stochastic dominance. Let g

 G. Let P(zy = zx = 1) + P(zy = zx = 0) = 1. Then the

smallest and largest points in the identification region for

D{P[g(y)]}are D{P[g(y) zyx = 1]r(x) + 0g[1  r(x)]} and

D{P[g(y) zyx = 1]r(x) + 1g[1 r(x)]}.                               



Missing Covariates

Proposition 3.5: Let P(zy = 1) = 1. Then

[P(y*x = x)]  =    
p  [0, 1]

                                       P(x = x*zx = 1)P(zx = 1)
{ P(y*x = x, zx = 1) ))))))))))))))))))))))))))
                                 P(x = x*zx = 1)P(zx = 1) + pP(zx = 0)

                                      pP(zx = 0)
   + )))))))))))))))))))))))))) , Y(p)},
           P(x = x*zx = 1)P(zx = 1) + pP(zx = 0)

where

Y(p) Y   {[P(y*zx = 0) (1  p)]/p,   Y}.     



Joint Inference on Conditional Distributions

Thus far, the object of interest was P(y*x = x) for one

specified value of x. Researchers often want to predict

outcomes when covariates take multiple values. Then the

object of interest is the set of conditional distributions

[P(y*x = x), x  X] or some functional thereof.

The identification region for [P(y*x = x), x  X] necessarily

is a subset of the Cartesian product of the identification

regions for each component distribution. Using the

empirical evidence alone, that is

[P(y*x = x), x  X]      × x  X [P(y*x = x)].                 

To go beyond this, one must specify the missing-data

problem. The structure of the joint identification region is

complex for sampling processes with general patterns of

missing data, but simple results hold if only outcomes are

missing or if (y, x) are jointly missing.



Parametric Prediction with Missing Data

Researchers often specify a parametric family of predictor

functions and seek to infer a member of this family that

minimizes expected loss with respect to some loss function.

Let the outcome y be real-valued. Let  be the parameter

space and f( , ): X ×  R be the family of predictor

functions. Let L( ): R  [0, ] be the loss function. The

objective is to find a *  such that

*  argmin   E{L[y  f(x, )]}.

Then f( , *) is called a best f( , )-predictor of y given x

under loss function L.

For example, in best linear prediction under square loss,

f(x, ) = x , L[y  f(x, )] = (y x )2, and
* = E(xx )-1E(xy) if E(xx ) is non-singular.



Prediction Using the Empirical Evidence Alone

Using the empirical evidence alone, the identification

region for * is the set of parameter values that minimize

expected loss under some feasible distribution for the

missing data.

( *)   =

( 10, 00, 01) 10 × 00 × 01

                  {argmin    P(zyx = 1) E{L[y  f(x, )] zyx = 1}

                               + P(zx = 1, zy = 0) L[y  f(x, )]d 10

                               + P(zx = 0, zy = 0) L[y  f(x, )]d 00

                                 + P(zx = 0, zy = 1) L[y  f(x, )]d 01}.

Here 10 is the set of all distributions on Y × X with x-

marginal P(x zx = 1, zy = 0), 00 is the set of all distributions

on Y × X, and 01 is the set of all distributions on Y × X

with y-marginal P(y zx = 0, zy = 1).



The natural estimate of ( *) is its sample analog, which

uses the empirical distribution of the data to estimate P(zyx),

P[(y, x) zyx = 1], P(x zx = 1, zy = 0), and P(y zx = 0, zy = 1).

However, computation of this estimate can pose a

considerable challenge. This is so even in the relatively

benign setting of best linear prediction under square loss,

where the sample analog of ( *) is the set of least squares

estimates produced by conjecturing all possible values for

missing outcome and covariate data.


