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Overview

o N

# General considerations about probability
o Epistemic probability

# Decision making

# Conditioning

o |
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General considerations about
probabllity
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Two kinds of probabilities
-

o Aleatory probabillities
s physical property, disposition
s related to frequentist models
» other names: objective, statistical or physical
probabllity, chance
# Epistemic probabillities
s model knowledge, information
» represent strength of beliefs
s other names: personal or subjective probability

o |
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Part 11

Epistemic probability
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First observation

o N

For many applications, we need theories to represent and
reason with certain and uncertain knowledge

certain — logic
uncertain —  probability theory

One candidate: | Bayesian theory of probability
| shall:

# argue that it is not general enough
# present the basic ideas behind a more general theory

Imprecise probability theory (IP)

o |
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A theory of epistemic probability
fThree pillars: T

# how to measure epistemic probability?
# by what rules does epistemic probability abide?

# how can we use epistemic probabillity in reasoning,
decision making, statistics ...?

Notice that:
1 and?2 knowledge representation
3 = reasoning, inference

o |
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How to measure personal probability?

o N

# [ntrospection

s difficulty: how to convey and compare strengths of
beliefs?

o lack of a common standard

® Dbelief = Iinclination to act

o beliefs lead to behaviour, that can be used to
measure their strength

» special type of behaviour: accepting gambles

s agamble is a transaction/action/decision that yields
different outcomes (utilities) in different states of the
world.

o |
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Gambles

(2 Is the set of possible outcomes w
A gamble X Is a bounded real-valued function on 2

X:Q—-R:w— X(w)
Example: How did | come to Lugano? By plane (p), by

car (c) or by train (¢)?

s Q={p,ct}
s X(p)=-3,X(c)=2,X(t)=5

Whether your accept this gamble or not will depend on
your knowledge about how | came to Lugano

Denote your set of desirable gambles by

D C L(DQ) |
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Modelling your uncertainty

-

Accepting a gamble
= taking a decision/action in the face of uncertainty

Your set of desirable gambles contains the gambles that
you accept

It Is a model for your uncertainty about which value w of
(2 actually obtains (or will obtain)

More common models

» (lower and upper) previsions

» (lower and upper) probabillities
» preference orderings

s probability orderings

» sets of probabilities

|
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Desirability and rationality criteria

o N

# Rewards are expressed in units of a linear utility scale

#® Axioms: a set of desirable gambles D is coherent iff
D1. 0¢D
D2. If X >0then X €D
D3. If X,)YeDthen X +Y €D
D4. f X e Dand A > 0then AX € D

® Consequence:lf X eDandY > XthenY €D

#® Consequence: If Xy, ..., X, eDand A\, ..., A\, >0
then >, X €D

#® A coherent set of desirable gambles is a convex cone of
gambles that contains all positive gambles but not the

zero gamble.
| -
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Definition of lower/upper prevision

o N

# Consider a gamble X
# Buying X for a price p yields a new gamble X —

# the lower prevision P(X) of X
= supremum acceptable price for buying X
= supremum p such that X — . is desirable for all < p
= sup{pu: X —u €D}

# Selling X for a price i yields a new gamble © — X

# the upper prevision P(X) of X
= Infimum acceptable price for selling X
= Inflmum p such that . — X Is desirable for all © > p
= inf{u: p— X € D}

o |
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Lower and upper prevision

-

# Selling a gamble X for price u
= buying —X for price —u:

p—X=(=X)—(—p)

# Consequently:

P(X)=inf{p: un— X € D}
=inf{-X: — X -\ e D}
= —sup{\: — X —-\eD}
— —P(-X)

A gentle introduction to

-1

-

|
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_ower and upper prevision — 2

-

P(X)=sup{u: X —pueD}

If you specify a lower prevision P(X), you are
committed to accepting

X—-P(X)+e=X—|P(X)—¢
for all ¢ > 0 (but not necessarily for ¢ = 0).
P(X)=inf{u: p— X € D}

if you specify an upper prevision P(X), you are
committed to accepting

PX)—X+e=[PX)+e—-X
for all ¢ > 0 (but not necessarily for ¢ = 0). J
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e

Precise previsions

When lower and upper prevision coincide:

P(X)=P(X) = P(X)

IS called the (precise) prevision of X
P(X) Is a prevision, or fair price in de Finetti’s sense

Previsions are the precise, or Bayesian, probability
models

If you specify a prevision P(X), you are committed to
accepting

P(X)+e—Xand X — |[P(X) — €
for all ¢ > 0 (but not necessarily for ¢ = 0). J
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Allowing for indecision

f a) P(X) T

buy X for price p sell X for price ¢

b) P(X) P(X)

buy X for pricep x ' sell X for price ¢

# Specifying a precise prevision P(X) means that you
choose, for essentially any real price p, between buying
X for price p or selling X for that price

# Imprecise models allow for indecision!

o |
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Events and lower probabilities

-

® An eventis a subset of T

# Example: the event {c,t} that | did not come by plane to
Lugano.

# It can be identied with a special gamble 74 on

Ip(w) =

1 IfweA,le., Aoccurs
0 IfwéA,le. Adoesn'toccur

# The lower probability P(A) of A
= lower prevision P(I4) of indicator I 4
= supremum rate for betting on A
measure of evidence in favour of A
measure of (strength of) belief in A J

.
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Upper probabilities

® The upper probability P(A) of A T

= the upper prevision P(I4) = P(1 —I.oa) =1 — P(Icon)
of 14

= 1 — P(coA)

= measures lack of evidence against A

= measures the plausibility of A

# This gives a behavioural interpretation to lower and
upper probability

|
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Rules of epistemic probability

-

Lower and upper previsions represent commitments to
act/behave In certain ways

Rules that govern lower and upper previsions reflect
rationality of behaviour.

Your behaviour is considered to be irrational when

s Itis harmful to yourself: specifying betting rates such
that you lose utility, whatever the outcome
— avoiding sure loss (cf. logical consistency)

s Itis inconsistent: you are not fully aware of the
Implications of your betting rates
— coherence (cf. logical closure)

|
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Avoiding sure loss

-

# Example: two bets

on A: Iy — P(A)

on coA: Ieon — P(coA)

together: 1 —[P(A) + P(coA)]

# Avoiding a sure loss implies

P(A)+ P(coA) <1, or

> ()

A gentle introduction to i

|
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Avoiding sure loss: general condition

-

-

A set of gambles K and a lower prevision P defined for
each gamble in K.

Definition 1. P avoids sure loss if foralln > 0, X4, ..., X,, in IC and
for all non-negative A1, ..., Ay:

sup Z)\k Xi(w) — P(Xp)]| = 0.

wel)

If it doesn’t hold, therearee >0,n >0, X¢,..., X,, and
positive A\, ..., A\, such that for all w:

Z)‘k Xp(w) — P(Xg) +¢ < —e J
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Coherence

o N

o Example: two bets involving A and B with AN B = ()

on A: I4— P(A)
on B: Ip — P(B)
together: 4, — [P(A)+ P(B)]

# Coherence implies that

P(A)+ P(B) < P(AUB)

o |
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Coherence: general condition

o .. | N

A set of gambles K and a lower prevision P defined for
each gamble in K.

Definition 2. P is coherent if foralln > 0, X, X1, ..., X,, in IC and

for all non-negative Ay, A1, ..., Ap:
sup Z Mo Xi(w) — P(X5)] — No[Xo — P(X,)]| > 0.
wel) ]
If it doesn’t hold, there aree >0, n >0, X,, X1, ..., X,, and
positive A\, ..., A\, such that for all w:

Xo(w) = (P(Xo) +€) = ) Mg Xi(w) — P(X) + ¢!
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Coherence of precise previsions

-

A (precise) prevision is coherent when it is coherent
both as a lower and as an upper prevision

a precise prevision P on £(2) Is coherent iff

o POAX +uY)=AP(X)+ uP(Y)

s If X >0then P(X) >0

s P())=1

coincides with de Finetti’s notion of a coherent prevision

restriction to events is a (finitely additive) probability
measure

Let P denote the set of all linear previsions on £(€2)

|
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Sets of previsions

o N

# Lower prevision P on a set of gambles K

® Let M(P) be the set of precise previsions that dominate
P on its domain K:

M(P) = {P € P: (VX € K)(P(X) > P(X))}.
# Then avoiding sure loss Is equivalent to:
M(P) # 0.
# and coherence Is equivalent to:

P(X)=min{P(X): Pe M(P)}, VX eKk.

# A lower envelope of a set of precise previsions Is
L always coherent
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-

Coherent lower/upper previsions — 1

© o o o o o

-

probability measures, previsions a la de Finetti
2-monotone capacities, Choquet capacities
contamination models

possibility and necessity measures

belief and plausibility functions

random set models

|
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Coherent lower/upper previsions — 2

o N

#® reachable probabillity intervals

# lower and upper mass/density functions

# lower and upper cumulative distributions (p-boxes)
# (lower and upper envelopes of) credal sets

# distributions (Gaussian, Poisson, Dirichlet, multinomial,
... ) with interval-valued parameters

#® robust Bayesian models

o |
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Natural extension

o N

Third step toward a scientific theory
= how to make the theory useful

= use the assessments to draw conclusions about other
things [(conditional) events, gambles, ... ]

Problem: extend a coherent lower prevision defined on a
collection of gambles to a lower prevision on all gambles
(conditional events, gambles, ...)

Requirements:
#® coherence
# as low as possible (conservative, least-committal)

L = |NATURAL EXTENSION J
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Natural extension: an example —1

o N

Lower probabilities P(A) and P(B) for two events A and B
that are logically independent:

ANB#0 ANncoB#0 coANB#0 coANcoB # 1)

For all A > 0 and i > 0, you accept to buy any gamble X for
price « If for all w

X(w) —a = AMla(w) — P(A)] + pllp(w) — P(B)]

The natural extension E(X) of the assessments P(A) and
P(B) to any gamble X is the highest a such that this
Inequality holds, over all possible choices of A and .

o |
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Natural extension: an example — 2

o N

Calculate £(A U B): maximise « subject to the constraints:
A >0, >0, and for all w:

Lap(w) —a > Ala(w) — P(A)] + plIp(w) — 2(B)]
or equivalently:
Taup(w) 2 My (w) + plp(w) + [a — AP(A) — pP(B)]

and if we put v = a — AP(A) — uP(B) this Is equivalent to
maximising
v+ AP(A) + pP(B)

subject to the inequalities

L 1> A+p+vy, 12X+~ 1>2p+vy, 0>7 J
A>0, =0
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Natural extension: an example — 3

o N

This Is a linear programming problem, and its solution is
easily seen to be:

E(AU B) = max{P(A), P(B)}

Similarly, for X = I4~p We get another linear programming
problem that yields

E(AN B) = max{0, P(A) + P(B) — 1}

These are the Fréechet bounds! Natural extension always
gives the most conservative values that are still compatible
with coherence and other additional assumptions made ...

o |
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Another example: set information

-

® [Information: w assumes a value in a subset A of ()

# This information is represented by the vacuous lower
prevision relative to A:

Py(X) = inf X(w); X €L(Q)

® Pec M(P,) iff P(A) =1

# P, Is the natural extension of the precise probability
assessment ‘P(A) = 1’; also of the belief function with
probability mass one on A

o Take any P such that P(A) =1, then P(X) is only

determined up to an interval [P 4(X), P 4(X)] according
to de Finetti's fundamental theorem of probability J
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Natural extension: sets of previsions
f # Lower prevision P on a set of gambles K T
o If it avoids sure loss then M(P) # () and its natural
extension is given by the of M(P):

E(X)=min{P(X): Pe M(P)}, VX e L(Q)

® P is coherentiff it coincides on its domain K with its
natural extension

o |

A gentle introduction to imprecise probability models — p.33/54



Natural extension: desirable gambles

-

# Consider a set D of gambles you have judged desirable

# What are the implications of these assessments for the
desirability of other gambles?

® The natural extension £ of D Is the smallest coherent
set of desirable gambles that includes D

# |t is the smallest extension of D to a convex cone of
gambles that contains all positive gambles but not the
zero gamble.

o |
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-

-

Natural extension is a very powerful reasoning method. In

Natural extension: special cases

-

special cases it reduces to:

¥

© o o o o o o ©

logical deduction

belief functions via random sets

fundamental theorem of probability/prevision

Lebesgue integration of a probability measure

Choquet integration of 2-monotone lower probabilities
Bayes'’ rule for probability measures

Bayesian updating of lower/upper probabilities

robust Bayesian analysis

first-order model from higher-order model J
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Three pillars

o -

1. behavioural definition of lower/upper previsions that can
be made operational

2. rationality criteria of
# avoiding sure loss
#® coherence

3. natural extension to make the theory useful

o |
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© o o 0

Gambles and events — 1

-

How to represent: event A is at least n times as
probable as event B

Set of precise previsions M:
PeMe P(A) >nP(B) e P(Iy—nlg) >0

lower previsions: P(Il4 —nlg) >0

sets of desirable gambles: 14 — nig +¢ € D, Ve > 0.
I, —nlgis a gamble, generally not an indicator!
Cannot be expressed by lower

P(A)> P(B), P(A)>P(B) tooweak
> P(B) too strong J
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Gambles and events — 2

-

# Did | come to Lugano by plane, by car or by train?

® Assessments:
s ‘not by plane’ is at least as probable as ‘by plane
s ‘by plane’ is at least a probable as ‘by train’
s ‘Dy train’ Is at least a probable as ‘by car’

# Convex set M of probability mass functions m on
{p,t,c} such that

m(p) < 3. mlp) 2 m(t), m(t) > m(c)

# M is a convex set with extreme points

11 1 11 I 11
- 229 1y G373 -
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Gambles and events — 3

o .

# the natural extension £ is the lower envelope of this set

E(X) = min [m(p)X(p) + m(t)X(t) +m(c)X(c)

# The lower probabilities are completely specified by

E({p}) = E({p}) =
E({t}) = E({t}) =
E({c}))=0  E({c}) =

O | — Q| =



°

Gambles and events — 4

-

the corresponding set of mass functions M* Is a convex
set with extreme points

11 1 11 1 11
529 G137 Gy

M is more informative than M*: M C M*
with M we can infer that E(I;,y — I;3) = 0: ‘by plane’ is
at least as probable as ‘by train’

with M* this inference cannot be made: we lose
Information by restricting ourselves to lower probabilities

|
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Gambles and events — 5

event A <« gamble I4
lower probability P(A) <« lower prevision P(14)

In precise probability theory:
— events are as expressive as gambles

In iImprecise probabllity theory:
— events are less expressive than gambles

|
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And by the way
=

There is a natural embedding of classical propositional logic
Into Imprecise probability theory.

-

set of propositions — lower probability
logically consistent — ASL
deductively closed — coherent
deductive closure — natural extension
maximal deductively closed — probability

No such embedding exists into precise probability theory.

o |
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Part 111

Decision making



Decision making — 1

o N

Consider an action « whose outcome (reward) depends on
the actual value of w (state of the world)
With such an action we can associate a reward function

Xg: Q—>R:w— Xg(w)

When do you strictly prefer action a over action b:
a>be P(X,—Xp) >0

You almost-prefer a over b If

aZb@B(Xa—Xb)ZO

We identify an action a with its reward function X, J

.
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Decision making — 2

-

You are indifferent between a and b If

a~bsa>bandb > a
& P(X,—Xp) =P(X,—Xp) =0
Actions a and b are incomparable If
allb<=aFbandb Faanda b

# |n that case there is not enough information in the
model to choose between « and b: you are undecided!

e

Imprecise probability models allow for indecision!

# In fact, modelling and allowing for indecision is one of
L the motivations for introducing imprecise probabilities J
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Decision making: maximal actions

o N

® Consider a set of actions A and reward functions
K={X,:a€A}

# Due to the fact that certain actions may be
Incomparable, the actions cannot be linearly ordered,
only partially!

o |
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Ordering of actions



Decision making: maximal actions

o N

® Consider a set of actions A and reward functions
K={X,:a€A}

# Due to the fact that certain actions may be
Incomparable, the actions cannot be linearly ordered,
only partially!

® The maximal actions a are actions that are
undominated:

(Vb e A)(b # a)
or equivalently

(Vb € A)(P(Xo — Xp) > 0)

® Two maximal actions are either indifferent or

L Incomparable! J
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Decision making: the precise case

o N

a>bs P(X,—Xp) >0< P(X,) > P(Xy)

a>be P(X,—Xp)>0< P(X,) > P(Xy)

a~bs P(X,) =P(Xp)

never al|b!

There is no indecision in precise probability models

© o o o o o

Whatever the available information, they always allow
you a best choice between two available actions!

°

Actions can always be ordered linearly, maximal actions
are uniqgue (up to indifference): they have the highest
expected utility.

o |
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Decision making: sets of previsions

-

® a>bs (VPeM(P)P(X,) > P(Xyp))
® a>be (VP e M(P)(P(X,) > P(Xp))
® axbe (VPeM(P)(P(X,) = P(Xyp))

o allb < (3P € M(P))(P
and (3Q € M(P))(Q(X,) 3 Q(Xp))

# |f IC is convex then a Is maximal if and only if there is
some P € M(P) such that

(Vb e A)(P(X,) > P(Xyp))



Part IV

Conditioning



Generalised Bayes Rule

-

Let P be defined on a large enough domain, and B C (.

If P(B) > 0 then coherence implies that P(X|B) Is the
unique solution of the following equation in pu:

P(Ip|X —p])=0
If P = P Is precise, this reduces to

P(XIp)
P(B)

P(X|B) =y =

Observe that also

P(X|B) = inf {P(X|B): P € M(P)}

|
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Regular extension

-

® If P(B) =0 but P(B) > 0 then one often considers the
so-called regular extension R(X|B): It is the greatest u

such that
P(Ip|X —pu]) >0

® Observe that also
R(X|B) = inf{P(X|B): P € M(P) and P(B) > 0}

#® Regular extension is the most conservative coherent
extension that satisfies an additional regularity condition

o |
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Questions
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