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Part I

General considerations about
probability
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Two kinds of probabilities

Aleatory probabilities
physical property, disposition
related to frequentist models
other names: objective, statistical or physical
probability, chance

Epistemic probabilities
model knowledge, information
represent strength of beliefs
other names: personal or subjective probability
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Part II

Epistemic probability
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First observation

For many applications, we need theories to represent and
reason with certain and uncertain knowledge

certain → logic

uncertain → probability theory

One candidate: Bayesian theory of probability
I shall:

argue that it is not general enough

present the basic ideas behind a more general theory

imprecise probability theory (IP)
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A theory of epistemic probability

Three pillars:

how to measure epistemic probability?

by what rules does epistemic probability abide?

how can we use epistemic probability in reasoning,
decision making, statistics . . . ?

Notice that:
1 and 2 = knowledge representation

3 = reasoning, inference
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How to measure personal probability?

Introspection
difficulty: how to convey and compare strengths of
beliefs?
lack of a common standard

belief = inclination to act
beliefs lead to behaviour, that can be used to
measure their strength
special type of behaviour: accepting gambles
a gamble is a transaction/action/decision that yields
different outcomes (utilities) in different states of the
world.
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Gambles

Ω is the set of possible outcomes ω

A gamble X is a bounded real-valued function on Ω

X : Ω → R : ω 7→ X(ω)

Example: How did I come to Lugano? By plane (p), by
car (c) or by train (t)?

Ω = {p, c, t}

X(p) = −3, X(c) = 2, X(t) = 5

Whether your accept this gamble or not will depend on
your knowledge about how I came to Lugano

Denote your set of desirable gambles by

D ⊆ L(Ω)
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Modelling your uncertainty

Accepting a gamble
= taking a decision/action in the face of uncertainty

Your set of desirable gambles contains the gambles that
you accept

It is a model for your uncertainty about which value ω of
Ω actually obtains (or will obtain)

More common models
(lower and upper) previsions
(lower and upper) probabilities
preference orderings
probability orderings
sets of probabilities
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Desirability and rationality criteria

Rewards are expressed in units of a linear utility scale

Axioms: a set of desirable gambles D is coherent iff
D1. 0 6∈ D

D2. If X > 0 then X ∈ D

D3. If X,Y ∈ D then X + Y ∈ D

D4. If X ∈ D and λ > 0 then λX ∈ D

Consequence: If X ∈ D and Y ≥ X then Y ∈ D

Consequence: If X1, . . . , Xn ∈ D and λ1, . . . , λn > 0
then

∑n
k=1

λkXk ∈ D

A coherent set of desirable gambles is a convex cone of
gambles that contains all positive gambles but not the
zero gamble.
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Definition of lower/upper prevision

Consider a gamble X

Buying X for a price µ yields a new gamble X − µ

the lower prevision P (X) of X

= supremum acceptable price for buying X

= supremum p such that X − µ is desirable for all µ < p

= sup {µ : X − µ ∈ D}

Selling X for a price µ yields a new gamble µ − X

the upper prevision P (X) of X

= infimum acceptable price for selling X

= infimum p such that µ − X is desirable for all µ > p

= inf {µ : µ − X ∈ D}
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Lower and upper prevision – 1

Selling a gamble X for price µ

= buying −X for price −µ:

µ − X = (−X) − (−µ)

Consequently:

P (X) = inf {µ : µ − X ∈ D}

= inf {−λ : − X − λ ∈ D}

= − sup {λ : − X − λ ∈ D}

= −P (−X)
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Lower and upper prevision – 2

P (X) = sup {µ : X − µ ∈ D}

if you specify a lower prevision P (X), you are
committed to accepting

X − P (X) + ε = X − [P (X) − ε]

for all ε > 0 (but not necessarily for ε = 0).

P (X) = inf {µ : µ − X ∈ D}

if you specify an upper prevision P (X), you are
committed to accepting

P (X) − X + ε = [P (X) + ε] − X

for all ε > 0 (but not necessarily for ε = 0).
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Precise previsions

When lower and upper prevision coincide:

P (X) = P (X) = P (X)

is called the (precise) prevision of X

P (X) is a prevision, or fair price in de Finetti’s sense

Previsions are the precise, or Bayesian, probability
models

if you specify a prevision P (X), you are committed to
accepting

[P (X) + ε] − X and X − [P (X) − ε]

for all ε > 0 (but not necessarily for ε = 0).
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Allowing for indecision

P (X)p q

buy X for price p sell X for price q

a)

P (X)p q

buy X for price p sell X for price q

b) P (X)

×

Specifying a precise prevision P (X) means that you
choose, for essentially any real price p, between buying
X for price p or selling X for that price

Imprecise models allow for indecision!
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Events and lower probabilities

An event is a subset of Ω

Example: the event {c, t} that I did not come by plane to
Lugano.

It can be identied with a special gamble IA on Ω

IA(ω) =

{

1 if ω ∈ A, i.e., A occurs
0 if ω 6∈ A, i.e., A doesn’t occur

The lower probability P (A) of A

= lower prevision P (IA) of indicator IA

= supremum rate for betting on A

= measure of evidence in favour of A

= measure of (strength of) belief in A
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Upper probabilities

The upper probability P (A) of A

= the upper prevision P (IA) = P (1− IcoA) = 1−P (IcoA)
of IA

= 1 − P (coA)

= measures lack of evidence against A

= measures the plausibility of A

This gives a behavioural interpretation to lower and
upper probability

evidence for A ↑ ⇒ P (A) ↑

evidence against A ↑ ⇒ P (A) ↓
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Rules of epistemic probability

Lower and upper previsions represent commitments to
act/behave in certain ways

Rules that govern lower and upper previsions reflect
rationality of behaviour.

Your behaviour is considered to be irrational when
it is harmful to yourself : specifying betting rates such
that you lose utility, whatever the outcome
=⇒ avoiding sure loss (cf. logical consistency)
it is inconsistent : you are not fully aware of the
implications of your betting rates
=⇒ coherence (cf. logical closure)
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Avoiding sure loss

Example: two bets

on A: IA − P (A)

on coA: IcoA − P (coA)

together: 1 − [P (A) + P (coA)] ≥ 0

Avoiding a sure loss implies

P (A) + P (coA) ≤ 1, or P (A) ≤ P (A)
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Avoiding sure loss: general condition

A set of gambles K and a lower prevision P defined for
each gamble in K.

Definition 1. P avoids sure loss if for all n ≥ 0, X1, . . . , Xn in K and
for all non-negative λ1, . . . , λn:

sup
ω∈Ω

[

n
∑

k=1

λk[Xk(ω) − P (Xk)]

]

≥ 0.

If it doesn’t hold, there are ε > 0, n ≥ 0, X1, . . . , Xn and
positive λ1, . . . , λn such that for all ω:

n
∑

k=1

λk[Xk(ω) − P (Xk) + ε] ≤ −ε!
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Coherence

Example: two bets involving A and B with A ∩ B = ∅

on A: IA − P (A)

on B: IB − P (B)

together: IA∪B − [P (A) + P (B)]

Coherence implies that

P (A) + P (B) ≤ P (A ∪ B)
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Coherence: general condition

A set of gambles K and a lower prevision P defined for
each gamble in K.

Definition 2. P is coherent if for all n ≥ 0, Xo, X1, . . . , Xn in K and
for all non-negative λo, λ1, . . . , λn:

sup
ω∈Ω

[

n
∑

k=1

λk[Xk(ω) − P (Xk)] − λo[Xo − P (Xo)]

]

≥ 0.

If it doesn’t hold, there are ε > 0, n ≥ 0, Xo, X1, . . . , Xn and
positive λ1, . . . , λn such that for all ω:

Xo(ω) − (P (Xo) + ε) ≥
n

∑

k=1

λk[Xk(ω) − P (Xk) + ε]!
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Coherence of precise previsions

A (precise) prevision is coherent when it is coherent
both as a lower and as an upper prevision

a precise prevision P on L(Ω) is coherent iff
P (λX + µY ) = λP (X) + µP (Y )

if X ≥ 0 then P (X) ≥ 0

P (Ω) = 1

coincides with de Finetti’s notion of a coherent prevision

restriction to events is a (finitely additive) probability
measure

Let P denote the set of all linear previsions on L(Ω)
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Sets of previsions

Lower prevision P on a set of gambles K

Let M(P ) be the set of precise previsions that dominate
P on its domain K:

M(P ) = {P ∈ P : (∀X ∈ K)(P (X) ≥ P (X))} .

Then avoiding sure loss is equivalent to:

M(P ) 6= ∅.

and coherence is equivalent to:

P (X) = min {P (X) : P ∈ M(P )} , ∀X ∈ K.

A lower envelope of a set of precise previsions is
always coherent
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Coherent lower/upper previsions – 1

probability measures, previsions à la de Finetti

2-monotone capacities, Choquet capacities

contamination models

possibility and necessity measures

belief and plausibility functions

random set models
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Coherent lower/upper previsions – 2

reachable probability intervals

lower and upper mass/density functions

lower and upper cumulative distributions (p-boxes)

(lower and upper envelopes of) credal sets

distributions (Gaussian, Poisson, Dirichlet, multinomial,
. . . ) with interval-valued parameters

robust Bayesian models

. . .
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Natural extension

Third step toward a scientific theory

= how to make the theory useful

= use the assessments to draw conclusions about other
things [(conditional) events, gambles, . . . ]

Problem: extend a coherent lower prevision defined on a
collection of gambles to a lower prevision on all gambles
(conditional events, gambles, . . . )

Requirements:

coherence

as low as possible (conservative, least-committal)

= NATURAL EXTENSION
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Natural extension: an example – 1

Lower probabilities P (A) and P (B) for two events A and B

that are logically independent:

A ∩ B 6= ∅ A ∩ coB 6= ∅ coA ∩ B 6= ∅ coA ∩ coB 6= ∅

For all λ ≥ 0 and µ ≥ 0, you accept to buy any gamble X for
price α if for all ω

X(ω) − α ≥ λ[IA(ω) − P (A)] + µ[IB(ω) − P (B)]

The natural extension E(X) of the assessments P (A) and
P (B) to any gamble X is the highest α such that this
inequality holds, over all possible choices of λ and µ.
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Natural extension: an example – 2

Calculate E(A ∪ B): maximise α subject to the constraints:
λ ≥ 0, µ ≥ 0, and for all ω:

IA∪B(ω) − α ≥ λ[IA(ω) − P (A)] + µ[IB(ω) − P (B)]

or equivalently:

IA∪B(ω) ≥ λIA(ω) + µIB(ω) + [α − λP (A) − µP (B)]

and if we put γ = α − λP (A) − µP (B) this is equivalent to
maximising

γ + λP (A) + µP (B)

subject to the inequalities

1 ≥ λ + µ + γ, 1 ≥ λ + γ, 1 ≥ µ + γ, 0 ≥ γ

λ ≥ 0, µ ≥ 0
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Natural extension: an example – 3

This is a linear programming problem, and its solution is
easily seen to be:

E(A ∪ B) = max{P (A), P (B)}

Similarly, for X = IA∩B we get another linear programming
problem that yields

E(A ∩ B) = max{0, P (A) + P (B) − 1}

These are the Fréchet bounds! Natural extension always
gives the most conservative values that are still compatible
with coherence and other additional assumptions made . . .

A gentle introduction to imprecise probability models – p.31/54



Another example: set information

Information: ω assumes a value in a subset A of Ω

This information is represented by the vacuous lower
prevision relative to A:

PA(X) = inf
ω∈A

X(ω); X ∈ L(Ω)

P ∈ M(PA) iff P (A) = 1

PA is the natural extension of the precise probability
assessment ‘P (A) = 1’; also of the belief function with
probability mass one on A

Take any P such that P (A) = 1, then P (X) is only
determined up to an interval [P A(X), PA(X)] according
to de Finetti’s fundamental theorem of probability
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Natural extension: sets of previsions

Lower prevision P on a set of gambles K

If it avoids sure loss then M(P ) 6= ∅ and its natural
extension is given by the lower envelope of M(P ):

E(X) = min {P (X) : P ∈ M(P )} , ∀X ∈ L(Ω)

P is coherent iff it coincides on its domain K with its
natural extension
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Natural extension: desirable gambles

Consider a set D of gambles you have judged desirable

What are the implications of these assessments for the
desirability of other gambles?

The natural extension E of D is the smallest coherent
set of desirable gambles that includes D

It is the smallest extension of D to a convex cone of
gambles that contains all positive gambles but not the
zero gamble.
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Natural extension: special cases

Natural extension is a very powerful reasoning method. In
special cases it reduces to:

logical deduction

belief functions via random sets

fundamental theorem of probability/prevision

Lebesgue integration of a probability measure

Choquet integration of 2-monotone lower probabilities

Bayes’ rule for probability measures

Bayesian updating of lower/upper probabilities

robust Bayesian analysis

first-order model from higher-order model
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Three pillars

1. behavioural definition of lower/upper previsions that can
be made operational

2. rationality criteria of
avoiding sure loss
coherence

3. natural extension to make the theory useful
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Gambles and events – 1

How to represent: event A is at least n times as
probable as event B

Set of precise previsions M:

P ∈ M ⇔ P (A) ≥ nP (B) ⇔ P (IA − nIB) ≥ 0

lower previsions: P (IA − nIB) ≥ 0

sets of desirable gambles: IA − nIB + ε ∈ D, ∀ε > 0.

IA − nIB is a gamble, generally not an indicator!

Cannot be expressed by lower probabilities:
{

P (A) ≥ P (B), P (A) ≥ P (B) too weak
P (A) ≥ P (B) too strong
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Gambles and events – 2

Did I come to Lugano by plane, by car or by train?

Assessments:
‘not by plane’ is at least as probable as ‘by plane’
‘by plane’ is at least a probable as ‘by train’
‘by train’ is at least a probable as ‘by car’

Convex set M of probability mass functions m on
{p, t, c} such that

m(p) ≤
1

2
, m(p) ≥ m(t), m(t) ≥ m(c)

M is a convex set with extreme points

(
1

2
,
1

2
, 0), (

1

2
,
1

4
,
1

4
), (

1

3
,
1

3
,
1

3
)
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Gambles and events – 3

the natural extension E is the lower envelope of this set

E(X) = min
m∈M

[m(p)X(p) + m(t)X(t) + m(c)X(c)]

The lower probabilities are completely specified by

E({p}) =
1

3
E({p}) =

1

2

E({t}) =
1

2
E({t}) =

1

4

E({c}) = 0 E({c}) =
1

3
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Gambles and events – 4

the corresponding set of mass functions M∗ is a convex
set with extreme points

(
1

2
,
1

2
, 0), (

1

2
,
1

4
,
1

4
), (

1

3
,
1

3
,
1

3
)

(
5

12
,
1

4
,
1

3
), (

1

3
,
1

2
,
1

6
)

M is more informative than M∗: M ⊂ M∗

with M we can infer that E(I{p} − I{t}) = 0: ‘by plane’ is
at least as probable as ‘by train’

with M∗ this inference cannot be made: we lose
information by restricting ourselves to lower probabilities
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Gambles and events – 5

event A ⇔ gamble IA

lower probability P (A) ⇔ lower prevision P (IA)

In precise probability theory:
→ events are as expressive as gambles

In imprecise probability theory:
→ events are less expressive than gambles
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And by the way

There is a natural embedding of classical propositional logic
into imprecise probability theory.

set of propositions → lower probability
logically consistent → ASL
deductively closed → coherent
deductive closure → natural extension

maximal deductively closed → probability

No such embedding exists into precise probability theory.
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Part III

Decision making
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Decision making – 1

Consider an action a whose outcome (reward) depends on
the actual value of ω (state of the world)
With such an action we can associate a reward function

Xa : Ω → R : ω 7→ Xa(ω)

When do you strictly prefer action a over action b:

a > b ⇔ P (Xa − Xb) > 0

You almost-prefer a over b if

a ≥ b ⇔ P (Xa − Xb) ≥ 0

We identify an action a with its reward function Xa
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Decision making – 2

You are indifferent between a and b if

a ≈ b ⇔ a ≥ b and b ≥ a

⇔ P (Xa − Xb) = P (Xa − Xb) = 0

Actions a and b are incomparable if

a‖b ⇔ a 6> b and b 6> a and a 6≈ b

In that case there is not enough information in the
model to choose between a and b: you are undecided!

Imprecise probability models allow for indecision!

In fact, modelling and allowing for indecision is one of
the motivations for introducing imprecise probabilities
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Decision making: maximal actions

Consider a set of actions A and reward functions
K = {Xa : a ∈ A}

Due to the fact that certain actions may be
incomparable, the actions cannot be linearly ordered,
only partially!
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Ordering of actions
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Decision making: maximal actions

Consider a set of actions A and reward functions
K = {Xa : a ∈ A}

Due to the fact that certain actions may be
incomparable, the actions cannot be linearly ordered,
only partially!

The maximal actions a are actions that are
undominated:

(∀b ∈ A)(b 6> a)

or equivalently

(∀b ∈ A)(P (Xa − Xb) ≥ 0)

Two maximal actions are either indifferent or
incomparable!
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Decision making: the precise case

a > b ⇔ P (Xa − Xb) > 0 ⇔ P (Xa) > P (Xb)

a ≥ b ⇔ P (Xa − Xb) ≥ 0 ⇔ P (Xa) ≥ P (Xb)

a ≈ b ⇔ P (Xa) = P (Xb)

never a‖b!

There is no indecision in precise probability models

Whatever the available information, they always allow
you a best choice between two available actions!

Actions can always be ordered linearly, maximal actions
are unique (up to indifference): they have the highest
expected utility.
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Decision making: sets of previsions

a > b ⇔ (∀P ∈ M(P ))(P (Xa) > P (Xb))

a ≥ b ⇔ (∀P ∈ M(P ))(P (Xa) ≥ P (Xb))

a ≈ b ⇔ (∀P ∈ M(P ))(P (Xa) = P (Xb))

a‖b ⇔ (∃P ∈ M(P ))(P (Xa) < P (Xb))
and (∃Q ∈ M(P ))(Q(Xa) > Q(Xb))

If K is convex then a is maximal if and only if there is
some P ∈ M(P ) such that

(∀b ∈ A)(P (Xa) ≥ P (Xb))
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Part IV

Conditioning
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Generalised Bayes Rule

Let P be defined on a large enough domain, and B ⊆ Ω.

If P (B) > 0 then coherence implies that P (X|B) is the
unique solution of the following equation in µ:

P (IB[X − µ]) = 0 (Generalised Bayes Rule)

If P = P is precise, this reduces to

P (X|B) = µ =
P (XIB)

P (B)
(Bayes’ Rule)

Observe that also

P (X|B) = inf {P (X|B) : P ∈ M(P )}

A gentle introduction to imprecise probability models – p.52/54



Regular extension

If P (B) = 0 but P (B) > 0 then one often considers the
so-called regular extension R(X|B): it is the greatest µ

such that
P (IB[X − µ]) ≥ 0

Observe that also

R(X|B) = inf {P (X|B) : P ∈ M(P ) and P (B) > 0}

Regular extension is the most conservative coherent
extension that satisfies an additional regularity condition
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Questions

?
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