A gentle introduction to imprecise probability models
 and their behavioural interpretation

Gert de Cooman
gert. decooman@ugent.be
SYSTeMS research group, Ghent University

Overview

- General considerations about probability
- Epistemic probability
- Decision making
- Conditioning

Part I

General considerations about probability

Two kinds of probabilities

- Aleatory probabilities
- physical property, disposition
- related to frequentist models
- other names: objective, statistical or physical probability, chance
- Epistemic probabilities
- model knowledge, information
- represent strength of beliefs
- other names: personal or subjective probability

Part II

Epistemic probability

First observation

For many applications, we need theories to represent and reason with certain and uncertain knowledge

$$
\begin{aligned}
\text { certain } & \rightarrow \text { logic } \\
\text { uncertain } & \rightarrow \text { probability theory }
\end{aligned}
$$

One candidate: Bayesian theory of probability
I shall:

- argue that it is not general enough
- present the basic ideas behind a more general theory
imprecise probability theory (IP)

A theory of epistemic probability

Three pillars:

- how to measure epistemic probability?
- by what rules does epistemic probability abide?
- how can we use epistemic probability in reasoning, decision making, statistics ...?
Notice that:

$$
\begin{aligned}
1 \text { and } 2 & =\text { knowledge representation } \\
3 & =\text { reasoning, inference }
\end{aligned}
$$

How to measure personal probability?

- Introspection
- difficulty: how to convey and compare strengths of beliefs?
- lack of a common standard
- belief = inclination to act
- beliefs lead to behaviour, that can be used to measure their strength
- special type of behaviour: accepting gambles
- a gamble is a transaction/action/decision that yields different outcomes (utilities) in different states of the world.

Gambles

- Ω is the set of possible outcomes ω
- A gamble X is a bounded real-valued function on Ω

$$
X: \Omega \rightarrow \mathbb{R}: \omega \mapsto X(\omega)
$$

- Example: How did I come to Lugano? By plane (p), by car (c) or by train (t) ?
- $\Omega=\{p, c, t\}$
- $X(p)=-3, X(c)=2, X(t)=5$
- Whether your accept this gamble or not will depend on your knowledge about how I came to Lugano
- Denote your set of desirable gambles by

$$
\mathcal{D} \subseteq \mathcal{L}(\Omega)
$$

Modelling your uncertainty

- Accepting a gamble
= taking a decision/action in the face of uncertainty
- Your set of desirable gambles contains the gambles that you accept
- It is a model for your uncertainty about which value ω of Ω actually obtains (or will obtain)
- More common models
- (lower and upper) previsions
- (lower and upper) probabilities
- preference orderings
- probability orderings
- sets of probabilities

Desirability and rationality criteria

- Rewards are expressed in units of a linear utility scale
- Axioms: a set of desirable gambles \mathcal{D} is coherent iff

D1. $0 \notin \mathcal{D}$
D2. If $X>0$ then $X \in \mathcal{D}$
D3. If $X, Y \in \mathcal{D}$ then $X+Y \in \mathcal{D}$
D4. If $X \in \mathcal{D}$ and $\lambda>0$ then $\lambda X \in \mathcal{D}$

- Consequence: If $X \in \mathcal{D}$ and $Y \geq X$ then $Y \in \mathcal{D}$
- Consequence: If $X_{1}, \ldots, X_{n} \in \mathcal{D}$ and $\lambda_{1}, \ldots, \lambda_{n}>0$ then $\sum_{k=1}^{n} \lambda_{k} X_{k} \in \mathcal{D}$
- A coherent set of desirable gambles is a convex cone of gambles that contains all positive gambles but not the zero gamble.

Definition of lower/upper prevision

- Consider a gamble X
- Buying X for a price μ yields a new gamble $X-\mu$
- the lower prevision $\underline{P}(X)$ of X
= supremum acceptable price for buying X
$=$ supremum p such that $X-\mu$ is desirable for all $\mu<p$
$=\sup \{\mu: X-\mu \in \mathcal{D}\}$
- Selling X for a price μ yields a new gamble $\mu-X$
- the upper prevision $\bar{P}(X)$ of X
$=$ infimum acceptable price for selling X
$=$ infimum p such that $\mu-X$ is desirable for all $\mu>p$
$=\inf \{\mu: \mu-X \in \mathcal{D}\}$

Lower and upper prevision - 1

- Selling a gamble X for price μ
$=$ buying $-X$ for price $-\mu$:

$$
\mu-X=(-X)-(-\mu)
$$

- Consequently:

$$
\begin{aligned}
\bar{P}(X) & =\inf \{\mu: \mu-X \in \mathcal{D}\} \\
& =\inf \{-\lambda:-X-\lambda \in \mathcal{D}\} \\
& =-\sup \{\lambda:-X-\lambda \in \mathcal{D}\} \\
& =-\underline{P}(-X)
\end{aligned}
$$

Lower and upper prevision - 2

- $\underline{P}(X)=\sup \{\mu: X-\mu \in \mathcal{D}\}$
- if you specify a lower prevision $\underline{P}(X)$, you are committed to accepting

$$
X-\underline{P}(X)+\epsilon=X-[\underline{P}(X)-\epsilon]
$$

for all $\epsilon>0$ (but not necessarily for $\epsilon=0$).

- $\bar{P}(X)=\inf \{\mu: \mu-X \in \mathcal{D}\}$
- if you specify an upper prevision $\bar{P}(X)$, you are committed to accepting

$$
\bar{P}(X)-X+\epsilon=[\bar{P}(X)+\epsilon]-X
$$

for all $\epsilon>0$ (but not necessarily for $\epsilon=0$).

Precise previsions

- When lower and upper prevision coincide:

$$
\underline{P}(X)=\bar{P}(X)=P(X)
$$

is called the (precise) prevision of X

- $P(X)$ is a prevision, or fair price in de Finetti's sense
- Previsions are the precise, or Bayesian, probability models
- if you specify a prevision $P(X)$, you are committed to accepting

$$
[P(X)+\epsilon]-X \text { and } X-[P(X)-\epsilon]
$$

for all $\epsilon>0$ (but not necessarily for $\epsilon=0$).

Allowing for indecision

- Specifying a precise prevision $P(X)$ means that you choose, for essentially any real price p, between buying X for price p or selling X for that price
- Imprecise models allow for indecision!

Events and lower probabilities

- An event is a subset of Ω
- Example: the event $\{c, t\}$ that I did not come by plane to Lugano.
- It can be identied with a special gamble I_{A} on Ω

$$
I_{A}(\omega)= \begin{cases}1 & \text { if } \omega \in A, \text { i.e., } A \text { occurs } \\ 0 & \text { if } \omega \notin A, \text { i.e., } A \text { doesn't occur }\end{cases}
$$

- The lower probability $\underline{P}(A)$ of A
= lower prevision $\underline{P}\left(I_{A}\right)$ of indicator I_{A}
= supremum rate for betting on A
$=$ measure of evidence in favour of A
$=$ measure of (strength of) belief in A

Upper probabilities

- The upper probability $\bar{P}(A)$ of A
$=$ the upper prevision $\bar{P}\left(I_{A}\right)=\bar{P}\left(1-I_{\mathrm{co} A}\right)=1-\underline{P}\left(I_{\mathrm{CO} A}\right)$ of I_{A}
$=1-\underline{P}(\mathrm{co} A)$
$=$ measures lack of evidence against A
$=$ measures the plausibility of A
- This gives a behavioural interpretation to lower and upper probability

$$
\begin{aligned}
\text { evidence for } A \uparrow & \Rightarrow \underline{P}(A) \uparrow \\
\text { evidence against } A \uparrow & \Rightarrow \bar{P}(A) \downarrow
\end{aligned}
$$

Rules of epistemic probability

- Lower and upper previsions represent commitments to act/behave in certain ways
- Rules that govern lower and upper previsions reflect rationality of behaviour.
- Your behaviour is considered to be irrational when
- it is harmful to yourself: specifying betting rates such that you lose utility, whatever the outcome \Longrightarrow avoiding sure loss (cf. logical consistency)
- it is inconsistent: you are not fully aware of the implications of your betting rates \Longrightarrow coherence (cf. logical closure)

Avoiding sure loss

- Example: two bets

$$
\begin{array}{ll}
\text { on } A: & I_{A}-\underline{P}(A) \\
\text { on } \operatorname{co} A: & I_{\mathrm{co} A}-\underline{P}(\operatorname{co} A) \\
\hline \text { together: } & 1-[\underline{P}(A)+\underline{P}(\operatorname{co} A)] \geq 0
\end{array}
$$

- Avoiding a sure loss implies

$$
\underline{P}(A)+\underline{P}(\operatorname{co} A) \leq 1, \quad \text { or } \quad \underline{P}(A) \leq \bar{P}(A)
$$

Avoiding sure loss: general condition

A set of gambles \mathcal{K} and a lower prevision \underline{P} defined for each gamble in \mathcal{K}.

Definition 1. \underline{P} avoids sure loss if for all $n \geq 0, X_{1}, \ldots, X_{n}$ in \mathcal{K} and for all non-negative $\lambda_{1}, \ldots, \lambda_{n}$:

$$
\sup _{\omega \in \Omega}\left[\sum_{k=1}^{n} \lambda_{k}\left[X_{k}(\omega)-\underline{P}\left(X_{k}\right)\right]\right] \geq 0 .
$$

If it doesn't hold, there are $\epsilon>0, n \geq 0, X_{1}, \ldots, X_{n}$ and positive $\lambda_{1}, \ldots, \lambda_{n}$ such that for all ω :

$$
\sum_{k=1}^{n} \lambda_{k}\left[X_{k}(\omega)-\underline{P}\left(X_{k}\right)+\epsilon\right] \leq-\epsilon!
$$

Coherence

- Example: two bets involving A and B with $A \cap B=\emptyset$

$$
\begin{array}{ll}
\text { on } A: & I_{A}-\underline{P}(A) \\
\text { on } B: & I_{B}-\underline{P}(B) \\
\hline \text { together: } & I_{A \cup B}-[\underline{P}(A)+\underline{P}(B)]
\end{array}
$$

- Coherence implies that

$$
\underline{P}(A)+\underline{P}(B) \leq \underline{P}(A \cup B)
$$

Coherence: general condition

A set of gambles \mathcal{K} and a lower prevision \underline{P} defined for each gamble in \mathcal{K}.

Definition 2. \underline{P} is coherent if for all $n \geq 0, X_{o}, X_{1}, \ldots, X_{n}$ in \mathcal{K} and for all non-negative $\lambda_{o}, \lambda_{1}, \ldots, \lambda_{n}$:

$$
\sup _{\omega \in \Omega}\left[\sum_{k=1}^{n} \lambda_{k}\left[X_{k}(\omega)-\underline{P}\left(X_{k}\right)\right]-\lambda_{o}\left[X_{o}-\underline{P}\left(X_{o}\right)\right]\right] \geq 0 .
$$

If it doesn't hold, there are $\epsilon>0, n \geq 0, X_{o}, X_{1}, \ldots, X_{n}$ and positive $\lambda_{1}, \ldots, \lambda_{n}$ such that for all ω :

$$
X_{o}(\omega)-\left(\underline{P}\left(X_{o}\right)+\epsilon\right) \geq \sum_{k=1}^{n} \lambda_{k}\left[X_{k}(\omega)-\underline{P}\left(X_{k}\right)+\epsilon\right]!
$$

Coherence of precise previsions

- A (precise) prevision is coherent when it is coherent both as a lower and as an upper prevision
- a precise prevision P on $\mathcal{L}(\Omega)$ is coherent iff
- $P(\lambda X+\mu Y)=\lambda P(X)+\mu P(Y)$
- if $X \geq 0$ then $P(X) \geq 0$
- $P(\Omega)=1$
- coincides with de Finetti's notion of a coherent prevision
- restriction to events is a (finitely additive) probability measure
- Let \mathcal{P} denote the set of all linear previsions on $\mathcal{L}(\Omega)$

Sets of previsions

- Lower prevision \underline{P} on a set of gambles \mathcal{K}
- Let $\mathcal{M}(\underline{P})$ be the set of precise previsions that dominate \underline{P} on its domain \mathcal{K} :

$$
\mathcal{M}(\underline{P})=\{P \in \mathcal{P}:(\forall X \in \mathcal{K})(P(X) \geq \underline{P}(X))\} .
$$

- Then avoiding sure loss is equivalent to:

$$
\mathcal{M}(\underline{P}) \neq \emptyset .
$$

- and coherence is equivalent to:

$$
\underline{P}(X)=\min \{P(X): P \in \mathcal{M}(\underline{P})\}, \quad \forall X \in \mathcal{K} .
$$

- A lower envelope of a set of precise previsions is always coherent

Coherent lower/upper previsions - 1

- probability measures, previsions à la de Finetti
- 2-monotone capacities, Choquet capacities
- contamination models
- possibility and necessity measures
- belief and plausibility functions
- random set models

Coherent lower/upper previsions - 2

- reachable probability intervals
- lower and upper mass/density functions
- lower and upper cumulative distributions (p-boxes)
- (lower and upper envelopes of) credal sets
- distributions (Gaussian, Poisson, Dirichlet, multinomial, ...) with interval-valued parameters
- robust Bayesian models
- ...

Natural extension

Third step toward a scientific theory
= how to make the theory useful
= use the assessments to draw conclusions about other things [(conditional) events, gambles, ...]
Problem: extend a coherent lower prevision defined on a collection of gambles to a lower prevision on all gambles (conditional events, gambles, ...)

Requirements:

- coherence
- as low as possible (conservative, least-committal)
$=$ NATURAL EXTENSION

Natural extension: an example - 1

Lower probabilities $\underline{P}(A)$ and $\underline{P}(B)$ for two events A and B that are logically independent:

$$
A \cap B \neq \emptyset \quad A \cap \operatorname{co} B \neq \emptyset \quad \operatorname{co} A \cap B \neq \emptyset \quad \operatorname{co} A \cap \operatorname{co} B \neq \emptyset
$$

For all $\lambda \geq 0$ and $\mu \geq 0$, you accept to buy any gamble X for price α if for all ω

$$
X(\omega)-\alpha \geq \lambda\left[I_{A}(\omega)-\underline{P}(A)\right]+\mu\left[I_{B}(\omega)-\underline{P}(B)\right]
$$

The natural extension $\underline{E}(X)$ of the assessments $\underline{P}(A)$ and $\underline{P}(B)$ to any gamble X is the highest α such that this inequality holds, over all possible choices of λ and μ.

Natural extension: an example - 2

Calculate $\underline{E}(A \cup B)$: maximise α subject to the constraints: $\lambda \geq 0, \mu \geq 0$, and for all ω :

$$
I_{A \cup B}(\omega)-\alpha \geq \lambda\left[I_{A}(\omega)-\underline{P}(A)\right]+\mu\left[I_{B}(\omega)-\underline{P}(B)\right]
$$

or equivalently:

$$
I_{A \cup B}(\omega) \geq \lambda I_{A}(\omega)+\mu I_{B}(\omega)+[\alpha-\lambda \underline{P}(A)-\mu \underline{P}(B)]
$$

and if we put $\gamma=\alpha-\lambda \underline{P}(A)-\mu \underline{P}(B)$ this is equivalent to maximising

$$
\gamma+\lambda \underline{P}(A)+\mu \underline{P}(B)
$$

subject to the inequalities

$$
\begin{array}{ll}
1 \geq \lambda+\mu+\gamma, \quad 1 \geq \lambda+\gamma, \quad 1 \geq \mu+\gamma, \quad 0 \geq \gamma \\
& \lambda \geq 0, \quad \mu \geq 0
\end{array}
$$

Natural extension: an example - 3

This is a linear programming problem, and its solution is easily seen to be:

$$
\underline{E}(A \cup B)=\max \{\underline{P}(A), \underline{P}(B)\}
$$

Similarly, for $X=I_{A \cap B}$ we get another linear programming problem that yields

$$
\underline{E}(A \cap B)=\max \{0, \underline{P}(A)+\underline{P}(B)-1\}
$$

These are the Fréchet bounds! Natural extension always gives the most conservative values that are still compatible with coherence and other additional assumptions made ...

Another example: set information

- Information: ω assumes a value in a subset A of Ω
- This information is represented by the vacuous lower prevision relative to A :

$$
\underline{P}_{A}(X)=\inf _{\omega \in A} X(\omega) ; \quad X \in \mathcal{L}(\Omega)
$$

- $P \in \mathcal{M}\left(\underline{P}_{A}\right)$ iff $P(A)=1$
- \underline{P}_{A} is the natural extension of the precise probability assessment ' $P(A)=1$ '; also of the belief function with probability mass one on A
- Take any P such that $P(A)=1$, then $P(X)$ is only determined up to an interval $\left[\underline{P}_{A}(X), \bar{P}_{A}(X)\right]$ according to de Finetti's fundamental theorem of probability

Natural extension: sets of previsions

- Lower prevision \underline{P} on a set of gambles \mathcal{K}
- If it avoids sure loss then $\mathcal{M}(\underline{P}) \neq \emptyset$ and its natural extension is given by the lower envelope of $\mathcal{M}(\underline{P})$:

$$
\underline{E}(X)=\min \{P(X): P \in \mathcal{M}(\underline{P})\}, \quad \forall X \in \mathcal{L}(\Omega)
$$

- \underline{P} is coherent iff it coincides on its domain \mathcal{K} with its natural extension

Natural extension: desirable gambles

- Consider a set \mathcal{D} of gambles you have judged desirable
- What are the implications of these assessments for the desirability of other gambles?
- The natural extension \mathcal{E} of \mathcal{D} is the smallest coherent set of desirable gambles that includes \mathcal{D}
- It is the smallest extension of \mathcal{D} to a convex cone of gambles that contains all positive gambles but not the zero gamble.

Natural extension: special cases

Natural extension is a very powerful reasoning method. In special cases it reduces to:

- logical deduction
- belief functions via random sets
- fundamental theorem of probability/prevision
- Lebesgue integration of a probability measure
- Choquet integration of 2-monotone lower probabilities
- Bayes' rule for probability measures
- Bayesian updating of lower/upper probabilities
- robust Bayesian analysis
- first-order model from higher-order model

Three pillars

1. behavioural definition of lower/upper previsions that can be made operational
2. rationality criteria of

- avoiding sure loss
- coherence

3. natural extension to make the theory useful

Gambles and events - 1

- How to represent: event A is at least n times as probable as event B
- Set of precise previsions \mathcal{M} :

$$
P \in \mathcal{M} \Leftrightarrow P(A) \geq n P(B) \Leftrightarrow P\left(I_{A}-n I_{B}\right) \geq 0
$$

- lower previsions: $\underline{P}\left(I_{A}-n I_{B}\right) \geq 0$
- sets of desirable gambles: $I_{A}-n I_{B}+\epsilon \in \mathcal{D}, \forall \epsilon>0$.
- $I_{A}-n I_{B}$ is a gamble, generally not an indicator!
- Cannot be expressed by lower probabilities:

$$
\begin{cases}\underline{P}(A) \geq \underline{P}(B), \quad \bar{P}(A) \geq \bar{P}(B) & \text { too weak } \\ \underline{P}(A) \geq \bar{P}(B) & \text { too strong }\end{cases}
$$

Gambles and events - 2

- Did I come to Lugano by plane, by car or by train?
- Assessments:
- 'not by plane' is at least as probable as 'by plane'
- 'by plane' is at least a probable as 'by train'
- 'by train' is at least a probable as 'by car'
- Convex set \mathcal{M} of probability mass functions m on $\{p, t, c\}$ such that

$$
m(p) \leq \frac{1}{2}, \quad m(p) \geq m(t), \quad m(t) \geq m(c)
$$

- \mathcal{M} is a convex set with extreme points

$$
\left(\frac{1}{2}, \frac{1}{2}, 0\right), \quad\left(\frac{1}{2}, \frac{1}{4}, \frac{1}{4}\right), \quad\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)
$$

Gambles and events - 3

- the natural extension \underline{E} is the lower envelope of this set

$$
\underline{E}(X)=\min _{m \in \mathcal{M}}[m(p) X(p)+m(t) X(t)+m(c) X(c)]
$$

- The lower probabilities are completely specified by

$$
\begin{array}{ll}
\underline{E}(\{p\})=\frac{1}{3} & \bar{E}(\{p\})=\frac{1}{2} \\
\bar{E}(\{t\})=\frac{1}{2} & \underline{E}(\{t\})=\frac{1}{4} \\
\bar{E}(\{c\})=0 & \bar{E}(\{c\})=\frac{1}{3}
\end{array}
$$

Gambles and events - 4

- the corresponding set of mass functions \mathcal{M}^{*} is a convex set with extreme points

$$
\begin{gathered}
\left(\frac{1}{2}, \frac{1}{2}, 0\right), \quad\left(\frac{1}{2}, \frac{1}{4}, \frac{1}{4}\right), \quad\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right) \\
\left(\frac{5}{12}, \frac{1}{4}, \frac{1}{3}\right), \quad\left(\frac{1}{3}, \frac{1}{2}, \frac{1}{6}\right)
\end{gathered}
$$

- \mathcal{M} is more informative than $\mathcal{M}^{*}: \mathcal{M} \subset \mathcal{M}^{*}$
- with \mathcal{M} we can infer that $\underline{E}\left(I_{\{p\}}-I_{\{t\}}\right)=0$: 'by plane' is at least as probable as 'by train'
- with \mathcal{M}^{*} this inference cannot be made: we lose information by restricting ourselves to lower probabilities

Gambles and events - 5

$$
\begin{aligned}
& \text { event } A \Leftrightarrow \text { gamble } I_{A} \\
& \text { lower probability } \underline{P}(A) \Leftrightarrow \\
& \text { lower prevision } \underline{P}\left(I_{A}\right)
\end{aligned}
$$

In precise probability theory:
\rightarrow events are as expressive as gambles
In imprecise probability theory:
\rightarrow events are less expressive than gambles

And by the way

There is a natural embedding of classical propositional logic into imprecise probability theory.

set of propositions	\rightarrow lower probability
logically consistent	\rightarrow ASL
deductively closed	\rightarrow coherent
deductive closure	\rightarrow natural extension
maximal deductively closed	\rightarrow probability

No such embedding exists into precise probability theory.

Part III

Decision making

Decision making - 1

Consider an action a whose outcome (reward) depends on the actual value of ω (state of the world)
With such an action we can associate a reward function

$$
X_{a}: \Omega \rightarrow \mathbb{R}: \omega \mapsto X_{a}(\omega)
$$

When do you strictly prefer action a over action b :

$$
a>b \Leftrightarrow \underline{P}\left(X_{a}-X_{b}\right)>0
$$

You almost-prefer a over b if

$$
a \geq b \Leftrightarrow \underline{P}\left(X_{a}-X_{b}\right) \geq 0
$$

We identify an action a with its reward function X_{a}

Decision making - 2

You are indifferent between a and b if

$$
\begin{aligned}
& a \approx b \Leftrightarrow a \geq b \text { and } b \geq a \\
& \qquad \quad \Leftrightarrow \underline{P}\left(X_{a}-X_{b}\right)=\bar{P}\left(X_{a}-X_{b}\right)=0
\end{aligned}
$$

Actions a and b are incomparable if

$$
a \| b \Leftrightarrow a \ngtr b \text { and } b \ngtr a \text { and } a \not \approx b
$$

- In that case there is not enough information in the model to choose between a and b : you are undecided!
- Imprecise probability models allow for indecision!
- In fact, modelling and allowing for indecision is one of the motivations for introducing imprecise probabilities

Decision making: maximal actions

- Consider a set of actions \mathbb{A} and reward functions $\mathcal{K}=\left\{X_{a}: a \in \mathbb{A}\right\}$
- Due to the fact that certain actions may be incomparable, the actions cannot be linearly ordered, only partially!

Ordering of actions

Decision making: maximal actions

- Consider a set of actions \mathbb{A} and reward functions $\mathcal{K}=\left\{X_{a}: a \in \mathbb{A}\right\}$
- Due to the fact that certain actions may be incomparable, the actions cannot be linearly ordered, only partially!
- The maximal actions a are actions that are undominated:

$$
(\forall b \in \mathbb{A})(b \ngtr a)
$$

or equivalently

$$
(\forall b \in \mathbb{A})\left(\bar{P}\left(X_{a}-X_{b}\right) \geq 0\right)
$$

- Two maximal actions are either indifferent or incomparable!

Decision making: the precise case

- $a>b \Leftrightarrow P\left(X_{a}-X_{b}\right)>0 \Leftrightarrow P\left(X_{a}\right)>P\left(X_{b}\right)$
- $a \geq b \Leftrightarrow P\left(X_{a}-X_{b}\right) \geq 0 \Leftrightarrow P\left(X_{a}\right) \geq P\left(X_{b}\right)$
- $a \approx b \Leftrightarrow P\left(X_{a}\right)=P\left(X_{b}\right)$
- never $a \| b$!
- There is no indecision in precise probability models
- Whatever the available information, they always allow you a best choice between two available actions!
- Actions can always be ordered linearly, maximal actions are unique (up to indifference): they have the highest expected utility.

Decision making: sets of previsions

- $a>b \Leftrightarrow(\forall P \in \mathcal{M}(\underline{P}))\left(P\left(X_{a}\right)>P\left(X_{b}\right)\right)$
- $a \geq b \Leftrightarrow(\forall P \in \mathcal{M}(\underline{P}))\left(P\left(X_{a}\right) \geq P\left(X_{b}\right)\right)$
- $a \approx b \Leftrightarrow(\forall P \in \mathcal{M}(\underline{P}))\left(P\left(X_{a}\right)=P\left(X_{b}\right)\right)$
- $a \| b \Leftrightarrow(\exists P \in \mathcal{M}(\underline{P}))\left(P\left(X_{a}\right)<P\left(X_{b}\right)\right)$ and $(\exists Q \in \mathcal{M}(\underline{P}))\left(Q\left(X_{a}\right)>Q\left(X_{b}\right)\right)$
- If \mathcal{K} is convex then a is maximal if and only if there is some $P \in \mathcal{M}(\underline{P})$ such that

$$
(\forall b \in \mathbb{A})\left(P\left(X_{a}\right) \geq P\left(X_{b}\right)\right)
$$

Part IV

Conditioning

Generalised Bayes Rule

- Let \underline{P} be defined on a large enough domain, and $B \subseteq \Omega$.
- If $\underline{P}(B)>0$ then coherence implies that $\underline{P}(X \mid B)$ is the unique solution of the following equation in μ :

$$
\underline{P}\left(I_{B}[X-\mu]\right)=0 \text { (Generalised Bayes Rule) }
$$

- If $\underline{P}=P$ is precise, this reduces to

$$
P(X \mid B)=\mu=\frac{P\left(X I_{B}\right)}{P(B)} \text { (Bayes' Rule) }
$$

- Observe that also

$$
\underline{P}(X \mid B)=\inf \{P(X \mid B): P \in \mathcal{M}(\underline{P})\}
$$

Regular extension

- If $\underline{P}(B)=0$ but $\bar{P}(B)>0$ then one often considers the so-called regular extension $\underline{R}(X \mid B)$: it is the greatest μ such that

$$
\underline{P}\left(I_{B}[X-\mu]\right) \geq 0
$$

- Observe that also

$$
\underline{R}(X \mid B)=\inf \{P(X \mid B): P \in \mathcal{M}(\underline{P}) \text { and } P(B)>0\}
$$

- Regular extension is the most conservative coherent extension that satisfies an additional regularity condition

Questions

