A gentle introduction to imprecise probability models

and their behavioural interpretation

Gert de Cooman

gert.decooman@ugent.be

SYSTeMS research group, Ghent University

Overview

- General considerations about probability
- Epistemic probability
- Decision making
- Conditioning

Part I

General considerations about probability

Two kinds of probabilities

- Aleatory probabilities
 - physical property, disposition
 - related to frequentist models
 - other names: objective, statistical or physical probability, chance
- Epistemic probabilities
 - model knowledge, information
 - represent strength of beliefs
 - other names: personal or subjective probability

Part II

Epistemic probability

First observation

For many applications, we need theories to represent and reason with certain and uncertain knowledge

One candidate: Bayesian theory of probability I shall:

- argue that it is not general enough
- present the basic ideas behind a more general theory

imprecise probability theory (IP)

A theory of epistemic probability

Three pillars:

- how to measure epistemic probability?
- by what rules does epistemic probability abide?
- how can we use epistemic probability in reasoning, decision making, statistics ...?

Notice that:

- 1 and 2 = knowledge representation
 - 3 = reasoning, inference

How to measure personal probability?

Introspection

- difficulty: how to convey and compare strengths of beliefs?
- Iack of a common standard
- belief = inclination to act
 - beliefs lead to behaviour, that can be used to measure their strength
 - special type of behaviour: accepting gambles
 - a gamble is a transaction/action/decision that yields different outcomes (utilities) in different states of the world.

Gambles

- Ω is the set of possible outcomes ω
- A gamble X is a bounded real-valued function on Ω

$$X\colon \Omega \to \mathbb{R}\colon \omega \mapsto X(\omega)$$

Example: How did I come to Lugano? By plane (p), by car (c) or by train (t)?

•
$$\Omega = \{p, c, t\}$$

•
$$X(p) = -3$$
, $X(c) = 2$, $X(t) = 5$

- Whether your accept this gamble or not will depend on your knowledge about how I came to Lugano
- Denote your set of desirable gambles by

$$\mathcal{D} \subseteq \mathcal{L}(\Omega)$$

Modelling your uncertainty

- Accepting a gamble
 - = taking a decision/action in the face of uncertainty
- Your set of desirable gambles contains the gambles that you accept
- It is a model for your uncertainty about which value ω of Ω actually obtains (or will obtain)
- More common models
 - (lower and upper) previsions
 - (lower and upper) probabilities
 - preference orderings
 - probability orderings
 - sets of probabilities

Desirability and rationality criteria

- Rewards are expressed in units of a linear utility scale
- Axioms: a set of desirable gambles D is coherent iff
 D1. 0 ∉ D
 - D2. If X > 0 then $X \in \mathcal{D}$
 - D3. If $X, Y \in \mathcal{D}$ then $X + Y \in \mathcal{D}$
 - D4. If $X \in \mathcal{D}$ and $\lambda > 0$ then $\lambda X \in \mathcal{D}$
- Consequence: If $X \in \mathcal{D}$ and $Y \ge X$ then $Y \in \mathcal{D}$
- Consequence: If $X_1, \ldots, X_n \in \mathcal{D}$ and $\lambda_1, \ldots, \lambda_n > 0$ then $\sum_{k=1}^n \lambda_k X_k \in \mathcal{D}$
- A coherent set of desirable gambles is a convex cone of gambles that contains all positive gambles but not the zero gamble.

Definition of lower/upper prevision

- Consider a gamble X
- Buying X for a price μ yields a new gamble $X \mu$
- the lower prevision $\underline{P}(X)$ of X
 - = supremum acceptable price for buying X
 - = supremum p such that $X \mu$ is desirable for all $\mu < p$

$$= \sup \{ \mu \colon X - \mu \in \mathcal{D} \}$$

- Selling X for a price μ yields a new gamble μX
- the upper prevision $\overline{P}(X)$ of X
 - = infimum acceptable price for selling X
 - = infimum p such that μX is desirable for all $\mu > p$
 - $= \inf \left\{ \mu \colon \mu X \in \mathcal{D} \right\}$

Lower and upper prevision – 1

- $\textbf{ Selling a gamble } X \textbf{ for price } \mu$
 - = buying -X for price $-\mu$:

$$\mu - X = (-X) - (-\mu)$$

Consequently:

$$\overline{P}(X) = \inf \{\mu \colon \mu - X \in \mathcal{D}\}$$
$$= \inf \{-\lambda \colon -X - \lambda \in \mathcal{D}\}$$
$$= -\sup \{\lambda \colon -X - \lambda \in \mathcal{D}\}$$
$$= -\underline{P}(-X)$$

Lower and upper prevision – 2

$$\underline{P}(X) = \sup \{ \mu \colon X - \mu \in \mathcal{D} \}$$

if you specify a lower prevision $\underline{P}(X)$, you are committed to accepting

$$X - \underline{P}(X) + \epsilon = X - [\underline{P}(X) - \epsilon]$$

for all $\epsilon > 0$ (but not necessarily for $\epsilon = 0$).

$$P(X) = \inf \{ \mu \colon \mu - X \in \mathcal{D} \}$$

If you specify an upper prevision $\overline{P}(X)$, you are committed to accepting

$$\overline{P}(X) - X + \epsilon = [\overline{P}(X) + \epsilon] - X$$

for all $\epsilon > 0$ (but not necessarily for $\epsilon = 0$).

Precise previsions

When lower and upper prevision coincide:

$$\underline{P}(X) = \overline{P}(X) = P(X)$$

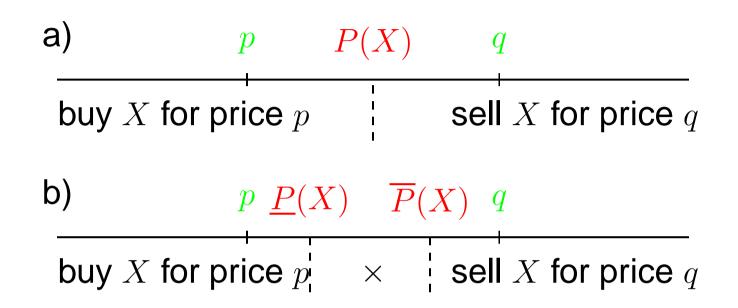
is called the (precise) prevision of X

- P(X) is a prevision, or fair price in de Finetti's sense
- Previsions are the precise, or Bayesian, probability models
- If you specify a prevision P(X), you are committed to accepting

$$[P(X) + \epsilon] - X$$
 and $X - [P(X) - \epsilon]$

for all $\epsilon > 0$ (but not necessarily for $\epsilon = 0$).

Allowing for indecision



- Specifying a precise prevision P(X) means that you choose, for essentially any real price p, between buying X for price p or selling X for that price
- Imprecise models allow for indecision!

Events and lower probabilities

- An event is a subset of Ω
- Example: the event $\{c, t\}$ that I did not come by plane to Lugano.
- It can be identied with a special gamble I_A on Ω

$$I_A(\omega) = \begin{cases} 1 & \text{if } \omega \in A, \text{ i.e., } A \text{ occurs} \\ 0 & \text{if } \omega \notin A, \text{ i.e., } A \text{ doesn't occur} \end{cases}$$

- The lower probability $\underline{P}(A)$ of A
 - = lower prevision $\underline{P}(I_A)$ of indicator I_A
 - = supremum rate for betting on A
 - = measure of evidence in favour of A
 - = measure of (strength of) belief in A

Upper probabilities

- The upper probability $\overline{P}(A)$ of A
 - = the upper prevision $\overline{P}(I_A) = \overline{P}(1 I_{coA}) = 1 \underline{P}(I_{coA})$ of I_A
 - $= 1 \underline{P}(\mathbf{co}A)$

e

- = measures lack of evidence against A
- = measures the plausibility of A
- This gives a behavioural interpretation to lower and upper probability

evidence for
$$A \uparrow \Rightarrow \underline{P}(A) \uparrow$$

vidence against $A \uparrow \Rightarrow \overline{P}(A) \downarrow$

Rules of epistemic probability

- Lower and upper previsions represent commitments to act/behave in certain ways
- Rules that govern lower and upper previsions reflect rationality of behaviour.
- Your behaviour is considered to be irrational when
 - It is harmful to yourself: specifying betting rates such that you lose utility, whatever the outcome ⇒ avoiding sure loss (cf. logical consistency)
 - it is *inconsistent*: you are not fully aware of the implications of your betting rates
 - \implies coherence (cf. logical closure)

Avoiding sure loss

Example: two bets

on A:
$$I_A - \underline{P}(A)$$

on coA: $I_{coA} - \underline{P}(coA)$
together: $1 - [\underline{P}(A) + \underline{P}(coA)] \ge 0$

Avoiding a sure loss implies

$$\underline{P}(A) + \underline{P}(\operatorname{co} A) \le 1$$
, or $\underline{P}(A) \le \overline{P}(A)$

Avoiding sure loss: general condition

A set of gambles \mathcal{K} and a lower prevision \underline{P} defined for each gamble in \mathcal{K} .

Definition 1. <u>P</u> avoids sure loss if for all $n \ge 0, X_1, \ldots, X_n$ in \mathcal{K} and for all non-negative $\lambda_1, \ldots, \lambda_n$:

$$\sup_{\omega \in \Omega} \left[\sum_{k=1}^{n} \lambda_k [X_k(\omega) - \underline{P}(X_k)] \right] \ge 0.$$

If it doesn't hold, there are $\epsilon > 0$, $n \ge 0$, X_1, \ldots, X_n and positive $\lambda_1, \ldots, \lambda_n$ such that for all ω :

$$\sum_{k=1}^{n} \lambda_k [X_k(\omega) - \underline{P}(X_k) + \epsilon] \le -\epsilon!$$

Coherence

• Example: two bets involving A and B with $A \cap B = \emptyset$

on A:
$$I_A - \underline{P}(A)$$

on B: $I_B - \underline{P}(B)$
together: $I_{A\cup B} - [\underline{P}(A) + \underline{P}(B)]$

Coherence implies that

$$\underline{P}(A) + \underline{P}(B) \le \underline{P}(A \cup B)$$

Coherence: general condition

A set of gambles ${\cal K}$ and a lower prevision $\underline{\it P}$ defined for each gamble in ${\cal K}.$

Definition 2. <u>P</u> is coherent if for all $n \ge 0, X_o, X_1, \ldots, X_n$ in \mathcal{K} and for all non-negative $\lambda_o, \lambda_1, \ldots, \lambda_n$:

$$\sup_{\omega \in \Omega} \left[\sum_{k=1}^{n} \lambda_k [X_k(\omega) - \underline{P}(X_k)] - \lambda_o [X_o - \underline{P}(X_o)] \right] \ge 0.$$

If it doesn't hold, there are $\epsilon > 0$, $n \ge 0$, X_o , X_1 , ..., X_n and positive $\lambda_1, \ldots, \lambda_n$ such that for all ω :

$$X_o(\omega) - (\underline{P}(X_o) + \epsilon) \ge \sum_{k=1}^n \lambda_k [X_k(\omega) - \underline{P}(X_k) + \epsilon]!$$

Coherence of precise previsions

- A (precise) prevision is coherent when it is coherent both as a lower and as an upper prevision
- a precise prevision P on $\mathcal{L}(\Omega)$ is coherent iff
 - $P(\lambda X + \mu Y) = \lambda P(X) + \mu P(Y)$
 - if $X \ge 0$ then $P(X) \ge 0$
 - $P(\Omega) = 1$
- coincides with de Finetti's notion of a coherent prevision
- restriction to events is a (finitely additive) probability measure
- Let \mathcal{P} denote the set of all linear previsions on $\mathcal{L}(\Omega)$

Sets of previsions

- Lower prevision \underline{P} on a set of gambles \mathcal{K}
- Let $\mathcal{M}(\underline{P})$ be the set of precise previsions that dominate \underline{P} on its domain \mathcal{K} :

$$\mathcal{M}(\underline{P}) = \{ P \in \mathcal{P} \colon (\forall X \in \mathcal{K})(P(X) \ge \underline{P}(X)) \} \,.$$

Then avoiding sure loss is equivalent to:

 $\mathcal{M}(\underline{P}) \neq \emptyset.$

and coherence is equivalent to:

 $\underline{P}(X) = \min \left\{ P(X) \colon P \in \mathcal{M}(\underline{P}) \right\}, \quad \forall X \in \mathcal{K}.$

A lower envelope of a set of precise previsions is always coherent

Coherent lower/upper previsions – 1

- probability measures, previsions à la de Finetti
- 2-monotone capacities, Choquet capacities
- contamination models
- possibility and necessity measures
- belief and plausibility functions
- random set models

Coherent lower/upper previsions – 2

- reachable probability intervals
- Iower and upper mass/density functions
- Iower and upper cumulative distributions (p-boxes)
- (lower and upper envelopes of) credal sets
- distributions (Gaussian, Poisson, Dirichlet, multinomial, ...) with interval-valued parameters
- robust Bayesian models

9 ...

Natural extension

Third step toward a scientific theory

- = how to make the theory useful
- = use the assessments to draw conclusions about other things [(conditional) events, gambles, ...]

Problem: extend a coherent lower prevision defined on a collection of gambles to a lower prevision on all gambles (conditional events, gambles, ...)

Requirements:

- coherence
- as low as possible (conservative, least-committal)

= NATURAL EXTENSION

Natural extension: an example – 1

Lower probabilities $\underline{P}(A)$ and $\underline{P}(B)$ for two events A and B that are logically independent:

 $A \cap B \neq \emptyset \quad A \cap \mathrm{co}B \neq \emptyset \quad \mathrm{co}A \cap B \neq \emptyset \quad \mathrm{co}A \cap \mathrm{co}B \neq \emptyset$

For all $\lambda \ge 0$ and $\mu \ge 0$, you accept to buy any gamble *X* for price α if for all ω

$$X(\omega) - \alpha \ge \lambda [I_A(\omega) - \underline{P}(A)] + \mu [I_B(\omega) - \underline{P}(B)]$$

The natural extension $\underline{E}(X)$ of the assessments $\underline{P}(A)$ and $\underline{P}(B)$ to any gamble X is the highest α such that this inequality holds, over all possible choices of λ and μ .

Natural extension: an example – 2

Calculate $\underline{E}(A \cup B)$: maximise α subject to the constraints: $\lambda \ge 0$, $\mu \ge 0$, and for all ω :

$$I_{A\cup B}(\omega) - \alpha \ge \lambda [I_A(\omega) - \underline{P}(A)] + \mu [I_B(\omega) - \underline{P}(B)]$$

or equivalently:

$$I_{A\cup B}(\omega) \ge \lambda I_A(\omega) + \mu I_B(\omega) + [\alpha - \lambda \underline{P}(A) - \mu \underline{P}(B)]$$

and if we put $\gamma = \alpha - \lambda \underline{P}(A) - \mu \underline{P}(B)$ this is equivalent to maximising

 $\gamma + \lambda \underline{P}(A) + \mu \underline{P}(B)$

subject to the inequalities

$$1 \ge \lambda + \mu + \gamma, \quad 1 \ge \lambda + \gamma, \quad 1 \ge \mu + \gamma, \quad 0 \ge \gamma$$

 $\lambda \ge 0, \quad \mu \ge 0$

A gentle introduction to imprecise probability models - p.30/54

Natural extension: an example – 3

This is a linear programming problem, and its solution is easily seen to be:

$$\underline{E}(A \cup B) = \max\{\underline{P}(A), \underline{P}(B)\}\$$

Similarly, for $X = I_{A \cap B}$ we get another linear programming problem that yields

$$\underline{E}(A \cap B) = \max\{0, \underline{P}(A) + \underline{P}(B) - 1\}$$

These are the Fréchet bounds! Natural extension always gives the most conservative values that are still compatible with coherence and other additional assumptions made ...

Another example: set information

- Information: ω assumes a value in a subset A of Ω
- This information is represented by the vacuous lower prevision relative to A:

$$\underline{P}_A(X) = \inf_{\omega \in A} X(\omega); \quad X \in \mathcal{L}(\Omega)$$

•
$$P \in \mathcal{M}(\underline{P}_A)$$
 iff $P(A) = 1$

- Take any *P* such that P(A) = 1, then P(X) is only determined up to an interval $[\underline{P}_A(X), \overline{P}_A(X)]$ according to de Finetti's fundamental theorem of probability

Natural extension: sets of previsions

- Lower prevision <u>P</u> on a set of gambles \mathcal{K}
- If it avoids sure loss then $\mathcal{M}(\underline{P}) \neq \emptyset$ and its natural extension is given by the lower envelope of $\mathcal{M}(\underline{P})$:

 $\underline{E}(X) = \min \left\{ P(X) \colon P \in \mathcal{M}(\underline{P}) \right\}, \quad \forall X \in \mathcal{L}(\Omega)$

Is coherent iff it coincides on its domain \mathcal{K} with its natural extension

Natural extension: desirable gambles

- Consider a set \mathcal{D} of gambles you have judged desirable
- What are the implications of these assessments for the desirability of other gambles?
- The natural extension *E* of *D* is the smallest coherent set of desirable gambles that includes *D*
- It is the smallest extension of D to a convex cone of gambles that contains all positive gambles but not the zero gamble.

Natural extension: special cases

Natural extension is a very powerful reasoning method. In special cases it reduces to:

- Iogical deduction
- belief functions via random sets
- fundamental theorem of probability/prevision
- Lebesgue integration of a probability measure
- Choquet integration of 2-monotone lower probabilities
- Bayes' rule for probability measures
- Bayesian updating of lower/upper probabilities
- robust Bayesian analysis
- first-order model from higher-order model

Three pillars

- 1. behavioural definition of lower/upper previsions that can be made operational
- 2. rationality criteria of
 - avoiding sure loss
 - coherence
- 3. natural extension to make the theory useful

- How to represent: event A is at least n times as probable as event B
- **Set** of precise previsions \mathcal{M} :

 $P \in \mathcal{M} \Leftrightarrow P(A) \ge nP(B) \Leftrightarrow P(I_A - nI_B) \ge 0$

- lower previsions: $\underline{P}(I_A nI_B) \ge 0$
- ▶ sets of desirable gambles: $I_A nI_B + \epsilon \in \mathcal{D}$, $\forall \epsilon > 0$.
- $I_A nI_B$ is a gamble, generally not an indicator!
- Cannot be expressed by lower probabilities:

 $\begin{cases} \underline{P}(A) \geq \underline{P}(B), & \overline{P}(A) \geq \overline{P}(B) \\ \underline{P}(A) \geq \overline{P}(B) & \text{too weak} \\ \end{cases}$

- Did I come to Lugano by plane, by car or by train?
- Assessments:
 - 'not by plane' is at least as probable as 'by plane'
 - 'by plane' is at least a probable as 'by train'
 - 'by train' is at least a probable as 'by car'
- Convex set \mathcal{M} of probability mass functions m on $\{p, t, c\}$ such that

$$m(p) \le \frac{1}{2}, \quad m(p) \ge m(t), \quad m(t) \ge m(c)$$

• \mathcal{M} is a convex set with extreme points

$$(\frac{1}{2}, \frac{1}{2}, 0), (\frac{1}{2}, \frac{1}{4}, \frac{1}{4}), (\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$$

• the natural extension \underline{E} is the lower envelope of this set

$$\underline{E}(X) = \min_{m \in \mathcal{M}} [m(p)X(p) + m(t)X(t) + m(c)X(c)]$$

The lower probabilities are completely specified by

$$\underline{E}(\{p\}) = \frac{1}{3} \qquad \overline{E}(\{p\}) = \frac{1}{2}$$
$$\overline{E}(\{t\}) = \frac{1}{2} \qquad \underline{E}(\{t\}) = \frac{1}{4}$$
$$\overline{E}(\{c\}) = 0 \qquad \overline{E}(\{c\}) = \frac{1}{3}$$

It the corresponding set of mass functions \mathcal{M}^* is a convex set with extreme points

$$(\frac{1}{2}, \frac{1}{2}, 0), \quad (\frac{1}{2}, \frac{1}{4}, \frac{1}{4}), \quad (\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$$
$$(\frac{5}{12}, \frac{1}{4}, \frac{1}{3}), \quad (\frac{1}{3}, \frac{1}{2}, \frac{1}{6})$$

- \mathcal{M} is more informative than \mathcal{M}^* : $\mathcal{M} \subset \mathcal{M}^*$
- ✓ with \mathcal{M} we can infer that $\underline{E}(I_{\{p\}} I_{\{t\}}) = 0$: 'by plane' is at least as probable as 'by train'
- with \mathcal{M}^* this inference cannot be made: we lose information by restricting ourselves to lower probabilities

event $A \Leftrightarrow \text{gamble } I_A$ lower probability $\underline{P}(A) \Leftrightarrow \text{lower prevision } \underline{P}(I_A)$

In precise probability theory:

 \rightarrow events are as expressive as gambles

In imprecise probability theory: \rightarrow events are less expressive than gambles

And by the way

There is a natural embedding of classical propositional logic into imprecise probability theory.

- set of propositions \rightarrow lower probability
- logically consistent \rightarrow ASL
- deductively closed \rightarrow coherent
 - deductive closure \rightarrow natural extension
- maximal deductively closed \rightarrow probability

No such embedding exists into precise probability theory.

Part III

Decision making

Decision making – 1

Consider an action a whose outcome (reward) depends on the actual value of ω (state of the world) With such an action we can associate a reward function

$$X_a \colon \Omega \to \mathbb{R} \colon \omega \mapsto X_a(\omega)$$

When do you strictly prefer action a over action b:

$$a > b \Leftrightarrow \underline{P}(X_a - X_b) > 0$$

You almost-prefer a over b if

$$a \ge b \Leftrightarrow \underline{P}(X_a - X_b) \ge 0$$

We identify an action a with its reward function X_a

Decision making – 2

You are indifferent between a and b if

 $a \approx b \Leftrightarrow a \geq b \text{ and } b \geq a$

$$\Leftrightarrow \underline{P}(X_a - X_b) = \overline{P}(X_a - X_b) = 0$$

Actions *a* and *b* are incomparable if

 $a \parallel b \Leftrightarrow a \not> b \text{ and } b \not> a \text{ and } a \not\approx b$

- In that case there is not enough information in the model to choose between a and b: you are undecided!
- Imprecise probability models allow for indecision!
- In fact, modelling and allowing for indecision is one of the motivations for introducing imprecise probabilities

Decision making: maximal actions

- Consider a set of actions \mathbb{A} and reward functions $\mathcal{K} = \{X_a : a \in \mathbb{A}\}$
- Due to the fact that certain actions may be incomparable, the actions cannot be linearly ordered, only partially!

Ordering of actions

Decision making: maximal actions

- Consider a set of actions \mathbb{A} and reward functions $\mathcal{K} = \{X_a : a \in \mathbb{A}\}$
- Due to the fact that certain actions may be incomparable, the actions cannot be linearly ordered, only partially!
- The maximal actions a are actions that are undominated:

 $(\forall b \in \mathbb{A})(b \not > a)$

or equivalently

$$(\forall b \in \mathbb{A})(\overline{P}(X_a - X_b) \ge 0)$$

Two maximal actions are either indifferent or incomparable!

Decision making: the precise case

- $a > b \Leftrightarrow P(X_a X_b) > 0 \Leftrightarrow P(X_a) > P(X_b)$
- $a \ge b \Leftrightarrow P(X_a X_b) \ge 0 \Leftrightarrow P(X_a) \ge P(X_b)$
- $a \approx b \Leftrightarrow P(X_a) = P(X_b)$
- never a || b!
- There is no indecision in precise probability models
- Whatever the available information, they always allow you a best choice between two available actions!
- Actions can always be ordered linearly, maximal actions are unique (up to indifference): they have the highest expected utility.

Decision making: sets of previsions

- $a > b \Leftrightarrow (\forall P \in \mathcal{M}(\underline{P}))(P(X_a) > P(X_b))$
- $a \ge b \Leftrightarrow (\forall P \in \mathcal{M}(\underline{P}))(P(X_a) \ge P(X_b))$
- $a \approx b \Leftrightarrow (\forall P \in \mathcal{M}(\underline{P}))(P(X_a) = P(X_b))$
- $a || b \Leftrightarrow (\exists P \in \mathcal{M}(\underline{P}))(P(X_a) < P(X_b))$ and $(\exists Q \in \mathcal{M}(\underline{P}))(Q(X_a) > Q(X_b))$
- If \mathcal{K} is convex then a is maximal if and only if there is some $P \in \mathcal{M}(\underline{P})$ such that

 $(\forall b \in \mathbb{A})(P(X_a) \ge P(X_b))$

Part IV

Conditioning

Generalised Bayes Rule

- Let <u>P</u> be defined on a large enough domain, and $B \subseteq \Omega$.
- If $\underline{P}(B) > 0$ then coherence implies that $\underline{P}(X|B)$ is the unique solution of the following equation in μ :

 $\underline{P}(I_B[X - \mu]) = 0$ (Generalised Bayes Rule)

• If $\underline{P} = P$ is precise, this reduces to

$$P(X|B) = \mu = \frac{P(XI_B)}{P(B)}$$
 (Bayes' Rule)

Observe that also

$$\underline{P}(X|B) = \inf \left\{ P(X|B) \colon P \in \mathcal{M}(\underline{P}) \right\}$$

Regular extension

• If $\underline{P}(B) = 0$ but $\overline{P}(B) > 0$ then one often considers the so-called regular extension $\underline{R}(X|B)$: it is the greatest μ such that

$$\underline{P}(I_B[X-\mu]) \ge 0$$

Observe that also

 $\underline{R}(X|B) = \inf \left\{ P(X|B) \colon P \in \mathcal{M}(\underline{P}) \text{ and } P(B) > 0 \right\}$

Regular extension is the most conservative coherent extension that satisfies an additional regularity condition

?