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The ISIPTA meetings are one of the primary international
forums to present and discuss new results on the theory

and applications of imprecise probabilities. Imprecise
probability has a wide scope, being a generic term for the
many mathematical or statistical models that measure chance
or uncertainty without sharp numerical probabilities. These
models include belief functions, Choquet capacities,
comparative probability orderings, convex sets of probability
measures, fuzzy measures, interval-valued probabilities,
possibility measures, plausibility measures, and upper and
lower expectations or previsions. Imprecise probability models
are needed in inference problems where the relevant
information is scarce, vague or conflicting, and in decision
problems where preferences may also be incomplete.

This volume collects 44 papers presented at ISIPTA '03,
covering a wide range of topics including: new model-based
inference with imprecise probabilities; computations and
foundations of inference with imprecise probabilities;
applications of imprecise probabilities in engineering, finance,
and medicine; connections with graph theory, belief functions,
and fuzzy random variables; and the introduction of new
principles and tools for decision theory. Each paper appearing
in these printed proceedings has been the subject of a careful
refereeing process, resulting in a symposium and proceedings
with very original and high-quality contributions.
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Bayesian Robustness with Quantile Loss Functions . . . . . . . .. . . . . . . . . . . . 16

T. Augustin
On the Suboptimality of the Generalized Bayes Rule and Robust
Bayesian Procedures from the Decision Theoretic Point of View —
A Cautionary Note on Updating Imprecise Priors . . . . . . . . . . .. . . . . . . . . . . 31

J.-M. Bernard
Analysis of Local or Asymmetric Dependencies in Contingency
Tables using the Imprecise Dirichlet Model . . . . . . . . . . . . . .. . . . . . . . . . . . . 46

V. Biazzo, A. Gilio, & G. Sanfilippo
Some Results on Generalized Coherence of Conditional
Probability Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 62

A.G. Bronevich
The Maximal Variance of Fuzzy Interval . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 77

D.V. Budescu & T.M. Karelitz
Inter-Personal Communication of Precise and Imprecise Subjective
Probabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 91

A. Capotorti
Relevance of Qualitative Constraints in Diagnostic Processes . . . . . . . . . . 106

E. Castagnoli, F. Maccheroni, & M. Marinacci
Expected Utility with Multiple Priors . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 121

M.E.G.V. Cattaneo
Combining Belief Functions Issued from Dependent Sources .. . . . . . . . . 133

F.P.A. Coolen & K.J. Yan
Comparing Two Groups of Lifetime Data . . . . . . . . . . . . . . . . . . .. . . . . . . . . 148

iii



iv ISIPTA ’03

G. de Cooman & M.C.M. Troffaes
Dynamic Programming for Discrete-Time Systems with
Uncertain Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 162

F.G. Cozman
Computing Lower Expectations with Kuznetsov’s Independence
Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 177

F. Cuzzolin
Geometry of Upper Probabilities . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 188

M. Danielson, L. Ekenberg, J. Johansson, & A. Larsson
TheDecideIT Decision Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 204

J.M. Dickey
Convenient Interactive Computing for Coherent Imprecise
Prevision Assessments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 218

S. Doria
Independence with Respect to Upper and Lower Conditional
Probabilities Assigned by Hausdorff Outer and Inner Measures . . . . . . . . . 231

P.I. Fierens & T.L. Fine
Towards a Chaotic Probability Model for Frequentist Probability:
The Univariate Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 245

M. Ha-Duong, E. Casman, & M.G. Morgan
Bounding Analysis of Lung Cancer Risks Using Imprecise
Probabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 260

M. Hutter
Robust Estimators under the Imprecise Dirichlet Model . . . .. . . . . . . . . . . 274

J.-Y. Jaffray & M. Jeleva
How to Deal with Partially Analyzed Acts? A Proposal . . . . . . .. . . . . . . . . 290

R. Jiroušek
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Preface

The ISIPTA meetings are one of the primary international forums to present
and discuss new results on the theory and applications of imprecise probabili-
ties. Imprecise probability has a wide scope, being a generic term for the many
mathematical or statistical models that measure chance or uncertainty without
sharp numerical probabilities. These models include belief functions, Choquet ca-
pacities, comparative probability orderings, convex setsof probability measures,
fuzzy measures, interval-valued probabilities, possibility measures, plausibility
measures, and upper and lower expectations or previsions. Imprecise probability
models are needed in inference problems where the relevant information is scarce,
vague or conflicting, and in decision problems where preferences may also be in-
complete.

A total of 44 papers were presented at ISIPTA ’03, covering a wide range of
topics, including: new model based inference with imprecise probabilities; com-
putations and foundations of inference with imprecise probabilities; applications
of imprecise probabilities in engineering, finance, and medicine; connections with
graph theory, belief functions, and fuzzy random variables; and the introduction
of new principles and tools for decision theory.

To help promote the exchange of novel ideas, at ISIPTA ’03 we continued the
conference format begun at ISIPTA ’01. Each of the 44 papers were presented
both in a 20 minute plenary overview and as part of a poster session. Authors
presenting at the plenary sessions were encouraged to use some of their 20 min-
utes to identify the context for their research, in additionto giving an overview of
the research paper appearing in the proceedings. In this waythe poster sessions
served, again, as a forum for extended discussions of the papers.

This ISIPTA meeting included three invited contributions from Terrence L.
Fine, Irving J. Good, and Patrick Suppes. Copies of their papers were distributed
at the conference and are included in the electronic versionof the proceedings
(http://www.sipta.org/∼isipta03).

Each paper appearing in these printed proceedings has been the subject of a
careful refereeing process. We feel confident that the selection process has re-
sulted in a symposium and proceedings with contributions displaying both very
high quality and unusual originality.

We want to thank the contributors for their diligence in preparing their sub-
missions, and for their patience with our selection process. The Program Com-
mittee members discharged their refereeing responsibilities effectively and con-
structively, with the result that all the papers have been improved by the review-
ing process. We are grateful to the tutorial leaders (Jean-Marc Bernard: “Impre-
cise Dirichlet model for multinomial data,” Gert de Cooman:“A gentle introduc-
tion to imprecise probability models and their behavioral interpretation,” Fabio
G. Cozman: “Graph-theoretical models for multivariate modeling with imprecise

vii
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probabilities,” Charles F. Manski: “Partial identification of probability distribu-
tions,” Sujoy Mukerji: “Imprecise probabilities and ambiguity aversion in eco-
nomic modeling”), who have contributed their time and talents in such a generous
fashion. As with ISIPTA ’01, the Board is exceptionally thankful to Serafı́n Moral,
who has overseen the electronic management of these papers,their submissions
and reviews, and who has tirelessly given his time to fixing the inevitable break-
downs that happen in a complicated web-based system. These proceedings simply
would not be possible without his expertise.

Jean-Marc Bernard
Teddy Seidenfeld

Marco Zaffalon

ISIPTA ’03 Sponsors

http://www.antoptima.com/

City of Lugano
http://www.lugano.ch/

Dipartimento dell’educazione, della cultura e dello sportdel Canton Ticino
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Maximum of Entropy in Credal
Classification∗

J. ABELLÁN
Universidad de Granada, Spain

S. MORAL
Universidad de Granada, Spain

Abstract

We present an application of the measure of maximum entropy for credal
sets: as a branching criterion for classification trees based on imprecise prob-
abilities. We also justify the use of maximum entropy as a global uncertainty
measure for credal sets, and a deduction of this measure, based on the best
lower expectation of the logarithmic score, is presented. We have also carried
out several experiments in which credal classification trees are built taking a
global uncertainty measure as a basis. The results show thatthere is a lower
degree of error when maximum entropy is used as a global uncertainty mea-
sure.

Keywords

imprecise probabilities, uncertainty, maximum entropy, imprecision, non-specificity,
classification, classification trees, credal sets

1 Introduction

Classification is an important problem in the area of machinelearning in which
classical probability theory has been extensively used. Basically, we have an in-
coming set of observations, called the training set, and we want to obtain a set of
rules to assign a value of the variable to be classified to any new case. The set used
to assess the quality of this set of rules is also called the test set. Classification has
notable applications in medicine, recognition of hand-written characters, astron-
omy, banks, etc. The learned classifier can be represented asa Bayesian network,
a neural network, a classification tree, etc. These methods normally use the The-
ory of Probability to estimate the parameters with a stopping criterion to limit the
complexity of the classifier and to avoid overfitting.

∗This work has been supported by the Spanish Ministry of Science and Technology, project Elvira
II (TIC2001-2973-C05-01).
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In some previous papers [4, 5, 6], we have introduced a new procedure to build
classification trees based on the use of imprecise probabilities. Classification trees
have their origin in Quinlan’s ID3 algorithm [18], and a basic reference is the book
by Breiman et al. [8]. We also applied decision trees for classification, but as in
Zaffalon [25], the imprecise Dirichlet model is used to estimate the probabilities
of belonging to the respective classes defined by the variable to be classified. In
classical probabilistic approaches, information gain is used to build the tree, but
then other procedures must subsequently be used to prune it,since information
gain tends to build structures which are too complex. We haveshown that if im-
precise probabilities are used and the information gain is computed by measuring
the total amount of uncertainty of the associated credal sets (a closed and convex
set of probability distributions), then the problem of overfitting disappears and
results improve.

In Abellán and Moral [1, 2, 3], we studied how to measure the uncertainty of a
credal set by generalizing the measures used in the Theory ofEvidence, Dempster
[10] and Shafer [20]. We considered two main sources of uncertainty: entropy
and non-specificity. We proved that the proposed functions verify the most basic
properties of these types of measures (Abellán and Moral [2], Dubois and Prade
[12], Klir and Wierman [15]).

We previously proved that by using a global uncertainty measure which is the
result of adding an entropy measure and a non-specificity measure, classification
results are better than those obtained by the C4.5 classification method, based on
Quinlan’s ID3 algorithm. In this paper, we have carried out some experiments in
which the maximum entropy of the probability distributionsof a credal set is used
to measure its uncertainty, and we show that the results obtained are even bet-
ter. We consider two methods of building classification trees. In the first method,
Abellán and Moral [4], we start with an empty tree and in eachstep, a node and
a variable are selected for branching which give rise to a greater decrease in the
final entropy of the variable to be classified. In classical probability, a branching
always implies a decrease in the entropy. It is necessary to include an additional
criterion so as not to create models which are too complex andtherefore over-
fit the data. With credal sets, a branching will produce a lower entropy but, at
the same time, a greater non-specificity. Under these conditions, we follow the
same procedure as in probability theory, but measuring the total uncertainty of a
branching. The stopping criterion is very simple: when every possible branching
produces an increment of the total uncertainty.

Finally, in order to carry out the classification given a set of observations, we
use a strong dominance criterion to obtain the value of the variable to be classified
and a maximum frequency criterion when we want to classify all the cases.

The extended method quantifies the uncertainty of each individual variable in
each node in the same way, but also considers the results of adding two variables
at the same time. In this way, we aim to discover relationships involving more
than two variables that were not seen when investigating therelationships of a
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single variable with the variable to be classified.
In Section 2, we present the necessary previous concepts on uncertainty on

credal sets. We place special emphasis on the maximum of entropy as a global
uncertainty measure. In Section 3, we introduce the necessary notation and defi-
nitions for our procedure of building classification trees.In Section 4, we describe
the methods based on imprecise probabilities. In Section 5,we test our procedure
with known data sets used in classification by comparing the use of two global
uncertainty measures.

2 Total Uncertainty on Credal Sets

Dempster-Shafer’s theory is based on the concept of basic probability assignment
(bpa), and it defines a special type of credal set [10, 20]. In this theory, Yager [24]
distinguishes two types of uncertainty: one is associated with cases where the in-
formation is focused on sets with empty intersections; and the other is associated
with cases where the information is focused on sets with a greater than one cardi-
nality. We call theserandomnessandnon-specificity, respectively. In Abellán [6]
we justify that a general convex set of probability distributions (a credal set) may
contain the same type of uncertainty as a bpa: we consider similar randomness
and non-specificity measures.

In Abellán and Moral [2], we define a measure for non-specificity for convex
sets that generalizes Dubois and Prade’s measure of non-specificity in the theory
of evidence [11]. Using the Möbius inverse function for monotonic capacities [9],
we can define:

Definition 1 Let P be a credal set on a finite set X. We define the following ca-
pacity function,

fP (A) = inf
P∈P

P(A), ∀A∈ ℘ (X),

where℘ (X) is the power set of X. This function is also known as the minimum
lower probability which representsP .

Theorem 1 (Shafer [20]) For any mapping fP : ℘ (X)→ IR another mapping mP :
℘ (X)→ IR can be associated by

mP (A) = ∑
B⊆A

(−1)|A−B| fP (B), ∀A∈ ℘ (X),

Where|A−B| is the cardinal of the set A−B. This correspondence is one-to-one,
since conversely, we can obtain

fP (A) = ∑
B⊆A

mP (B), ∀A∈ ℘ (X).

These functions, fP and mP , are Möbius inverses.
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Definition 2 LetP be a credal set on a frame X, fP its minimum lower probability
as in Definition 1 and let mP be its M̈obius inverse. We say that function mP is an
assignment of masses onP . Any A∈ X such that mP (A) 6= 0 will be called a focal
element of mP .

We can now define a general function of non-specificity.

Definition 3 Let P be a credal set on a frame X. Let mP be its associated as-
signment of masses onP . We define the following function of non-specificity on
P :

IG(P ) = ∑
A⊂X

mP (A) ln(|A|).

In Abellán and Moral [3], we proposed the following measureof randomness
for general credal sets:

G∗(P ) = Max

{
− ∑

x∈X
px ln px

}
,

where the maximum is taken over all probability distributions onP , andP is a
general credal set. This measure generalizes the classicalShannon’s measure [21]
verifying similar properties. It can be used either as one ofthe components of a
measure of total uncertainty, or as a total uncertainty measure, Harmanec and Klir
[14]. We have proved that this function is also a good randomness measure for
credal sets and possesses all the basic properties requiredin Dempster-Shafer’s
theory [3].

We define a measure of total uncertainty asTU(P ) = G∗(P )+ IG(P ). This
measure could be modified by the factor introduced in Abellán and Moral [1],
but this will not be considered here, due to its computational difficulties (it is a
supremum that is not easy to compute). The properties of thismeasure are studied
in Abellán and Moral [2, 3] and these are similar to the properties verified by total
uncertainty measures in Dempster-Shafer’s theory [17].

In this paper, we shall also considerG∗(P ) as a measure of total uncertainty.
In the particular case of belief functions, Harmanec and Klir [14] consider that
maximum entropy is a measure of total uncertainty. They justify it by using an
axiomatic approach: it possesses some basic properties. However, uniqueness is
not proved. But perhaps the most compelling reason is given in Walley’s book
[22]. Walley calls this measure the upper entropy. We start by explaining the case
of a single probability distribution,P. If You are subject to the logarithmic scor-
ing rule, that means that You are forced to select a probability distributionQ on
X that if the true value isx, then You must pay− log(Q(x)). For example, if You
say thatQ(x) is very small and finallyx is the true value, You must pay a lot. If
Q(x) is close to one, then you must pay a small amount. Of course, You should
chooseQ so thatEP[− log(Q(x))] is minimum, whereEP is the mathematical ex-
pectation with respect toP. This minimum is obtained whenQ = P and the value
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of EP[− log(P(x))] is the entropy: the expected loss or the amount that You could
accept to be subject to the logarithmic scoring rule. In the case of a credal set,
P , we can also have the logarithmic scoring rule, but now we chooseQ in such
a way that the upper lossE∗

P [− log(Q(x))] (the supremum of the expectations
with respect to the probabilities inP ) is minimum. Walley shows that this mini-
mum is obtained for the distributionP0 ∈ P with maximum entropy. Furthermore,
E∗
P [− log(P0(x))] is equal to the maximum entropy inP : G∗(P ). This is the min-

imum payment You require before being subject to the logarithmic scoring rule.
This argument is completely analogous with the probabilistic one, except that we
change the expectation for the upper expected loss. This is really a measure of
uncertainty, as the better we know the true value ofx, then the less we should
need to accept the logarithmic scoring rule (lower value ofG∗(P )). We are not
saying thatP can be replaced by the distribution of maximum entropy, onlythat
its uncertainty can be measured by considering maximum entropy in the credal
set.

3 Notation and Previous Definitions

For a classification problem we shall consider that we have a data setD with
values of a setL of discrete and finite variables{Xi}n

1. Each variable will take

values on a finite setΩXi = {x1
i ,x

2
i , ...,x

|ΩXi |
i }. Our aim will be to create a clas-

sification tree on the data setD of one target variableC, with values inΩC =
{c1,c2, ...,c|ΩC|}.

Definition 4 A configuration of{Xi}n
1 is any m-tuple

(Xr1 = x
tr1
r1 ,Xr2 = x

tr2
r2 , ...,Xrm = x

trm
rm ),

where x
tr j
r j ∈ Ωr j , j ∈ {1, ...,m}, r j ∈ {1, ...,n} and rj 6= rh with j 6= h. That is, a

configuration is an assignment of values for some of the variables in{Xi}n
1.

If D is a data set andσ is a configuration, thenD[σ] will denote the subset of
D given by the cases which are compatible with configurationσ (cases in which
the variables inσ have the same values as the ones assigned in the configuration).

Definition 5 Given a data set and a configurationσ of variables{Xi}n
1 we con-

sider the credal setPσ
C for variable C with respect toσ defined by the set of

probability distributions, p, such that

p j ∈
[

nσ
cj

N+s
,
nσ

cj +s

N+s

]
,
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for every j∈ {1, ..., |ΩC|}, where for a generic state cj ∈ ΩC, nσ
cj is the number of

occurrences of{C = c j} in D[σ], N is the number of cases inD[σ], and s> 0 is
a parameter.

We denote this interval as
[
P(c j |σ),P(c j |σ)

]
.

This credal set is the one obtained on the basis of the imprecise Dirichlet
model, Walley [23], applied to the subsampleD[σ].

The parameters determines how quickly the lower and upper probabilities
converge as more data become available; larger values ofsproduce more cautious
inferences. Walley [23] suggests a candidate value forsbetweens= 1 ands= 2,
but no definitive statement is given.

4 Classification Procedure

We have proposed two methods to build a classification tree: the simple method
[4] and the double method [5]. Here we describe the double procedure and give
the simple as a particular case.

A classification tree is a tree where each interior node is labeled with a variable
of the data setXj with a child for each one of its possible values:Xj = xt

j ∈ ΩXj .
In each leaf node, we shall have a credal set for the variable to be classified,Pσ

C ,
as defined above, whereσ is the configuration with all the variables in the path
from the root node to this leaf node, with each variable assigned to the value cor-
responding to the child followed in the path. We use a measureof total uncertainty
to determine how and when to carry out a branching of the tree.The method starts
with a tree with a single node, which will have an empty configuration associated.
This node will be open. In this node the set of variablesL∗ is equal to the list of
variables in the database.

I. For each open node already generated, we compute the totaluncertainty of
the credal set associated with the configuration,σ, of the path from the root
node to that node:TU(Pσ

C ). Then we calculate the values ofα andβ with

α = min
Xi∈L∗


 ∑

r∈{1,..,|ΩXi |}
ρ{xr

i }|σTU(P
σ∪(Xi=xr

i )
C )




β = min
Xi ,Xj∈L∗


 ∑

r∈{1,..,|ΩXi |},t∈{1,..,
∣∣∣ΩXj

∣∣∣}
ρ{xr

i ,x
t
j}|σTU(P

σ∪(Xi=xr
i ,Xj =xt

j )

C )


 ,

whereL∗ is the set of variables of the data set minus those that appear
on the path from the actual node to the root node,ρ{xr

i }|σ is the relative
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frequency with whichXi takes the valuexr
i in D[σ], ρ{xr

i ,x
t
j }|σ is the relative

frequency with whichXi andXj take valuesxr
i andxt

j , respectively, inD[σ],
andσ∪ (Xi = xr

i ) is the result of adding the valueXi = xr
i to configuration

σ (analogously forσ∪ (Xi = xr
i ,Xj = xt

j)).

II. If the minimum of{α,β} is greater or equal thanTU(Pσ
C ) (including the case

in which L∗ is empty), then the node is closed and the credal setPσ
C is

assigned to it.

III. If the minimum of {α,β} is smaller thanTU(Pσ
C ), then ifα ≤ β, we choose

the variable that attains the minimum inα as branching variable for this
node; and ifα > β we consider the pair of variablesXi,Xj for which the
value ofβ is attained, and select as branching variable that fromXi ,Xj with
a minimum value of uncertainty (calculated in an individualway as inα
computation).

If Xi0 is the branching variable we add to this node a child for each one of
its possible values. All the children are open nodes.

The simple method does not needβ, Abellán and Moral [4]. It only considers
α and it carries out a branching if this value is less than or equal to the uncer-
tainty of the actual node (TU(Pσ

C )). As above, the branching variable is the one
for which the valueα is attained. In the double method, we demand that the uncer-
tainty is reduced. However, the double method looks for relationships of two vari-
ables withC at the same time. The simple method only considers the information
of a single variable aboutC. In some cases, some multidimensional relationships
do not give rise to pairwise relationships between the implied variables, and then
they will not be detected by the simple method.

4.1 Decision in the Leaves

In order to classify a new case with observations of all the variables except in
the variable to be classifiedC, we start at the root of the tree and follow the path
corresponding to the observed values of the variables in theinterior nodes of the
tree, i.e. if we are at a node with variableXi and this variable takes the value
xr

i in this particular case, then we choose the child corresponding to this value.
This process is followed until we arrive at a leaf node. We then use the associated
credal set aboutC, Pσ

C , to obtain a value for this variable.
We will use astrong dominance criteriononC. This criterion generally im-

plies only a partial order, and in some situations, no possible precise classification
can be done. We will choose an attribute of the variableC = ch if ∀i 6= h

P(ci |σ) < P(ch|σ)
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When there is no value dominating all other possible values of C, the output
is the set of non-dominated cases (casesci for which there is no other casech

verifying inequality). In this way, we obtain what Zaffalon[26] calls acredal
classifier, in which, for a set of observations, we obtain a set of possible values
for the variable to classify, non-dominated cases, insteadof unique prediction.
In the experiments, when there is no dominant value, we simply do not classify,
without calculating the set of non-dominated attributes. This implies a loss of
some valuable information in certain situations.

We want to compare our methods with existing classification methods. These
methods classify all the records of the training and test sets, without rejecting any
of the cases. In order to carry out a fair comparison with suchcomplete proce-
dures, we also use themaximum frequency criterion based on frequency of the
data, i.e. we will choose the case with maximum frequency inD[σ] as the attribute
of the variable to be classified.

5 Experimentation

We have applied this method to some known data sets, obtainedfrom theUCI
repository of machine learning databases, which can be found on the follow-
ing website: http://www.sgi.com/Technology/mlc/db. We use the less conserva-
tive parameters= 1, since withs> 1, we obtained a high degree of non-classified
data in some databases (although with a greater percentage of correct classifica-
tions).

We plan to compare the behavior of the two total uncertainty measures we
have previously defined:

· TU1 = G∗ + IG

· TU2 = G∗

The data sets are:Breast, Breast Cancer, Heart, Hepatitis, Cleveland, Cleve-
land nominalandPima(medical);Australian (banking);Monks1(artificial) and
Soybean-small(botanical).

These databases were used by Acid [7]. Some of the original data sets have
observations with missing values and in some cases, some of the variables are
not discrete. The cases with missing values were removed andthe continuous
variables have been discretized using MLC++ software, available at the website
http://www.sgi.com/Technology/mlc. The measure used to discretize them is the
entropy. The number of intervals is not fixed and it is obtained following the
Fayyad and Irani procedure [13]. Only the training part of the database is used to
determine the discretization procedure. In Table 1 there isa brief description of
these databases.

In general, when there is no case dominating all the other possible values of
the variable to be classified, we simply do not classify this individual.
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Data set N. Tr N. Ts N. variables N. classes
Breast Cancer 184 93 9 2
Breast 457 226 10 2
Heart 180 90 13 2
Hepatitis 59 21 19 2
Cleveland nominal 202 99 7 5
Cleveland 200 97 13 5
Pima 512 256 8 2
Vote1 300 135 15 2
Australian 460 230 14 2
Monks1 124 432 6 2
Soybean-small 31 16 21 4

Table 1: Description of the databases. The columnN. Tr contains the number of
cases of the training set, the columnN. Tsis the number of cases of the test set,
the columnN. variablesis the number of variables in the database and the column
N. classesis the number of different values of the variable to be classified

Algorithms have been implemented using Java language version 1.1.8. In or-
der to obtain the value ofG∗ for probability intervals we have used the algorithm
proposed in Abellán and Moral [3].

The percentages obtained of correct classifications with the simple model and
TU1 can be seen in Table 2.

In Table 2, the training column is the percentage of correct classifications in
the data set that was used for learning. TheUC(Tr) column shows the percentage
of rejected cases, i.e. the observations that were not classified by the method due
to the fact that no value verifies the strong dominance criterion, and theUC(Ts)
column shows the rejected cases in the test set.

In the results presented in Table 2 (Abellán and Moral [4]) there is no overfit-
ting (one of the most common problems of learning procedures): the success of
the training set and the test set are very similar.

Only theClevelanddatabase has a high rate of non-classified data. This is the
case with the highest number of cases of the variable to be classified and then it
is more difficult to obtain a class dominating all the other classes. In this case, we
would have obtained more information by changing the outputto a set of non-
dominated cases. In most of the other databases, the variable to be classified has
two possible states and in this situation our classificationis equivalent to the set
of non-dominated values.

In Table 3, we see the success of other known methods on the same databases,
Acid [7]. The NB-columns correspond to the results of the Naive Bayesian clas-
sifier on the training set and the test set. Similarly, the C4.5-columns correspond
to Quinlan’s method [19], based on the ID3 algorithm [18], where a classification
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Data set Training UC(Tr) Test UC(Ts)
Breast Cancer 75.5 0.0 81.7 0.0
Breast 98.0 1.3 96.9 0.9
Heart 92.2 7.2 95.2 6.7
Hepatitis 96.4 5.0 94.7 9.5
Cleveland nominal 62.7 4.4 66.0 5.0
Cleveland 72.8 21.0 69.9 24.7
Pima 79.7 0.2 80.5 0.0
Australian 92.3 3.4 91.0 3.4
Vote1 96.1 6.6 96.9 5.9
Soybean-small 100.0 0.0 100.0 0.0

Table 2: The measured experimental percentages of the simple method andTU1.
The columnsUC(Tr) andUC(Ts)are the percentages of the rejected cases ob-
tained with the training and the test set respectively.

tree with classical precise probabilities is used. We report the results obtained
by Acid [7]. We can see that there is overfitting in these methods, principally in
C4.5, being especially notable in certain data sets (Cleveland nominal, Cleveland,
Hepatitis).

In Table 4 we can see the results of the simple method withTU2 and strong
dominance. We have a higher percentage of success and a higher percentage of
unclassified cases. This total uncertainty measure obtainslarger trees as we can
observe for the number of leaves presented in Table 5.

The success of the simple method with all cases classified (0%of rejected
cases) with the frequency criterion are presented in Table 6for the test set, to
compare it with the models C4.5 and Naive Bayes. Table 7 showsthe results of
similar experiments with the double method. We can see the high percentages of
correct classifications withTU2. These are a little higher than those obtained with
TU1 and notably higher than the other methods (C4.5 and Naive Bayes).

The results of the simple and double methods are similar (slightly better in
the double method). In order to see the potential of the double method we use an
artificial database:Monks1.

Monks1is a database with six variables. The variable to be classified has two
possible states:a0 anda1, beinga1 when the first and the second variables are
equal or the fourth variable has the first of its possible fourstates. This type of
dependency is very difficult to find for some classification methods, as this is a
deterministic relationship involving more than two variables. The double method
should be much better than the simple one.

Table 8 shows the success of the methods C4.5 and Naive Bayes.Table 9
shows the success of the simple and double method with all cases classified.
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Data set NB(Tr) NB(Ts) C4.5(Tr) C4.5(Ts)
Breast Cancer 78.2 74.2 81.5 75.3
Breast 97.8 97.3 97.6 95.1
Cleveland nominal 63.9 57.6 69.3 51.5
Cleveland 78.0 50.5 73.5 54.6
Pima 76.4 74.6 79.9 75.0
Heart 87.8 82.2 83.3 75.6
Hepatitis 96.2 81.5 96.2 85.2
Australian 87.6 86.1 89.3 83.0
Vote1 87.6 88.9 94.5 88.3
Soybean-small 100 93.8 100 100

Table 3: Percentages of another methods

Data set Training UC(Tr) Test UC(Ts)
Breast Cancer 89.0 16.3 93.5 17.2
Breast 99.1 2.6 98.6 2.6
Cleveland nominal 73.6 21.2 74.4 13.1
Cleveland 82.6 34.0 80.3 31.9
Pima 86.6 15.6 86.2 15.2
Heart 93.9 8.8 93.8 10.0
Hepatitis 96.4 5.0 94.7 9.5
Australian 95.3 6.5 94.4 6.5
Vote1 98.2 5.3 98.4 4.4
Soybean-small 100.0 0.0 100.0 0.0

Table 4: Simple method with TU2 and strong dominance

Data set TU1 TU2 N of possible leaves
Breast 10 17 512
Cleveland 17 112 635904

Table 5: Number of leaves of the trees obtained with the simple method andTU1
andTU2
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Data set TU1(Ts) TU2(Ts) NB(Ts) C4.5(Ts)
Breast Cancer 81.7 90.3 74.2 75.3
Breast 96.9 97.8 97.3 95.1
Cleveland nominal 65.7 75.8 57.6 51.5
Cleveland 67.0 80.4 50.5 54.6
Pima 80.5 80.9 74.6 75.0
Heart 93.3 92.2 82.2 75.6
Hepatitis 95.2 95.2 81.5 85.2
Australian 90.9 93.5 86.1 83.0
Vote1 94.8 97.8 88.9 88.3
Soybean-small 100 100 93.8 100

Table 6: Success of the simple method with TU1 and TU2 with thefrequency
criterion on the test set

Database TU1(Ts) TU2(Ts) NB(Ts) C4.5(Ts)
Breast Cancer 81.7 91.4 74.2 75.3
Breast 96.9 98.7 97.3 95.1
Cleveland nominal 68.7 74.7 57.6 51.5
Cleveland 67.0 80.4 50.5 54.6
Pima 80.5 82.4 74.6 75.0
Heart 93.3 94.4 82.2 75.6
Hepatitis 95.2 95.2 81.5 85.2
Australian 89.1 91.7 86.1 83.0
Vote1 94.8 98.5 88.9 88.3
Soybean-small 100 100 93.8 100

Table 7: Success of the double method with TU1 and TU2 with thefrequency
criterion on the test set

Data set NB(Tr) NB(Ts) C4.5(Tr) C4.5(Ts)
Monks1 79.8 71.3 83.9 75.7

Table 8: C4.5 and Naive Bayes on Monks1
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Simple method Double method
Function Tr Ts Tr Ts
TU1 81.5 80.6 94.4 91.7
TU2 89.5 80.6 96.7 94.4

Table 9: Percentages onMonks1of the methods with TU1 and TU2 and all cases
classified

We can see some interesting things. There is an appreciable overfitting in C4.5
and Naive Bayes but not in our methods. The percentage obtained with the test set
is better in the extended method than in the simple method andthere is a difference
of 23.1% of the extended method andTU2 with respect to Naive Bayes success.

6 Conclusions

In this paper, we have discussed the role of maximum entropy as a total uncer-
tainty measure in credal sets. First, we have revised some decision theoretic jus-
tification based on the logarithmic scoring rule. We have carried out a series of
experiments in which we compare this measure with the one we had previously
used in our experiments. The main conclusion is that, in general, the results are
always the same or better when only the maximum entropy is used than when a
non-specificity value is added to it (the other total uncertainty measure). And in
some cases, the percentages of success are notably better.

Other conclusions from the experiments can be summarized inthe following
points:

• Imprecise probability methods are outstandingly better than classical prob-
abilistic methods, and also have the option of not classifying difficult cases.

• In general, the double method produces slightly better results than the single
one, but in some particular cases the differences can be remarkable.

• Maximum entropy (TU2) produces larger trees than the other uncertainty
measure (TU1), but even this classifier does not suffer from overfitting.
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Universidad de Extremadura, Spain

J. MARTÍN
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Abstract

Bayes decision problems require subjective elicitation ofthe inputs: beliefs
and preferences. Sometimes, elicitation methods may not perfectly represent
the Decision Maker’s judgements. Several foundations propose to overlay
this problem using robust approaches. In these models, beliefs are modelled
by a class of probability distributions and preferences by aclass of loss func-
tions. Thus, the solution concept is the set of non-dominated alternatives. In
this paper we focus on the computation of the efficient set when the pref-
erences are modelled by a class of convex loss functions, specifically the
quantile loss functions. We illustrate the idea with examples and introduce
the use of stochastic dominance in this context.

Keywords

Bayesian robustness, non-dominated alternatives, Bayes alternatives, quantile loss
functions, stochastic orders, quantile class of prior distributions

1 Introduction

Robust Bayesian analysis arises to avoid demanding an excessively precision in
the decision maker’s judgements concerning his beliefs andpreferences. Thus, the

∗This work has been supported in part by a grant of Junta de Extremadura IPR00A075. We thank
the referees for their fruitful comments
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imprecision in preferences leads to a class of loss functions while the imprecision
in beliefs is modelled by a class of prior probability distributions which would
be actualized via Bayes Theorem. For some interesting revisions on Bayesian
Robustness axiomatic systems see e.g. Rı́os Insua and Mart´ın [13], Nau [11],
Seidenfeld et al [18] and Weber [19].

In summary, using a classΓ of prior distributions over the set of statesΘ and
a classL of loss functions, givena,b∈ A , set of alternatives, we say thatb � a
if and only if

T(a,L,π) ≤ T(b,L,π), ∀π∈ Γ,∀L ∈ L,

whereT(a,L,π) is the posterior expected loss for the actiona, L is the loss func-
tion, π is the prior and� is the preference relationship between alternatives:

T(a,L,π) =

Z

Θ
L(a,θ)l(θ)dπ(θ)
Z

Θ
l(θ)dπ(θ)

,

l(θ) being the likelihood for an experimentx.
This model is similar to a multicriteria optimization problem. The optimal

solution is the one that minimizesT(·,L,π) for every pairπ∈ Γ,L ∈ L. Unfortu-
nately, in general, that optimal solution does not exist. Thus, the non-dominated
set is taken as an starting point. Any dominated alternativemust be discarded. See
Coello [6] for an excellent discussion on multiobjective optimization. We say that
a dominatesb if and only if a≺ b, (that is,a� b and¬(b� a)). A non-dominated
alternativea is such that there is no other alternativeb which dominatesa. Arias
[1] and Arias and Martı́n [2] provide theoretic results about the existence of such
a set and its relationship with the set of Bayes alternatives. Martı́n and Arias [8]
provide a method based on comparing pairs to approximate thenon-dominated
set. Some references for Bayesian sensitivity are Berger [4], Rı́os Insua and Rug-
geri [14] and Rı́os et al [15].

We study the calculus of the non-dominated set for problems in which the
imprecision in preferences is modelled by quantile loss functions. We give general
results that we will particularize for classes of quantile prior distributions, see
Moreno and Cano [9]. Since we are interested in Bayesian inference, we will
considerA = R although the results will be easily applicable whenA is an interval
of R.

We organize this work as follows. We begin with some results concerning
convex loss functions and their implications in the calculus of the non-dominated
set. Secondly, we particularize for quantile loss functions, indicating the relation-
ship with the Bayes alternatives in this case. We also consider a quantile class for
prior distributions giving some results and an example. Third part of the paper is
dedicated to various stochastic orders, only those that hold for the posterior dis-
tributions once the priors have been ordered, and how they can be used in order
to calculate the non-dominated set.
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2 Bayesian Robustness with convex loss functions

We will denoteLC the class of all convex loss functions inA . Every loss function
L ∈ LC, verifies for allθ, a,b∈ A , andλ ∈ [0,1] that

L(λa+(1−λ)b,θ)≤ λL(a,θ)+ (1−λ)L(b,θ). (1)

A first useful result, easy to prove, is:

Lemma 1 Let Γ be any class of prior distributions andLC the class of convex
loss functions. The function T(·,L,π) : A −→ R is convex for every pair(L,π) ∈
LC×Γ.

A well known result is that every convex function is continuous in the interior,
see Roberts and Varberg [16]. Then considering the set of alternatives,R, the
functionT(·,L,π) is continuous inR and if it exists the set of Bayes alternatives,
this will be a closed interval inR. In the case that, for some pair(L,π) ∈ LC×Γ
the set of Bayes alternatives is empty, the functionT(·,L,π) will be increasing
or decreasing inR (strictly increasing or strictly decreasing if the functions are
strictly convex).

If the set of Bayes alternatives is not empty, then the function T(·,L,π) is
strictly decreasing in(−∞,a(L,π)) and strictly increasing in(a(L,π),+∞), being

a(L,π) = min
a∈B(L,π)

a, and

a(L,π) = max
a∈B(L,π)

a.

Note that the alternativesa(L,π) anda(L,π) are also Bayes for(L,π).
An immediate result is that the set of non-dominated alternatives is included

in the closed interval[µ∗,µ∗], beingµ∗ andµ∗, respectively, the infimum and the
supremum of the Bayes alternatives, that is,

µ∗ = inf
(L,π)∈L×Γ

a(L,π), and

µ∗ = sup
(L,π)∈L×Γ

a(L,π).

In the Bayesian literature the range of this interval is considered as the ro-
bustness measure of the problem, see Berger [4]. However, ifwe are interested
in calculating exactly the set of non-dominated alternatives, we can give a more
accurate approximation using the following result due to Arias et al [3]:

Theorem 1 LetL ⊆ LC be a family of convex loss functions,Γ a class of prior
probability distributions, so that, for every pair(L,π) ∈ L ×Γ, the set of Bayes
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alternatives B(L,π) is not empty and let

a∗ = inf
(L,π)∈L×Γ

a(L,π).

a∗ = sup
(L,π)∈L×Γ

a(L,π).

We have

1. If a∗ < a∗, then(a∗,a∗) ⊆N D(A) ⊆ [a∗,a∗].

2. If a∗ ≥ a∗, thenN D(A) = [a∗,a∗].

In order to study the robustness of the problem, it is not necessary to deter-
mine whether the alternativesa∗ anda∗ are dominated or not. Nevertheless, it is
interesting to calculate the efficient set in an accurate way. In this paper we will
see inference problems modelled by particular classes of loss functions and prior
distributions in which we can assure that the extremes of theintervala∗ and/ora∗

are non-dominated alternatives. If the set of Bayes alternatives is empty for some
pair (L,π) ∈ L ×Γ then the result is valid consideringa∗ = −∞ (whenT(·,L,π)
is increasing) ora∗ = ∞ (decreasing).

3 Quantile loss functions

Let us consider the case where preferences are modelled by quantile loss func-
tions. A particular case of this type is the absolute value loss function. The class
of quantile loss functions is defined as

L = {Lp : Lp(a,θ) = |a−θ|−a(2p−1), p∈ [0,1]} (1).

Functions equivalent to these have been used in Economy, such as the ones
studied by Geweke [7]

L(a,θ) = c1(a−θ)I(−∞,a](θ)+c2(θ−a)I(a,+∞)(θ) (2)

where I is the indicator function. Bayes alternatives for this type of function
are the quantiles of orderc2/(c1 + c2) (If c1 = c2, it coincides with the median)
Thus, they are asymmetric functions with different weightson the positive and
negative errors. Next example shows the use of this type of functions.

Example 1 Noortwijt and Gelder [12] studied the Bayes estimators of the opti-
mal dyke height under asymmetric linear loss function. Let us suppose we have
to decide the height of the dykes to prevent flooding. The height of the dyke h will
be the decision variable and h0 = 3.25 the initial height at the moment when the
decision has to be taken. Inundation will occur as soon as thesea water level
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exceeds the hight of the dyke. We assume that the maximal sea levels per year Xi
i = 1, . . . ,n are conditionally independent, exponentially distributed, with a known
location parameter x0 = 1.96meters and an unknown parameterλ with expected
value 0.33 meters. Therefore the likelihood function is

l(x|λ) =
n

∏
i=1

f (xi ,λ) =
n

∏
i=1

1
λ

exp{−xi −x0

λ
}.

The prior density ofλ is assumed to be an inverted gamma distribution with scale
parameter µ> 0 and shape parameterν > 0

Ig(λ,ν,µ) = [µν/Γ(ν)]λ−(ν+1)exp{−µ/λ} λ > 0.

The loss function is (2) with c1 = 5.37·107 and c2 = 1.94·107. △

This type of loss function have also been used in Forecast Theory, see Capistrán
[5] and references therein.

We will use the functions defined in (1) as they only depend on asingle pa-
rameter. Quantile loss functions are convex inA . The posterior expected loss is

T(a,Lp,π) = Dθ|x(a)−a(2p−1),

and their Bayes alternatives are the quantiles of orderp of the posterior distribu-
tions, since

T ′(a,Lp,π) = 2Fθ|x(a)−2p,

for every pointa where the distribution function is continuous.
Let us recall that it is called quantile of orderp of a random variableX, the

valueQX(p) such that

P[X ≤ QX(p)] ≥ p and

P[X ≥ QX(p)] ≥ 1− p.

As it happened with the absolute value loss function, when using quantile loss
functions, the posterior distribution quantiles may not beunique.

Based on theorem 1 we have the following result, when there isprecision in
DM’s beliefs.

Proposition 1 LetL be the class of quantile loss functions

L = {Lp : Lp(a,θ) = |a−θ|−a(2p−1), p∈ [p0, p1]}

andπa prior distribution so that the posterior distribution quantiles are unique,
then

N Dπ(A) = [Qπ(p0),Qπ(p1)] ,

where Qπ(p0) and Qπ(p1) are, respectively, the quantiles of order p0 and p1 of
the posterior distribution ofπ.
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This result can be generalized in the case that we also have imprecision in the
decision maker’s beliefs.

Proposition 2 LetL be the class of quantile loss functions

L = {Lp : Lp(a,θ) = |a−θ|−a(2p−1), p∈ [p0, p1]},

a class of distributions

Γ = {π: π(θ|x) with posterior quantiles Qπ(p) unique, p∈ [0,1]}

and the values

a∗ = µ∗ = inf
π∈Γ

Qπ(p0) and

a∗ = µ∗ = sup
π∈Γ

Qπ(p1),

then
(µ∗,µ∗) ⊆N D(A) ⊆ [µ∗,µ∗] .

If posterior quantiles are not unique we must appeal to theorem 1 with

a∗ = inf
π∈Γ

{supQπ(p0)}

a∗ = sup
π∈Γ

{inf Qπ(p1)}

and
(a∗,a

∗) ⊆N D(A) ⊆ [a∗,a
∗] .

In general it can not be assured thatµ∗ or µ∗ are non-dominated alternatives
as we illustrate with the following example.

Example 2 Let us consider the class of absolute value loss functions and a class
of discrete posterior distributions with probability distribution:

(n∈ N)

πn(θ) =





2n+3
4(n+1)

if θ =
1
n
,

2n+1
4(n+1)

if θ = 1.

The Bayes alternative for each distributionπn would be its posterior median
1/n and the set of non-dominated alternatives is the interval(0,1]. The alternative
0 is dominated by the alternative1, since for every n∈ N

T(0,L,πn) =
2n2+3n+3
4n(n+1)

>
2n2 +n−3
4n(n+1)

= T (1,L,πn) .

△
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Obviously if µ∗ andµ∗ are unique Bayes alternatives, then they are also non-
dominated alternatives.

Note that, if having precision in beliefs, then the range of the non-dominated
set is the range between the quantilep0 and the quantilep1. Sometimes the non-
dominated set can be the same as the (HPD), as in next example.However, so that
this happens the elicitation of the class should depend on the posterior distribution.

Example 3 Let us consider the class of loss functions

L = {Lp : Lp(a,θ) = |a−θ|−a(2p−1), p∈ [0,0.8]}
and a Pareto prior distribution with parametersα andβ.

We take a sample{X1, . . . ,Xn} of a population which is distributed following
an uniform distribution with meanθ/2. Therefore, the posterior distribution is

P(α +n,max
(
β,X(n)

)
), with X(n) = max{X1, . . . ,Xn}

Then, the posterior quantiles ofπare

Qπ(p) =
1

α+n
√

p
max

(
β,X(n)

)
.

Thus, the set of non-dominated alternatives would be the closed interval

ND(A) =
[
max

(
β,X(n)

)
,Qπ(0.8)

]
.

This means than the non-dominated set coincides with the confidence interval
HPD for the parameterθ at a confidence level of80%.

The table 1 shows the non-dominated set whenα = 2 andβ = 5 for various
samples.

n X(n) ND(A) range
10 3.2 [5,5.0938] 0.0938
50 4.5 [5,5.0215] 0.0215
100 4.8 [5,5.011] 0.011
500 5.9 [5.9,5.9026] 0.0026
1000 4.7 [5,5.0011] 0.0011

Table 1: Non-dominated set for the example 3.

△

3.1 Relationship with the non-dominated set

An important question is the relationship between the Bayesset and the non-
dominated set. It is easy to prove that, in general, they are different, see Ariaset
al [1]. In this case, we have the following result:
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Proposition 3 Let L be the class of quantile loss functions with p∈ [p0, p1]. If
the classΓ of prior distributions is convex and Qπ(p) are unique for everyπ∈ Γ
and p∈ (p0, p1), then the set of non-dominated alternatives is the closure of the
set of Bayes actions, and the interiors of both sets are the same.

Proof.
If the set of prior distributions is convex, then the set of posterior distributions

is convex as well, see Arias et al[1]. As the quantiles are unique for anyπ, all
bayes actions are non-dominated. So, we only have to prove that givena andb
bayes actions for(π,L1) and(π,L2), αa+(1−α)b is also bayes forα ∈ (0,1).
Considera = Qπ1(p′) andb = Qπ2(p′′) with p′, p′′ ∈ [p0, p1] anda < b p′ < p′′.

Then
Z αa+(1−α)b

−∞
π1(θ|x)dθ > p′

Z αa+(1−α)b

−∞
π2(θ|x)dθ < p′′

so, there isβ such that

β
Z αa+(1−α)b

−∞
π1(θ|x)dθ+(1−β)

Z αa+(1−α)b

−∞
π2(θ|x)dθ = p∈ (p′, p′′)

Thenαa+(1−α)b is theQπ(p) with π(·|x) = βπ1(·|x)+ (1−β)π2(·|x)
✷

4 Quantile prior distributions

We now consider some classes of prior distributions to modelimprecision in be-
liefs. Let Ai = ⌊θi ,θi+1⌉ 1 be a partition of the parameter space and the class of
prior distributions:

ΓQ = {π: π(Ai) = qi , i = 1. . .n, qi ≥ 0 ∀i ∑
i

qi = 1}

This is a particular case of the quantile class, see Moreno and Cano [9] and
Moreno and Pericchi [10] and Martı́n and Rı́os Insua [13] among others.

A well known result states that the suprema and the infima of functionals over
Γ are attained for discrete distributions. So, we have

Lemma 2 We have

max
πd∈Γd

π(
i

[

j=1

Ai |x) =
∑i

j=1maxθ∈A j l(x|θ)p j

∑i
j=1maxθ∈A j l(x|θ)p j +∑n

k=i+1minθ∈Ak l(x|θ)pk

1by ⌊a,b⌉ we denote any type of interval inR
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Let us denoter i the second term in (8). Lemma 2 lead us to the following
iterative scheme to calculateµ∗

r0 = 0 i = 0
while r i < p0 i = i +1
compute r i

Let Ak be the first interval for whichrk ≥ p0. We define now

rk(θ) =
∑i−1

j=1maxλ∈A j l(x|λ)p j + l(x|θ)pk

∑i−1
j=1maxλ∈A j l(x|λ)p j + l(x|θ)pk +∑n

j=k+1minλ∈A j l(x|λ)p j
∀θ∈ Ak

then
µ∗ = inf{θ∈ Ak : rk(θ) ≥ p0}

By Theorem 1, for the calculus ofa∗, we will distinguish two cases, if the last
inequality is strict thenµ∗ = a∗ which is the only quantile of orderp. Otherwise,
there are several quantiles. For the calculus ofa∗ we proceed as follows. InAk we
will search a pointa > µ∗ for which the inequality is strict. If such point exists
thena∗ = inf{a∈ Ak : rk(a) > p0}. If there is no pointa > µ∗ in Ak such that
this is verified thena∗ = inf{a∈ Ak+1 : rk+1(a) > p0} and so on.

Example 4 The decision maker considers that negative errors are more impor-
tant than positive, so he uses the class of loss functions:

L = {Lp : Lp(a,θ) = |a−θ|−a(2p−1), p∈ [0.45,0.48]}.
For believes representation he adopts a quantile class withquantiles given in

Table 2.

Ai [−∞,−16.44) [−16.44,−5.22) [−5.24,−2.53) [−2.53,−1.25) [−1.25,0)

pi 0.05 0.25 0.1 0.05 0.05

Ai [0,1.25) [1.25,2.53) [2.53,5.24) [5.24,16.44) [16.44,∞)

pi 0.05 0.05 0.1 0.25 0.05

Table 2: Probabilities for some intervals

Applying the proposed iterative scheme to obtaininf Qπ(0.45) we get the ri
values showed table 3. Thereforeminπ∈Γ Qπ(0.45) ∈ A4 = [−2.533,−1.257] and
solvingmin{θ ∈ Ai such that rk(θ) ≥ 0.45} we obtaininf Qπ(0.45) = −2.533.
Moreover, rk(−2.5333) > 0.45so a∗ = −2.533.

We apply the equivalent algorithm for supπ∈ΓQπ(0.48) obtaining 2.533. Then
N D(A) = [−2.533,2.533]
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i 1 2 3 4 5 6 7 8 9 10
r i 0.0001 0.28 0.44 0.54 0.65 0.76 0.87 0.99 1 1

Table 3:r i values

The class of quantilesΓQ can be generalized considering bounds over the setsAi

obtaining the class

ΓQG = {π: αi ≤ π(Ai) ≤ βi , 0≤ αi ≤ βi ≤ 1}
In this case the proposed scheme can be modified taking into account that

ΓQG =
[

α≤p≤β
{π: π(Ai) = pi ∑

i
pi = 1}

whereα = (α1, . . . ,αn) p = (p1, . . . , pn) β = (β1, . . . ,βn) andα ≤ p≤ β indi-
catesαi ≤ pi ≤ βi i = 1, . . . ,n.

Thus, to calculaterk it is enough to consider sequently the linear problems:

max
k

∑
i=1

max
θi∈Ai

l(x|θi)pi

s.a.
n

∑
i=1

pi = 1

αi ≤ pi ≤ βi i = 1, . . . ,n

with optimump∗1, . . . , p∗k and

min
n

∑
i=k+1

min
θi∈Ai

l(x|θi)pi

s.a.
k

∑
i=1

p∗i +
n

∑
i=k+1

pi = 1

αi ≤ pi ≤ βi i = 1, . . . ,n

with optimum p∗k+1, . . . , p∗n and we replace in the algorithmpi for p∗i . A similar
modification give us the valuesµ∗ anda∗.

A natural extention of the quantile class for continuous parameters is the class

ΓLU = {π: L(A) ≤ π(A) ≤U(A), ∀A∈ β}

whereβ is aσ-field on the state setΘ. This is the class studied, among others, by
Moreno and Pericchi [10] who provide the following result for posterior proba-
bilities of sets inβ.
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Theorem 2 Let A be an arbitrary set inβ. Suppose that l(x|θ), L and U satisfy
U([l(x|θ) = z]) = L([l(x|θ) = z]) = 0 for any z≥ 0 where [l(x|θ) = z] = {θ :
l(x|θ) = z}. Then, we have

(i) if U (A)+L(Ac) > 1 then sup
π∈ΓLU

Pπ(A|x) = Pπ0(A|x)

where π0(dθ) = U(dθ)IAT

[l(x|θ)≥zA](θ)+L(dθ)IAT

[l(x|θ)<zA]
T

Ac(θ)

zA being such that πo(Θ) = 1

(ii) if U (A)+L(Ac) = 1 then sup
π∈ΓLU

Pπ(A|x) = Pπ0(A|x)

where π0(dθ) = U(dθ)IA(θ)+L(dθ)IAc(θ)

(iii) if U (A)+L(Ac) < 1 then sup
π∈ΓLU

Pπ(A|x) = Pπ0(A|x)

where πo(dθ) = U(dθ)IAS

Ac T

[ f (x|θ)<zA](θ)+L(dθ)IAc T

[ f (x|θ)≥zA](θ)

zA being such that πo(Θ) = 1

This resuls allow us to computeN D(A).

Theorem 3 Let be the classΓLU = {π : L(A) ≤ π(A) ≤ U(A), ∀A ∈ β} and
L = {Lp : Lp(a,θ) = |a−θ|+a(2p−1), p∈ [p0, p1]} and l(x|θ), L and U satisfy
U([l(x|θ) = z])+L([l(x|θ) = z]) = 0 ∀z≥ 0 then

µ∗ = inf{θ∈ Θ : sup
π∈ΓLU

Pπ(−∞,θ) ≥ p0},

where Pπ denotes the posterior probability.

Proof. Let θ∗ = inf{θ ∈ Θ : supπ∈ΓLU
Pπ(−∞,θ) ≥ p0} . If θ < θ∗ then

Pπ(−∞,θ) < p0 ∀π. Then by Theorem 1,θ is a dominated alternative. More-
over, if θ∗ satisfies supπ∈ΓLU

{Pπ(−∞,θ∗) ≥ p0} then there isπ∗ ∈ ΓLU such that
θ∗ ∈ Qπ∗(p0). In other case, by previous Theorem 2 there is a sequence of values
θn such that is existsπθn ∈ ΓLU , θn ∈ Qπθn

(p0) with θn → θ∗ soθ∗ = µ∗. ✷

Theorem 4 If L and U verify that L(A) > 0 U(A) > 0 ∀A with µ(A) > 0
then µ∗ = a∗.

Proof. It is easy to prove thatπ0 of theorem 2 has unique quantiles. ✷

These results can be applied using searching methods based on simulation
schemes.
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5 Stochastic order applied to the calculus of the non-
dominated set

The relationship between a prior distributionπ(θ) and its corresponding poste-
rior distributionπ(θ|x), through Bayes Theorem, is not simple in the sense that,
properties in the prior distribution not always hold for theposterior distribution.

In this context, starting from the classΓ of prior distributions which models
the decision maker’s uncertainty, it would be greatly useful if one could be able
to establish order relationships between the posterior distributions from the order
relationships already known among the prior distributions. In other words, given
two distributionsπ1(θ) and π2(θ) belonging to the classΓ such thatπ1(θ) ≺
π2(θ), where≺ is an order relationship between both distributions, it would be
of great interest that this relationship remained in the posterior distributions, this
is, that it is verifiedπ1(θ|x) ≺ π2(θ|x). We find the ideal tool for this study in
the general theory of stochastic orders. We introduce a brief summary about the
concept of stochastic order between distribution functions and the definitions of
various orders. The applications of such orders notably simplifies the calculus of
the non-dominated set as we will show.

Let Γ be a family of distribution functions over which a binary relationship,
which is a partial order, has been defined “≺”. Each time we assess the relation-
ship F ≺ G, we will extend this order to the random variablesX ≺ Y, whereF
andG are the distribution functions ofX andY respectively.

Definition 1 The random variable X is said to be stochastically smaller than the
random variable Y , we will denote F≺st G, if F(x) ≥ G(x) for every x belonging
to R being F and G the corresponding distribution functions.

This is the most common order in the stochastic distributiontheory. If two
random variables are stochastically ordered, this impliesthat all their location pa-
rameters are also ordered. Let us remember that, in many examples in decision
theory, the Bayes alternatives are the location parametersof the posterior distri-
butions. Besides, it is immediate, from the definition, thatthe stochastic order
between two variables implies the order between their respective quantiles.

Definition 2 Given X and Y two continuous random variables with density func-
tions f and g respectively, we will say that X is smaller in likelihood ratio than Y,
we will denote X≺lr Y, if

g(t)
f (t)

is increasing over the union of the supports of X and Y,

where a/0 is consider∞ every time that a is greater than zero.

Given two random variablesX andY it is verified that

X ≺lr Y ⇒ X ≺st Y
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see Shaked and Shantikumar [17] and Whitt [20].
As indicated in the beginning of this section, the relationship between the

density function of the prior distribution and the posterior distribution is not eas-
ily treatable from a mathematic point of view; although, this relationship is more
intuitive when we study properties associated to the quotient of two prior distri-
butions. Due to the form of the posterior density function, it is not difficult to
translate these properties to the quotient of the respective posterior distributions.
In this way we give the following two propositions, easy to prove, but of great use
as we show later with various examples.

Proposition 4 Let π1(θ) and π2(θ) be two prior distributions for an unknown
parameter of interest. Letπ1(θ|x) and π2(θ|x) be the respective posterior dis-
tributions of the parameter once the sampling experiment information has been
incorporated. Then ifπ1(θ) ≺lr π2(θ) it is verified thatπ1(θ|x) ≺lr π2(θ|x). Par-
ticularly, it is verified thatπ1(θ|x) ≺st π2(θ|x).

Example 5 Let us consider a decision problem where the decision maker’s be-
liefs are modelled by a parametric class of Pareto distributions with unknown
parameterα

Γ = {π∼ P (α,β) : α ∈ [α1,α2] ,α1,β > 0}
and the preferences are modelled by the class of quantile loss functions

L = {Lp : Lp(a,θ) = |a−θ|−a(2p−1), p∈ [p1, p2]}.

The class of Pareto distributions can be ordered in the senseof likelihood ratio,
since, for any two distributionsP (α1,β), P (α2,β),

π2(θ)

π1(θ)
=

α2

α1

(
β
θ

)α2−α1

is an increasing function in[β,+∞), as long asα1 > α2. Then, it is stochasti-
cally ordered and, therefore, all the location parameters are ordered, in particu-
lar, the quantiles are ordered. If we take a sample of size n ofa population that
is distributed according to an uniform distribution of meanθ/2, we have that, by
proposition 4, the non-dominated set coincides with the closed interval

[
QP (α2,β)(p1),QP (α1,β)(p2)

]
.

Table 4 shows the non-dominated set for some samples and supposing thatβ =
4,α1 = 2,α2 = 4, p1 = 1

3 and p2 = 1
3.
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Cáceres, 10071, Spain. E-mail: jrmartin@unex.es
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On the Suboptimality of the Generalized
Bayes Rule and Robust Bayesian

Procedures from the Decision Theoretic
Point of View: A Cautionary Note on

Updating Imprecise Priors

THOMAS AUGUSTIN
Ludwig-Maximilians University of Munich, Germany

Abstract

This paper discusses fundamental aspects of inference withimprecise prob-
abilities from the decision theoretic point of view. It is shown why the equiv-
alence of prior risk and posterior loss, well known from classical Bayes-
ian statistics, is no longer valid under imprecise priors. As a consequence,
straightforward updating, as suggested by Walley’s Generalized Bayes Rule
or as usually done in the Robust Bayesian setting, may lead tosuboptimal
decision functions. As a result, it must be warned that, in the framework of
imprecise probabilities, updating and optimal decision making do no longer
coincide.

Keywords

decision making, generalized risk, generalized expected loss, imprecise prior risk and
posterior loss, robust Bayesian analysis, Generalized Bayes rule

1 Introduction

A powerful method of inference has to provide answers to (at least) the following
three questions:

• What is updating?

• How to learn from data? (inference)

• How to make optimal decisions?

31
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The classical Bayesian statistical theory, based on precise probabilities, claims
to provide a comprehensive framework to deal with all these aspects simultane-
ously. For a Bayesian, inference and decision making coincide, and the solution
to both tasks is essentially based on updating prior probabilities by means of the
Bayes rule. More precisely, Bayesian statistics is based ontwo paradigms [P1]
and [P2], where

[P1] Every uncertainty can adequately be described by a classical probability
distribution. This in particular allows to assign a prior distributionπ(·) on
parameter spaces in inferential problems and on the space ofstates of nature
in decision problems.

[P2] After having observed the sample{x}, the posteriorπ(·|x) contains all the
relevant information. Every inference procedure depends on π(·|x), and
only onπ(·|x).

There are several strong arguments for [P2], see, for instance, the discussion
in [25]. Among them is the decision theoretic foundation by the often so-called
‘main theorem of Bayesian decision theory’: As discussed below, it says that de-
cision functions with minimal risk under a priorπ(·) can be constructed from
considering optimal actions with respect to the posterior probability π(·|x) as an
‘updated prior’.

In the last decade a rapidly increasing number of researcheshave objected
against[P1], and so theories of imprecise probabilities and interval probability
emerged (see, e.g., the monographs by Walley [33], Kuznetsov [22], Weichsel-
berger [39], the conference proceedings de Cooman, Fine, Moral and Seiden-
feld [6] and the web page de Cooman and Walley [7]), offering acomprehensive
framework to deal with a more realistic and reliable description of uncertainty. In
this context also concepts generalizing conditional probability have been devel-
oped, suggesting the straightforward extension of[P2], namely to use imprecise
posteriors to update imprecise priors. This approach is discussed, among others,
by Levi ([23],[24]), and is rigorously justified by general coherence axioms in
Walley’s theory ([33]). Moreover, it is even often understood as self-evident, and
applied in many cases without a moment of hesitation, for instance, in the robust
Bayesian Analysis (e.g., [35, 26]) and in economic applications following Kofler
and Menges’ [21] approach of decision making under linear partial information.1

The self-evidence of this way to proceed is questioned here.From a rigorous
decision theoretic point of view, which is taken up in this paper, it is becom-
ing clear without any ifs and buts that – quite surprisingly –such a procedure
may be suboptimal: the resulting decision function may havehigher risk than the
optimal decision function. The present paper wants to illuminate this aspect. To
achieve this goal, it proceeds as follows: Section 2 collects basic notions needed

1For further references see, e.g., Cozman’s survey ([8]) on computational aspects and the refer-
ences in [41, Section 1].
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later from classical decision theory. After recalling somegeneral aspects and ter-
minology from the theory of interval probability in Section3.1, both ingredients
are melt together in Section 3.2, where the general framework for decision mak-
ing under interval probability developed in [1, 2] is described briefly. Behind this
background Section 4 explores the suboptimality of decision functions based on
imprecise posteriors, while Section 5 returns to the fundamental questions formu-
lated above and concludes with a short reflection on the consequences to be drawn
from the observation made here.

2 Classical Decision Theory

2.1 The Basic Decision Problem and the Data Problem

Classical decision theory provides a formal framework for decision situations un-
der uncertainty. The decision maker aims at choosing anaction from of a non-
empty, finite set IA= {a1, . . . , ai , . . . ,an} of possible actions. Apart from trivial
border cases, the consequences of every action depend on thetrue, but unknown
stateof natureϑ ∈ Θ = {ϑ1, . . . , ϑ j , . . . ,ϑm} . The corresponding outcome is
evaluated by aloss function

l : (IA ×Θ) → IR
(a, ϑ) 7→ l(a, ϑ)

and by the associated random variablel(a) on(Θ,Po(Θ)) taking the valuesl(a,ϑ).
For brevity of reference, the relevant components, the set IA of actions, the setΘ
of states of nature and the precise loss function2 l(·), is collected in the triple
(IA ,Θ, l(·)), which is calledbasic decision problem.

For many applications it will prove of value to extend the problem by allowing
for randomized actions.Formally, every randomized action can be identified with
a classical probabilityλ(·) on (IA ,Po(IA)) whereλ({a}), a ∈ IA , is interpreted
as the probability to choose actiona. The set of all randomized actions will be
denoted byΛ(IA). Pure actions, i.e. elementsa of IA itself, are identified with the
Dirac measure in the point{a}, and therefore are also understood to be elements
of Λ(IA). The loss function is extended to the domainΛ(IA)×Θ by l(λ,ϑ j ) :=
∑n

i=1λ(ai) · l(ai ,ϑ j ). Analogously tol(a), l(λ) is that random variable which gives
the loss ofλ in dependence on the true stateϑ.

Quite often it is possible to obtain some information on the states of nature
by collecting additional data. Formally, this can be described by an additional
‘experiment’ where the probabilitypϑ(·) of the outcomes depends on the true
stateϑ of nature. LetX be the sample space of this experiment, and assume

2Throughout the paper it is assumed that a (precise) loss function is given. On theconstruction
of loss functions in the presence of ambiguity, generalizing the Neumann Morgenstern approach, see,
e.g., [14] and the references therein.)
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throughout the paperX to be finite, so thatX = {x1, . . . ,xs, . . . ,xk}. The triple
(X ,Po(X ),(pϑ (·))ϑ∈Θ) is calledsample information, the basic decision problem
together with the sample informationdata problem.

Now the decision problem consists in the choice betweendecision functions
(strategies)

d : {x1, . . . , xk} → Λ(IA)
x 7→ d(x) = λ ,

i.e. functions which map every observationx into a (randomized) actionλ which
has to be chosen ifx occurs. Let ID be the set of all decision functions. Deci-
sion functions are compared via their overall expected lossunderpϑ(·), i.e. one
considers the so calledrisk function

R(d,ϑ) :=
k

∑
s=1

l(d(xs),ϑ) · pϑ(xs) , (1)

which produces, analogous to above, the random variableR(d).

2.2 Optimality Criteria

If the states of nature are produced by a perfect random mechanism (e.g. an
ideal lottery), and the corresponding probability measureπ(·) on (Θ,Po(Θ)) is
completely known, the Bernoulli principle is nearly unanimously favored. One
chooses that actionλ∗ which minimizes the expected loss

IEπl(λ) =
m

∑
j=1

l(λ,ϑ j) ·π({ϑ j}) (2)

among allλ ∈ Λ(IA), and that decision function which minimizes the expected
risk

IEπR(d) =
m

∑
j=1

R(d,ϑ j ) ·π({ϑ j}) (3)

among alld ∈ ID, respectively.

In most practical applications, however, the true state of nature can not be
understood as arising from an ideal random mechanism. And even if so, the cor-
responding probability distribution will be not known exactly. There are two main
directions to proceed in this situation:

Since for a classical subjectivist, or Bayesian, accordingto [P1], every situa-
tion under uncertainty can be described by a single, preciseprobability measure
π(·), the lack of such a known random mechanism does not make any impor-
tant difference to the decision maker. (S)he acts accordingto subjective expected
loss/risk. In this context a special terminology became quite common:π(·) is
calledprior probability, and the expression in (3)prior risk.
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In contrast, from the viewpoint of an ‘objectivist’ it does not make any sense
at all to assign a probability on(Θ,Po(Θ)). Therefore, the objectivist concludes
that the decision maker is completely ignorant about which state of nature will
occur; (s)he has to act according to a criterion based on complete ignorance. The
most common criterion is theminimax rule, which concentrates on the worst state
of nature, leading in the basic decision problem to

max
ϑ∈Θ

l(λ,ϑ) → min (4)

and in the data problem to

max
ϑ∈Θ

R(d,ϑ) → min . (5)

2.3 The Main Theorem of Bayesian Decision Theory

It is quite an essential characteristic of Bayesian decision theory that an optimal
decision functiond∗(·) minimizing the prior risk (3) can be obtained by minimiz-
ing, for every observation{x}, theposterior loss,

IEπ(·|x)l(λ) =
m

∑
j=1

l(λ,ϑ j ) ·π({ϑ j}|x) (6)

where, compared to (2), the priorπ(·) is replaced by the ’updated prior’, i.e., the
posteriorπ(·|x). This is the decision theoretic foundation for the usual Bayesian
updating (see also[P2] from the Introduction). More precisely this fundamental
relation is formulated in

Proposition 1 (“Main theorem of Bayesian decision theory”) 3 Consider a
data problem, consisting of a basic decision problem(IA ,Θ, l(·)), a sample in-
formation (X ,Po(X ),(pϑ (·))ϑ∈Θ) and a prior probabilityπ(·). For every s=
1, . . . ,k, let π(·|xs) be the corresponding posterior given xs, andλ∗

s be an opti-
mal solution to the basic decision problem with respect toπ(·|xs), i.e. an action
minimizing (6).

Then d∗ := (λ∗
1, . . . ,λ∗

s, . . . ,λ∗
k) is an optimal decision function minimizing (3).

Remark 1 The property formulated in Proposition 1 is constitutive for Bayesian
decision making. In particular, an analogous reduction of the data problem to
basic decision problems is not possible for the maximin criterion (4) and (5).

3 Decision Making under Interval Probability

It has often been complained that both classical ways to proceed – relying on
subjective expected loss as well as acting according to a criterion based on com-
plete ignorance – are inappropriate, because they both distort thepartial nature of

3Compare, for instance, [4, p. 159, Result 1].
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the knowledge on the decision maker’s hand: The objectivist’s criteria treat par-
tial knowledge like complete ignorance, often leading to unsatisfactory, overpes-
simistic solutions. Subjective utility/loss theory on theother hand identifies partial
knowledge with complete probabilistic knowledge. This conflicts with Ellsberg’s
[11] experiments, which made it perfectly clear that ambiguity (i.e. the deviation
from ideal stochasticity) plays a constitutive role in decision making — neglecting
it may lead to deceptive conclusions.

Imprecise probabilities and related concepts are understood to provide a pow-
erful language which is able to reflect the partial nature of the knowledge suitably
and to express the amount of ambiguity adequately. (See [7] and [39, Ch. 1] for
recent reviews on the development in this field.)

3.1 Basic Terminology of Interval Probability

With respect to the intended application the whole consideration is restricted here
to the case of a finitely generated algebraA based on a sample spaceΩ. Then,
without loss of generality,Ω is finite, andA is the power set ofΩ = {ω1, . . . ,ωk}.

To distinguish in terminology, every probability measure in the usual sense,
i.e. every set functionp(·) satisfying Kolmogorov’s axioms is called aclassical
probability. The set of all classical probabilities on the measurable space(Ω,A)
will be denoted byK (Ω,A).

Axioms for interval-valued probabilitiesP(·) = [L(·),U(·)] can be obtained
by looking at the relation between the non-additive set-function L(·) andU(·)
and the set of classical probabilities being in accordance with them. On a finite
sample space, as considered throughout this paper, severalconcepts of interval
probability coincide. They all are concerned with set-functions

P(·) : A → Z0 := {[L,U ] |0≤ L ≤U ≤ 1}
A 7→ P(A) = [L(A),U(A)]

with

M := {p(·) ∈ K (Ω,A) | L(A) ≤ p(A) ≤U(A), ∀A∈ A} 6= /0. (7)

and
inf

p(·)∈M
p(A) = L(A)

sup
p(·)∈M

p(A) = U(A)



 ∀A∈ A . (8)

SuchP(·), and the corresponding set functionsL(·) andU(·), are called lower
and upper probability ([17]), envelopes ([34, 9]), coherent probability ([33]) and
F-probability ([37, 38, 39]). In the game theoretic settingM is the ‘core’. Here
Weichselberger’s terminology is used callingM structure. Note that, by (8), there
is a one-to-one correspondence betweenP(·) and the structureM .
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Two-monotone capacities ([17], also called supermodular capacities ([9]) or
convex capacities ([18]), as well as belief functions ([28,42]) are special cases.
More general sets of classical probabilities are obtained by the theory of co-
herent previsions ([33]), i.e. by assigning interval-valued expectations IEM (·) :=
[LIEM (·),UIEM (·)] on a setK of random variables on(Ω,A). By the lower en-
velope theorem ([33, p.134]) and the fact that classical expectation and classical
probabilities uniquely correspond with each other, the definition of coherence can
be rewritten in a way similar to (8). Since Walley [33] did notcoin a name for the
resulting set of classical probabilities, it will be calledstructure, too.

The interval-valued functions or functionals and the structure are dual con-
cepts, they uniquely determine each other. The results obtained in this paper will
be given in terms of the structure.

Many concepts of classical probability theory can be generalized appropri-
ately. For decision making the notion of expectation is the most important one.
Looking at the structureM , one way how to define expectation for interval prob-
ability and how to extend the functional IEM to random variablesX 6∈K suggests
itself (see also the natural extension in [33]): Given a structureM ⊆K (Ω,A)

IEM X :=
[
LIEM X,UIEM X

]
:=
[

inf
p(·)∈M

IEpX , sup
p(·)∈M

IEpX
]

(9)

is the(interval-valued) expectation of X (with respect toF ).4

3.2 Generalized Expected Loss and Risk

In this section the decision problem as described in the Introduction will be an-
alyzed in the situation where the decision maker’s knowledge on the states of
nature is ambiguous, expressed by a structureM of classical probabilities on
(Θ,Po(Θ)). To focus the argumentation on the essential ideas, it is assumed that
the sampling information consists of classical probabilities.5

The generalization of the concept of probability now allowsto consider gen-
eralized prior probabilities describing the decision maker’s state of knowledge.
With the notion of interval-valued expectation from (9) oneimmediately obtains
the basic element of a generalized decision theory:

Definition 1 Consider the basic decision problem(IA ,Θ, l(·)), a structureM ⊆
K (Θ,Po(Θ)), and a sample information(X ,Po(X ),(pϑ (·))ϑ∈Θ). For every (ran-
domized action)λ ∈ Λ(IA), and every decision function d∈ ID, the expectations

4An alternative way to define expectation for non-additive set functions is theChoquet integral
(or fuzzy integral)(c.f., e.g., [9]). For the case of two-monotone and totally monotone capacities both
notions are equivalent (cf., e.g., [9, Prop. 10.3, p. 126]).Therefore, the results developed below are
then valid for the Choquet integral, too.

5The whole framework can be extended to imprecise sample information without substantial diffi-
culties (cf., also the brief outline in [1]).
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IEM l(λ) and IEM R(d) are thegeneralized expected lossand thegeneralized ex-
pected risk(with respect to the prior informationM ), respectively.

Note that IEM l(λ) and IEM R(d) are interval-valued quantities. In most cases,
comparing the generalized expected loss of actions directly will lead only to par-
tial orderings on IA andΛ(IA). If a linear (complete) ordering of actions is de-
sired, an appropriaterepresentationis needed. This is a mapping from IR× IR to
IR which evaluates intervals by real numbers to use the natural ordering on IR for
distinguishing optimal actions.

Expressing the probabilistic knowledge by a structure means that inside the
structure there is complete ignorance: none of the elementsof the structure is
‘more likely’ than another one. Therefore several authors (see the literature cited
below) suggested to apply ‘the maximin criterion to the structure’. Then the interval-
valued expectations are represented by the upper interval limit alone. Accordingly,
an actionλ∗ or a decision functiond∗ is optimal iff

UIEM (l(λ∗)) ≤ UIEM (l(λ)) , ∀λ ∈ Λ(IA) . (10)

and
UIEM (R(d∗)) ≤ UIEM (R(d)) , ∀d ∈ ID , (11)

respectively. The criterion (10) corresponds, among others, to the Maxmin ex-
pected utility model ([15]) and to the MaxEMin criterion considered by Kofler
and Menges ([21]; cf. also [20] and the references therein)). (11) is also called
Gamma-Minimax principle (e.g. [4, Section 4.7.6],[32]). These criteria will be
used in this paper, too.6

Remark 2 It should be noted that the criterion considered here contains the two
main classical decision criteria as border cases: If there is perfect probabilistic
information and therefore no ambiguity, thenM consists of one single classical
prior probability π(·) only; (10) and (11) coincide with Bayes optimality with
respect toπ(·). On the other hand, in the case of completely lacking information,
the prior information consists of all classical probabilities on(Θ,Po(Θ) (‘non-
selective’or ’vacuous’prior). Then it is easily derived that

UIEM (l(λ)) = min
j∈{1,...,m}

l(d,ϑ j ) and UIEM (R(d)) = max
j∈{1,...,m}

R(d,ϑ j ) ,

and (10) as well as (11) lead to the minimax criterion.

6This is done, however, without claiming that this is the onlyappropriate choice. Indeed, already
in the seminal paper by Ellsberg [11] there are strong arguments for additionally taking into account
other criteria. A convenient and nevertheless flexible choice is a linear combination of lower and upper
limits (compare, e.g., with [11, p. 664], [18],[40], [39, Ch. 2.6]).
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4 Robust Bayesian Analysis and Generalized Bayes
Rule

4.1 Posterior Loss Analysis

The search for a decision function is much more costly than the calculation of
optimal actions. Therefore, a natural attempt to solve (11)relies on the idea of the
main theorem of Bayesian decision theory (compare Proposition 1): after having
observed{x}, calculate the (now imprecise) posterior to update the imprecise
prior, and then determine the action minimizing posterior loss.

Before discussing properties of this way to proceed in detail, the informal
description just given has to be made precise:

Definition 2 Consider the basic decision problem(IA ,Θ, l(·)), a structureM ⊆
K (Θ,Po(Θ)), and a sample information(X ,Po(X ),(pϑ (·))ϑ∈Θ). Assume that
π({ϑ}) > 0,∀ϑ ∈ Θ, ∀π∈M .

i) Then, for every x∈ X , call

M·|x = {π(·|x)|π∈M } (12)

the imprecise posteriorgiven x, andλ∗ ∈ Λ(IA) with

UIEM ·|x (l(λ∗,ϑ j )) ≤ UIEM ·|x (l(λ,ϑ j)) , ∀λ ∈ Λ(IA) , (13)

anoptimal action with respect to the posterior lossgiven x.7

ii) A decision functiond̃ = (d̃(x1), . . . , d̃(xs)) where, for every s= 1, . . . ,k, the
actiond̃(xs) is optimal with respect to the posterior loss given xs, is called
posterior loss optimal decision function.

The imprecise posterior from (12) is the main tool in robust Bayesian analysis
(e.g., [35]), and its use is understood as self-evident in the decision theoretic work
based on the theory of linear partial information ([21] and subsequent work).
Moreover, a strong justification is provided by Walley’s [33] theory. The cal-
culation ofM·|x is equivalent to applying his generalized Bayes rule, whichis
thoroughly derived from general axioms on coherent updating (cf. [33]). And in-
deed− next to its intuitive plausibility− working with the imprecise posterior
has many further appealing properties. For instance, it is avivid tool to reflect
prior-data conflict ([33, p.6]) and it is naturally applied in successive updating
where the imprecise posterior serves as an imprecise prior,once additional data
are available.8

7Vidakovic [32] calls such optimaconditionalGamma-Minimax solutions.
8See, however, [41, Section 6].
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4.2 Suboptimality of Posterior Loss Optimal Decision Func-
tions

Though this procedure seems to suggest itself, it must, however, be noted that its
decision theoretic foundation is lost. As has to be discussed here, the decision
function constructed along the lines of Part ii) of Definition 2 may besuboptimal
with respect to the criterion (11).

A very simple counterexample can be obtained from a border case: Consider
the vacuous prior informationK (Θ,Po(Θ)). Then, independent ofx, also the im-
precise posterior is vacuous9. Using it as the ‘updated prior’ yields, for everyx,
according to Remark 2, the maximin solutionλmm of the basic decision problem
as the optimal randomized action. In contrast, the optimal decision function coin-
cides with the maximin decision functiondmm(·) of the data problem. Typically,
dmm(·) has lower risk than the decision functioñd = (λmm,λmm, . . . ,λmm). Other
counterexamples can be obtained, for instance, by considering situations, where
the posterior probabilities are dilated (for this phenomenon see: [31, 36]).

The relation to minimax solutions goes far beyond the bordercase counterex-
ample just given. Indeed, the following representation theorem even shows that
optimal actions in the sense of (10) and optimal decision functions according to
(11) are minimaxsolutions (in a different decision problem, where the structure
serves as the set of states of nature) — except in the case of classical probabil-
ity where the structure consists of a single element only. Therefore, the optimal
solution must share all the (un)pleasant properties of minimax solutions, and so
a reduction of the data problem to smaller basic decision problems cannot be ex-
pected; the equivalence of optimality with respect to posterior loss and to prior
risk has to be given up.10

Theorem 1 (Representation Theorem)Consider the basic decision problem
(IA ,Θ, l(·)), the prior structureM ⊆ K (Θ,Po(Θ)), and a sample information
(X ,Po(X ),(pϑ (·))ϑ∈Θ). Then the following equivalences hold:

i) An actionλ∗ is optimal with respect to the criterion (10), iff it is minimax
action in the basic decision problem(Λ(IA),M , l̃(·)) with

l̃ : (Λ(IA)×M ) → IR
(λ, π) 7→ l̃(λ, π) := IEπ(l(λ,ϑ)) .

ii) A decision function d∗(·) is optimal with respect to the criterion (11), iff
d∗(·) is minimax solution in the basic decision problem(D,M ,R̃(·)) with

R̃ : (D×M ) → IR
(d, π) 7→ R̃(d, π) := IEπ(R(d,ϑ)) .

9See, for instance, [33, p.308].
10For the same reason also the essential completeness of unrandomized actions, known from clas-

sical Bayesian theory, is no longer valid.
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Sketch of the proof:For Part i) read the criterion (10)

maxπ(·)∈M IEπ(l(λ,ϑ)) → min

from the viewpoint of the minimax criterion (4), whereΘ has been replaced byM . To
show Part ii), analogously rewrite (11) in the light of (5).

The basic idea of this theorem is similar to Schneeweiß’ [27]representation of
a basic decision problem. A closer study of the proof shows that this theorem can
also be directly extended to imprecise sample information and to the Hurwicz-
like optimality criteria briefly mentioned in Footnote 6. Moreover, the fact that
in this representation the structureM now serves as the set of states of nature
provides straightforwardly a framework for decision making with second order
probabilities: in this setting, a prior weighing the statesof nature is nothing but a
second order distribution.

5 Concluding Remarks

The paper showed that, for imprecise probability, optimality with respect to prior
risk and to posterior loss need no longer coincide. Decisionfunctions constructed
by collecting, for every potential observationx ∈ X , the optimal actions given
the corresponding imprecise posterior structure may have higher risk than the
direct solution to (11). From the computational point of view this means that, in
order to calculate the risk minimizing solution, the reduction to small, easy to
solve basic decision problems, which is characteristic forthe Bayesian approach
in the classical setting, is not possible any more; it is indispensable to go the costly
way, fraught with difficulty, via the optimal decisionfunction. Efficient algorithms
solving this challenge in contexts of optimal design and testing are provided by
Fandom Noubiap and Seidel [12, 13]. Augustin [1, 3] gives a general algorithm
which is, in principle, applicable to arbitrary decision problems on finite spaces.

Concerning the foundations of statistics it is remarkable that, in the area of
imprecise probabilities, the intensive debate between frequentists and Bayesians
on topics like counterfactual effects and the principle of conditionality, obtains
new importance. Should inference be based only on the concrete observationx, or
should one take all potential observationsx∈X into account, i.e., evaluate the de-
cision function as a whole? There are sound arguments for both views and, quite
evidently, the author is not the one to decide the question definitely. But, at least, it
can be said that one should be aware of the fact that in the areaof imprecise proba-
bility, in contrast to classical theory, now the standpointmatters; it may influence
the results substantially. The imprecise posterior does nolonger contain all the
relevant information to produce optimal decisions. Inference and decision do not
coincide any more — just as in every day life, there is a difference between ac-
cumulating as much information as possible (inference and updating knowledge)
and making optimal decisions. This may lead to a number of paradoxes, since
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statisticians up to now have been used to phrase estimating and testing problems
equivalently as inference as well as decision problems.

Important further insights into the topic should arise froma deeper under-
standing of the relationship between the result obtained here and the phenomenon
of dilation in conditioning imprecise probabilities as described by Seidenfeld and
Wasserman [31] and Wasserman and Seidenfeld [36]. There should also be a close
and illuminating connection to Jaffray’s [19] observations on sequential decision
making, and to Seidenfeld’s paper ([29]) on incoherence in sequential decision
making when preferences fail the independence axiom.11

Further research may also attempt at reconciling the conditional and the so-
to-say global point of view, the more as the debate on appropriately defining con-
ditional imprecise probabilities is far from being closed.An increasing number of
results supports the idea that there should be a symbiosis ofseveral concepts of
conditional interval probability ([10, 16, 41] and the references provided there.).
There may be some hope to find a notion of conditional probability or a mean-
ingful optimality criterion under which both ways to proceed coincide. In such a
setting there would be unanimity on the meaning of terms like‘updating’, ‘infer-
ence’ and ‘optimal decision making’, because then, and onlythen, the posterior
would contain all the relevant information for decision making.
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Abstract
We consider the statistical problem of analyzing the association between two
categorical variables from cross-classified data. The focus is put on mea-
sures which enable one to study the dependencies at a local level and to
assess whether the data support some more or less strong association model.
Statistical inference is envisaged using an imprecise Dirichlet model.

Keywords
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lower probabilities, IDM, prior ignorance, Bayesian inference

1 Introduction

1.1 The problem of association in contingency tables

The problem of measuring association in two-way contingency tables arising from
cross-classifications has a long tradition in statistical research (see,e.g.,the numer-
ous association measures reviewed by Goodman & Kruskal [6]). Though every
one agrees on the meaning of “independence”, the opposite notion of “complete
association” is felt more ambiguous, because there are several directions in which
the data may depart from independence. For the simplest caseof 2× 2 tables,
Kendall & Stuart [9] make the distinction between “completeassociation” (one
empty cell) and “absolute association” (two empty cells on either diagonal of the
table). Although such distinctions are occasionally mentioned in the literature,
most statistical research appears to have focused on proposing global measures of
association.

The motivation behind this article arise from two (apparently) independent
goals. The first one is to provide a local and/or asymmetric approach to the anal-
ysis of contingency tables and to define well-suited descriptive indices for that
purpose. The second one is to build the inferential part of the analysis on a gen-
eralization of the Bayesian framework, theimprecise Dirichlet model (IDM). Let
us comment on these two aspects.

46
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1.2 Analysis of local/asymmetric dependencies: two examples

The first aim of this article is to address two related types ofstatistical issues, that
we shall illustrate by two psychological examples.

Example 1 (Stages data, Logical model)Jamison [8] studied several cognitive
tasks related to the Piaget’s stage concept. Table 1 gives the levels attained by
a group of children in two tasks, A and B, with three levels each. One model
predicts that attaining a given level in task A is a prerequisite for attaining the
same level in task B, i.e., predicts that cells a1b2, a1b3 and a2b3 should be empty.
This model can also be expressed as the logical expressionM = [b3 =⇒ a3 ∧
b2 =⇒ (a2∨a3)]. The issue here is to assess whether a conclusion ofquasi-
agreementof the data with modelM , can be reached or not.

Table 1:“Stages” example. Observed countsxxx for n = 101 children cross-classified ac-
cording to their performance level in Seriation of lengths (A) and Inclusion of lengths (B),
from [8, p. 248]. For each task, children were classified as “preoperational” (a1 andb1),
“transitional” (a2 andb2) or “operational” (a3 or b3). Shaded cells are error cells associ-
ated to the logical modelM = (b3 =⇒ a3 ∧ b2 =⇒ (a2∨a3)).

b1 b2 b3

a1 14 0 0

a2 15 5 2

a3 19 20 26

Example 2 (Dyad data, Directional association model)Another type of prob-
lem is thestudy of local dependencieswithin an A×B table, which aims at show-
ing that a specified group of cells is over- or under-represented. For example,
Danis et al. [5] analyzed data about adult-child verbal interactions in a situation
of book reading. Each statement produced by either actor wascategorized into
one of four levels of increasing complexity. Table 2(left) gives one transition ma-
trix (child statement followed by adult statement) for one dyad. One hypothesis
of interest here is that some regions of Table 2(left) shouldbe over- or under-
represented according to the pattern shown in Table 2(right): over-representation
of statements of the adult at the same level as the child’s (denoted “+”), mod-
erate under-representation of statements at an higher level (denoted “−”), and
high under-representation of statements at a lower level (denoted “−−”).

The two types of questions raised by these examples, either asymmetric and
expressed in terms of quasi-agreement with a logical model,or local and ex-
pressed in terms of over-/under-representation, can be answered using indices of
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Table 2:Dyad data. Counts of transitions from the child’s statementlevel (A) to the adult
statement level (B) for one dyad (left). Expected pattern of over-representations (+) and
under-representations (− or −−) (right). Levels correspond to increasing cognitive com-
plexity: “perceptual identification” (a1 andb1), “perceptual relationship” (a2 andb2), “dis-
placed reference” (a3 andb3), and “inferential statement” (a4 andb4); categoriesa0 and
b0 indicate cases in which one of the actors did not speak.

b0 b1 b2 b3 b4
a0 0 25 2 8 0
a1 6 27 1 3 2
a2 2 0 2 0 0
a3 13 0 0 20 2
a4 0 2 0 0 0

b0 b1 b2 b3 b4
a0
a1 + − − −
a2 −− + − −
a3 −− −− + −
a4 −− −− −− +

the same family. Hildebrandet al. [7], beside the main trend of research sketched
previously, proposed a general index, namedDel, which measures the degree of
agreement of cross-classified data to a specified logical model. The building block
of the Del index is what [10] call theassociation ratebetween modalities. Our
method will be based on these two indices.

1.3 Inference for local/asymmetric analyses

Several difficulties arise when it comes to making inferences about these indices.
The inferential methods that were initially proposed were based on the frequentist
framework, and, due to the presence of nuisance parameters,relied on asymptotic
arguments (seee.g.,[7, Chp. 6]), so that the validity conditions of these methods
are satisfied neither for small samples, nor for extreme datasets in which some
cells are empty or nearly so. These difficulties come in addition to some funda-
mental shortcomings of the frequentist methods, and, in particular, the fact that
they do not obey thelikelihood principle (LP).

The Bayesian approach to inference answers most of these problems. How-
ever, it also encounters some difficulties when one wants to make inferences from
a prior state of ignorance. None of the various solutions which were proposed for
that goal simultaneously satisfies some general desirable principles (see [11]),i.e.,
the LP, and therepresentation invariance principle (RIP)(invariance with respect
to how categories are distinguished).

A generalization of the Bayesian framework, involvingimprecise probabili-
ties, allows one to overcome most, if not all, of the difficulties of the Bayesian
approach, while keeping its attractive features (see [11]). In particular, Walley
[12] proposed a new method of inference for categorical databased on theim-
precise Dirichlet model (IDM). In the IDM, prior uncertainty about the cells’ true
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frequencies is described by a set of Dirichlet priors, each of which being updated
into a Dirichlet posterior using Bayes’ theorem. Posterioruncertainty is described
by the set of these Dirichlet posteriors. The IDM has severaldesirable properties
as a model for making inferences from a prior state of near ignorance. Firstly,
it satisfies both the LP and the RIP. Secondly, the IDM distinguishes between
a relative lack of information (high imprecision) and a moresubstantial state of
knowledge (low imprecision). The IDM can also be viewed as a method for mak-
ing robust inferences.

Our purpose here is to apply the IDM to the problem of studyingthe associ-
ation in contingency tables. This article contains relatively few new results about
the IDM itself, but we think it is important to face the IDM with several types of
applications and data sets, in order to develop more insights about its properties
and the scope of its application.

This article is structured as follows. Section 2 defines local or asymmetric as-
sociation measures. Sections 3 and 4 review the usual Bayesian Dirichlet models
and the IDM, respectively. Our main contribution is the study of inferences about
association measures from the IDM which is presented in Sections 5 and 6.

2 Descriptive analysis: defining relevant indices

Consider a data set of sizen categorized inK categories, with observed counts
xxx = (x1, . . . ,xK), with n = ∑k xk. The observed (relative) frequencies are denoted
fff = ( f1, . . . , fK), with fk = xk/n. The dataxxx will be considered as a sample
from a larger population, characterized by the parent or true frequenciesθθθ =
(θ1, . . . ,θK), which are the population counterparts offff . Both fff andθθθ belong
to theK-dimensional unit simplexS(1,K). Throughout this paper, the generic ex-
pression “association model” (or simply “model”) denotes some summary state-
ment about a frequency-vector,eitherfff orθθθ, i.e.,a statement saying that it belongs
to some subsetR ⊂ S(1,K). The qualifiers “descriptive” and “inductive” are used
for models bearing onfff andθθθ respectively. At the descriptive level, a model is
either true or false, whereas, at the inductive level, the model’s truth can only be
assessed with some probability.

In this section, we define various indices in terms of which the association
models considered in this paper will be defined. Here, these indices are defined
as functions offff , but each one has its inductive counterpart as a function ofθθθ.
The problem of making inferences about parametersθθθ (and indices derived from
them) will be envisaged in later sections.

2.1 Notation and preliminary definitions

The K categories are obtained here as combinations of modalitiesof the A and
B variables, so we shall use more specific notations:ab or (a,b) for a cell of the
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contingency table,xab for its observed count,fab for its observed frequency; we
note fa = ∑b fab and fb = ∑a fab the marginal frequencies of categoriesa∈ A or
b∈ B, and f̂ab = fa fb theproduct-frequencyof cell ab.1

Definition 1 (Local independence)There islocal independencebetween modal-
ities a and b, noted a⊥⊥ b, whenever fab = f̂ab.

Definition 2 (Global independence)There isglobal independencebetween vari-
ables A and B, noted A⊥⊥ B, whenever∀a∈ A,b∈ B, a⊥⊥ b.

2.2 The association rates as measures of local association

Being interested in the association between variablesA andB amounts to being
interested in the departures from global independence,i.e., all departures from
local independence. This is done by introducing a measure oflocal association.

Definition 3 (Association rate, [10]) The association rate between a and b is de-
fined as tab = ( fab− f̂ab)/( f̂ab).

The sign oftab indicates whether there is anattraction (casetab > 0), a local
independence (casetab = 0), or arepulsion(casetab < 0) betweena andb. The
maximum repulsion is obtained whentab = −1, i.e., when fab = 0, but there is
no a priori upper limit fortab. The indextab can also be interpreted as aover-or
under-representation rateof cell abwith respect to thea⊥⊥ b case: for example,
tab = +0.50 (resp.−0.50), indicates that cellab contains 50%more(resp.less)
observations than in thea⊥⊥ b case.

2.2.1 Properties of association rates

As should be clear from properties given below (see also [10,Chp. 7]), the product-
frequencieŝfff = ( f̂ab)a∈A,b∈B must be considered as a canonical set of weights for

ttt = (tab)a∈A,b∈B. In the following, we denoteMeanR(ttt, f̂ff ) the weighted mean ofttt

(with weights f̂ff ) overR⊂ A×B (Rbeing omitted whenR= A×B).

Property 1 The marginal weighted average of ttt, for any a∈ A or any b∈ B, is
equal to0, i.e.,Mean{(a,b),b∈B}(ttt, f̂ff ) = 0 andMean{(a,b),a∈A}(ttt, f̂ff ) = 0.

Corollary 1 If in any row a (resp. column b) some tab is positive, then some other
tab′ (resp. ta′b) is negative: over-representation of some cells implies the existence
of some under-represented cells. In particular, for a2× 2 table, a⊥⊥ b implies
A⊥⊥ B.

1Throughout this paper, we useK to denote both the set of categories and its cardinal, and similarly
for A andB, the distinction being always clear from the context. Unless otherwise stated, all sums over
k (resp.a, b) run from 1 toK (resp.A, B).
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Property 2 (Pooling) Consider two applications A−→ A∗ and B−→ B∗ and the
pooled table, A∗×B∗, then,∀a∗ ∈A∗, ∀b∗ ∈B∗, ta∗b∗ = Mean{(ab),a∈a∗,b∈b∗}(ttt, f̂ff ).
In particular, consider cell ab and the pooled table A∗×B∗, where A∗ = {a,a′}
and B∗ = {b,b′}. Then tab is unchanged, whether it is defined from table A×B or
from A∗×B∗.

Note 1 (Global independence andttt) From Definitions 2 and 3, A⊥⊥ B occurs
if and only if the tab’s are all equal to0. Conversely, the departure of any tab from
0 indicates a departure from independence. What is importanthere is that the
precise pattern of the tab’s departures from0 points to thedirection of association.

2.2.2 Example: Dyad data (continued)

Table 3 gives thetab’s for all cells of Table 2(left). Descriptively,(i) all diagonal
cells but one are over-represented,(ii) all cells below the diagonal but one are
maximally under-represented, and(iii) four of the six cells above the diagonal are
under-represented (two maximally). Several of these results go in the direction
of the pattern of Table 2(right), but this model, if taken at the cell level, is not
descriptively satisfied.

2.3 Mean association rate over a regionR: index tR

In order to express the idea that some regionR⊂A×B is over- or under-represented,
we shall have recourse to a more global index as in [5].

Definition 4 (Mean association rate)Given a region R⊂ A×B, themean asso-
ciation rateover R is defined as, tR = MeanR(ttt, f̂ff ).

The indextR varies from−1 (all cells in R are empty), to negative values
(under-representation ofR), to 0 (independence on average inR), to positive val-
ues (over-representation ofR) without any a priori upper bound.

Table 3:Dyad data. Observed association ratestab from data of Table 2.

b0 b1 b2 b3 b4
a0 -1.00 0.52 0.31 -0.15 -1.00
a1 -0.16 0.47 -0.41 -0.71 0.47
a2 1.74 -1.00 10.50 -1.00 -1.00
a3 1.03 -1.00 -1.00 1.12 0.64
a4 -1.00 1.13 -1.00 -1.00 -1.00
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2.3.1 Example: Dyad data (continued)

Consider the Dyad data and the pattern of over-/under-representation of Table
2(right). One possible way to confront the data to this model, at a descriptive
level, is to compute the observed mean association rates forthe three regions,D
for cells on the diagonal,U for cells above andL for cells below it. This yields
tD = 0.75,tU =−0.50 andtL = −0.91. A global descriptive summary of the data,
which goes in the direction of the expected pattern, is thus:tD > 0 > tU > tL.

2.4 TheDel index, a measure of agreement with a logical model

2.4.1 Quasi-implication for a2×2 table

Consider a 2× 2 table, with binary variablesA = {a,a′} and B = {b,b′}. We
assimilatea andb to logical propositions, and denote negation by priming, con-
junction by concatenation, implication by=⇒, and the false proposition by/0.
Then the statementa =⇒ b (i.e.,any observation of typea is necessarily of type
b) is equivalent toab′ =⇒ /0, i.e., that cellab′ is empty (cellab′ is anerror cell
for modela =⇒ b, see [7]). Bernard [4] weakened the notion of a strict impli-
cationa =⇒ b into that of aquasi-implication, denoted bya−→ b, by defining
the descriptive indexda=⇒b = −tab′ as a measure of thedegree of agreementwith
the logical modela=⇒ b. For a given thresholddquasi> 0, quasi-implication was
defined by:a−→ b ⇐⇒ da=⇒b ≥ dquasi.

2.4.2 Generalization to any logical model, theDel index

Definition 5 (Del index, [7]) More generally, consider a logical modelM rela-
tive to an A×B table, and denote byEM , or E for short, the set of all error cells
that contradictM , i.e., such thatM =

V

(ab=⇒ /0)(a,b)∈E . Let tE be the mean
association rate over regionE . Then a global measure of the degree of agreement
of the data withM is the Del index, dM = −tE .

Properties ofdM flow from those of (mean) association rates. The indexdM
varies in the range]−∞,1]; dM = 0 in case of independence on average in region
E anddM = 1 whenM is verified. A value ofdM between 0 and 1 can thus be
interpreted as a quasi-agreement of the data withM at degreedM ; the closer to 1
its value is, the better the quasi-agreement is.

Property 3 (Equivalent logical models) Consider two logical modelsM1, de-
fined on A×B, andM2, defined on a table A∗ ×B∗ obtained by coarsenings of
the A and B classifications, such thatM1 andM2 are logically equivalent. Then,
dM1

= dM2
. This property follows from Property 2.

As seen from Definition 5,dM andtR are equivalent indices. In usingtR, we
want to stress the over-/under-representation interpretation and the independence



Bernard: Analysis of Contingency Tables Using the IDM 53

case as a privileged reference (tR = 0), whereas, in usingdM , we stress the inter-
pretation in terms of quasi-agreement with a strong/logical model and we point
modelM as a privileged reference (dM = 1).

2.4.3 Example: Stages data (continued)

Consider the Stages data in Table 1 and the logical modelM associated with
E = {(a1,b2),(a1,b3),(a2,b3)}. We see that only two observations fall in region
E and we finddM = 0.851. Descriptively, at threshold, say,dquasi= 0.80, we may
conclude that the data quasi-agree with modelM .

3 Bayesian inference

We now assume that the dataxxx = (x1, . . . ,xK) is a multinomial sample (withK =
A×B categories) of sizen from a population characterized by the unknown pa-
rametersθθθ = (θ1, . . . ,θK), the true frequencies of theK categories:xxx∼ Mn(n,θθθ).
We now want to make inferences aboutθθθ, and, more precisely here, about derived
parameters such asτab, τR andδM which are the population counterparts of the
descriptive indicestab, tR anddM .

3.1 Dirichlet model for θθθ
In the usual Bayesian conjugate analysis, prior uncertainty aboutθθθ is described
by a Dirichlet prior distribution,θθθ ∼ Diri (ααα), whereααα = (α1, . . . ,αK) and each
hyper-parameterαk > 0. We call theαk’s theprior strengthsandν = ∑k αk theto-
tal prior strength. We shall use an alternative parameterization of the Dirichlet in
terms of theprior frequenciesϕϕϕ = ααα/ν, whereϕϕϕ ∈ S⋆(1,K) andS⋆(1,K) denotes
the interior of simplexS(1,K).2 The prior expectations are simplyE(θk) = ϕk.
The posterior distribution onθθθ is then an updated Dirichlet distribution,θθθ|xxx ∼
Diri (xxx+ααα) = Diri (xxx+νϕϕϕ), with posterior expectations given by,

E(θk|xxx) =
xk +νϕk

n+ν
. (1)

3.2 Objective Bayesian models

For multinomial data, four Dirichlet priors have been proposed as models for prior
ignorance aboutθθθ. All are symmetric Dirichlet, that isϕk = 1/K for anyk, and
they only differ in their respective total prior strengthν: ν → 0 (Haldane),ν = 1
(Perks),ν = K/2 (Jeffreys) andν = K (Bayes-Laplace’s uniform prior).

Haldane’s improper prior leads to some undesirable inferences: whenxk = 0,
it leads to infer thatθk = 0, even whenn is small. A major difficulty with the other

2Walley [12] uses symbolssandtk in place ofν andϕk respectively.
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three objective Bayesian priors is that inferences they produce depend on how the
K categories are distinguished, which is partly arbitrary, and thus they do not
satisfy the RIP (see [12]). Jeffreys’ prior does not satisfythe LP either. Although
it is often claimed that inferences from these priors differin a negligible way
whenn is not small, large discrepancies can be obtained for statements bearing
on unobserved or rare cells, even with largen.

4 Imprecise Dirichlet model

4.1 Presentation of the model

Walley [12] proposed theimprecise Dirichlet model (IDM)as a model for prior
ignorance in the case of categorical data. The model consists in describing prior
uncertainty aboutθθθ = (θ1, . . . ,θK) by a set of Dirichlet priors. The prior IDM(ν)
is defined as the set of all Dirichlet priors onθθθ with a fixed total prior strength
ν > 0, i.e., the set{Diri (ααα) : αk > 0 for all k, ∑k αk = ν}, or equivalently

{Diri (νϕϕϕ) : ϕϕϕ ∈ S⋆(1,K)}, (2)

whereS⋆(1,K) is the interior of the simplexS(1,K).
Let Pνϕϕϕ(·) andEνϕϕϕ(·) be respectively a prior probability and a prior expecta-

tion provided by a particularDiri (νϕϕϕ) in the set (2). The uncertainty about any
eventZ concerningθθθ is described byprior lower and upper probabilities, de-
noted byP(Z) andP(Z), and calculated by minimizing and maximizingPνϕϕϕ(Z)
with respect toϕϕϕ ∈ S⋆(1,K). Similarly, for any real-valued functionλ = g(θθθ),
prior lower and upper expectations E(λ) andE(λ) are calculated by minimizing
or maximizing the expectationEνϕϕϕ(λ) with respect toϕϕϕ. Inferences aboutλ can
be summarized by theprior lower and upper cumulative distribution functions
(cdf ’s), Fλ(l) = P(λ > l) andFλ(l) = P(λ > l).

Each Dirichlet prior in the prior IDM(ν) is updated into a Dirichlet posterior
using Bayes’ theorem. This updating procedure guarantees coherence of the infer-
ences [11]. Hence the posterior uncertainty aboutθθθ from the IDM(ν) is expressed
by the set

{Diri (xxx+νϕϕϕ) : ϕϕϕ ∈ S⋆(1,K)} (3)

As for the prior IDM, posterior lower and upper probabilities, expectations and
cdf’s are obtained by minimization or maximization with respect toϕϕϕ ∈ S⋆(1,K).

The IDM satisfies several desirable principles of inference, and in particular
both the LP and the RIP (see [12]). The RIP states that posterior inferences about
any derived parameterλ = g(θθθ) should not depend on the number of categories
K used for definingλ. The RIP is satisfied by the IDM in so far as the total prior
strengthν is specified independently ofK.
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4.2 Prior and posterior inferences aboutθk from the IDM

The posterior lower and upper expectations ofθk are given by

E(θk|xxx) = xk/(n+ν) and E(θk|xxx) = (xk +ν)/(n+ν), (4)

and are obtained asϕk → 0 andϕk → 1 respectively. The two same limiting values
lead to the posterior upper and lower cdf’s respectively,P(θk > l |xxx) which is the
Beta(xk,n−xk +ν) cdf, andP(θk > l |xxx) which is theBeta(xk +ν,n−xk) cdf.

By settingn= xk = 0 in (4), we see that prior uncertainty aboutθk is maximal.
We haveE(θk) = 0 andE(θk) = 1, andP(θK > l) = 0 andP(θk > l) = 1 for any
0 < l < 1, that isvacuouslower and upper probabilities.

4.3 Choice ofν
The IDM as defined in (2) and (3) depends on the choice ofν. The constantν
determines how fast the lower and upper probabilities converge one towards the
other asn increases, and can thus be interpreted as a measure of the caution of
the inferences. The largerν is, the more cautious the inferences are. The most
important criterion for the choice ofν is the requirement that the IDM should
be cautious enough to encompass frequentist or objective Bayesian alternatives,
while not being too cautious to avoid too weak inferences.

The first researches about the IDM lead to several convincingarguments for
choosing 1≤ ν ≤ 2, but most of these arguments are relative to the binary case
(K = 2) only (see [2, 12]. More recent work provides some support for ν = 2 in the
case of largeK, for non-parametric inference about a mean [3]. In the following,
we shall useν = 2, a value which is also supported by results in Section 5.4.

4.4 Two conjectures about the IDM

Conjecture 1 (Expectation of a derived parameter)Letλ = g(θθθ) be a real-va-
lued function ofθθθ, andEνϕϕϕ(θθθ) the prior (resp. posterior) expectation ofθθθ under
the prior Diri(νϕϕϕ) (resp. posteriorDiri(xxx+ νϕϕϕ)). Then the upper and lower ex-
pectations ofθθθ under the IDM(ν) are obtained from the (or one of the) Dirichlet
prior which maximizes (resp. minimizes) g(Eνϕϕϕ(θθθ)) with respect toϕϕϕ.

Conjecture 2 (Cdf of a real-valued derived parameter)Letλ = g(θθθ) be a real-
valued function ofθθθ. Let Diri(νϕϕϕ) be a Dirichlet prior which provides the lower
(resp. upper) prior or posterior expectation ofλ under the IDM(ν), then it also
provides the prior or posterior upper (resp. lower) cdf ofλ.

The two conjectures hold ifg(.) is a linear function of theθk’s. We don’t
expect them to be true in the general case (there are simple counter-examples to
Conjecture 1). Nevertheless, we suggest that these conjectures actually provide
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reasonable approximations for the lower and upper expectations and cdf’s ofλ
for most functionsg(.). In any case, the procedures they induce necessarily lead
to an upper (resp. lower) bound forE(λ) andFλ(.) (resp.E(λ) andFλ(.)).

5 Inference about a single association rateτi j

We first investigate the properties of the inferences about asingle association rate
τab from the IDM. The following lemma shows that inferences about τab can be
carried out from the analysis of a simple 2×2 table.

Lemma 1 Consider the pooled table A∗×B∗, with A∗ = {a,a′} and B∗ = {b,b′}
and denoteτ∗ab the association rate of cell ab from the pooled table. From Property
2, τ∗ab = τab. Further, inferences from the IDM are invariant by such a pooling,
since the IDM obeys the RIP. Thus, inferences about any single τab only involve
the relevant2×2 table, A∗×B∗.

5.1 Prior upper and lower expectation and cdf

The prior lower and upper expectation ofτab are given byE(τab) = −1 and
E(τab) → +∞, and are attained respectively byϕab = ϕa′b′ → 1

2, and byϕab = λ,
ϕa′b′ = 1− λ, with λ → 0. The same limiting values ofϕϕϕ also lead to the prior
upper and lower cdf’s respectively,P(τab > t) = 0 andP(τab > t) = 1, for any
0 < t < 1. These results show that prior inferences aboutτab are vacuous. The
prior IDM thus expresses a state of prior ignorance about parameterτab.

5.2 Posterior upper and lower expectation and cdf

As in [4], we have recourse to Conjecture 1 in order to find approximate values
for the posterior upper and lower expectations ofτab. Write τab = g(θθθ) whereg(.)
is such thattab = g( fff ) andg(.) is given by Definition 3. Under a single Dirichlet
prior,Diri (νϕϕϕ), the posterior expectationEνϕϕϕ(τab|xxx) is approximated by replacing
eachθk in g(.) by E(θk|xxx) given in (1), that is

E⋆
νϕϕϕ(τab|xxx) =

xab+νϕab

(xa +νϕa)(xb +νϕb)
−1 (5)

wherexa andxb are the marginal counts of cellab, andϕa andϕb its marginal prior
frequencies. Conjecture 1 suggests then to minimize (resp.maximize)E⋆

νϕϕϕ(τab|xxx)
with respect toϕϕϕ, in order to estimate the posterior lower (resp. upper) expecta-
tions ofτab under the IDM(ν). The minimum value is attained by lettingϕab′ → 1,
ϕa′b → 1, orϕab′ = ϕa′b → 1/2, whetherfab′ is lower than, greater than, or equal to
fa′b respectively. The maximum value is attained by lettingϕab → 1 or ϕa′b′ → 1
whetherxaxb > xab(xa +xb+ν) or not. Following Conjecture 2, we use the same
values for finding approximate posterior lower and upper cdf’s of τab.
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5.3 Dyad data: Summary of local inferences

Table 4 gives the lower and upper probabilities of a positiveassociation rate from
the IDM with ν = 2, for each cellab concerned by the prediction given in Table
2(right). Three of the four diagonal cells,(a1,b1), (a2,b2) and(a3,b3), can be
assessed to be inductively over-represented with a high guarantee,P(τab > 0)
being at least 0.99 for any of them. For cell(a4,b4), the probability interval,
[0.00;1.00] is almost vacuous; uncertainty still dominates, even afterobserving
115 observations. For the regions off the diagonal, only cells (a1,b3) and(a3,b1)
are guaranteed to be under-represented, since, in both cases, P(τab < 0) = 1−
P(τab > 0) = 1.00; cells(a2,b1) and(a3,b2) have a probability of at least 0.79
and 0.61 to be under-represented; uncertainty concerning the 8 remaining off-
diagonal cells is even larger, sinceP(τab < 0) < 0.50 for each cell.

The first overall conclusion that may be drawn from these results is that the
model shown in Table 2(right) cannot not be inductively assessed at the cell level.

Of course, any other reference value forτab than 0 can be used in a similar
way. For instance, the probability intervals for eventτab > 0.50 for diagonal cells
are:[0.30;0.50] for (a1,b1), [0.98;1.00] for (a2,b2), [0.99,1.00] for (a3,b3) and
[0.00,0.99] for (a4,b4). Both cells(a2,b2) and (a3,b3) can be assessed to be
over-represented by at least 50% with a high lower probability.

Table 4:Dyad data. Lower and upper posterior probabilities for event τab> 0, P(τab> 0|xxx)
andP(τab > 0|xxx), for cells indexed bya1, . . . ,a4 andb1, . . . ,b4 only, using the IDM(ν = 2).

b0 b1 b2 b3 b4
a0
a1 1.00;1.00 0.09;0.65 0.00;0.00 0.45;0.95
a2 0.00;0.21 0.99;1.00 0.00;0.57 0.00;0.99
a3 0.00;0.00 0.00;0.39 1.00;1.00 0.53;0.97
a4 0.56;1.00 0.00;0.99 0.00;0.81 0.00;1.00

5.4 Comparison with frequentist and Bayesian approaches

Let us consider the test of the hypothesisH0 : τab ≤ 0 versusH1 : τab > 0. Due to
Corollary 1, this test is equivalent toH0 : Φ≤ 0 versusH1 : Φ > 0, whereΦ is the
usual contingency coefficient for a 2×2 table.

In the frequentist framework, the usual corresponding testis Fisher’s exact test
for a 2×2 table. The one-sided levelpinc of this test is usually computed as the
probability of theobservations or more extreme cases(inclusivetest) underH0.
However, as argued by [2], this choice is a matter of convention and one could also
envisage theexclusivealternative with levelpexc involving more extreme cases
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only. The following lemma shows that both these frequentisttests can actually be
reinterpreted in a Bayesian way.

Lemma 2 Let pexc and pinc by the exclusive and the inclusive levels (one-sided)
of Fisher’s exact test of H0 : Φ≤ 0 versus H1 : Φ > 0 for a 2×2 table with counts
xxx. Let Pνϕϕϕ(.) be a Bayesian probability obtained from the priorDiri(νϕϕϕ) on θθθ.
Then, pexc = Pνϕϕϕ(H1|xxx) with ν = 2 and ϕϕϕ = (0, 1

2, 1
2,0), and pinc = Pνϕϕϕ(H1|xxx)

with ν = 2 and ϕϕϕ = (1
2,0,0, 1

2). The former prior allocates non-null strengths
evenly to cells(a,b′) and(a′,b), the latter to cells(a,b) and(a′,b′).

Lemma 3 Under the same assumptions, the probabilityPνϕϕϕ(τab > 0|xxx) from any
of the four symmetric (ϕϕϕ constant) objective Bayesian priors, i.e.,ν → 0, ν = 1,
ν = 2 andν = 4, are in the interval[pexc; pinc].

Proof. Lemmas 2 and 3 can be readily deduced from results in [1, Sec. 3]. ✷

Theorem 1 For any cell (a,b), the posterior lower and probabilities of event
τab≤0 from the IDM withν = 2 encompass (i) Fisher’s exact probabilities for H0 :
τab ≤ 0 versus H1 : τab > 0 using either the exclusive or the inclusive convention
and (ii) the Bayesian posterior probabilities of the same event under the objective
priors of Haldane, Perks, Jeffreys and Bayes-Laplace (the latter two being defined
on the relevant specific2×2 table).

Proof. The proof follows from (i) the equivalence betweenτab > 0 andΦ > 0
for the pooled{a,a′}×{b,b′} table, (ii) the two Lemmas 2 and 3, and (iii) from
the fact that the two Bayesian priors equivalent topexcandpinc are such thatν = 2
and thus belong to the IDM(ν = 2). ✷

Note 2 In analyzing a2× 2 table, Walley et al. [13, Sec. 5.4] advocate the use
of two independent IDM’s with same prior strengthν1, one for each line of the
table. They note that the valueν1 = 1 leads toP(H0|xxx) = pinc, a result which is
only half of what Lemma 2 says. Here, we propose a more cautious model, a single
IDM with ν = 2ν1 = 2 for the whole table, which encompasses Walley’s model.
As Theorem 1 implies, our model has the advantage of producing inferences that
encompass inferences from alternative objective modelsfor all cells of the table
simultaneously. The IDM(ν = 2) is the smallest IDM having this property.

5.5 Absent or rare cells

For some cells, posterior uncertainty is still quite large.As an example, consider
the unobserved cell(a2,b4) for which the posterior probability interval forτab > 0
is almost vacuous,[0.00;0.986] (see Table 4). Such a wide interval results from
the rareness of botha2 andb4 ( fa2 = fb4 = 4/115). Even if a2 andb4 were
locally independent, the expected number of observations in cell (a2,b4) would
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be extremely small,̂xa2b4 = nf̂a2b4 = 16/115, far less than one observation. Thus,
despite the extreme descriptive resultta2b4 = −1, both the hypothesesa2⊥⊥ b4
(τa2b4 = 0) anda2b4 =⇒ /0 (τa2b4 = −1) are compatible with the data. A similar
result was found by [4]. This uncertainty is also reflected inthe large differences
between the alternative objective models:P(τa2b4 > 0) ranges from 0 (Haldane),
0.350 (Perks), 0.571 (Jeffreys), to 0.802 (Bayes-Laplace), and the corresponding
probability from Fisher’s exact tests are 0 (exclusive) and0.866 (inclusive).

6 Inference about a mean association rateτR

Without loss of generality (see Property 1), we consider a non-empty regionR
which does not contain any full row or a full column of theA×B table. It is easy
to find a Dirichlet prior within the IDM for which the prior lower expectation of
τR is−1 (∀(a,b) ∈ R,ϕab→ 0 with strengths of cells outsideRcarefully chosen).
This limiting value forϕϕϕ also provides the prior upper cdf,P(τR > t) = 1 for
0 < t < 1. We believe that the prior upper expectation and lower cdf of τR lead to
vacuous inferences aboutτR, but we have no formal proof of that.

6.1 Posterior inferences about a singleτR

Let τR = g(θθθ), with tR = g( fff ) as given in Definition 4. We shall assume that al-
locatingν to a single cell suffices to attain the lower or upper expectation or cdf
of τR. This assumption actually appears to be true in most cases wetested, but is
certainly not true in all cases. However, we shall consider that it provides a rea-
sonable approximation for inferences aboutτR from the IDM. As a second level
of approximation, we use the same argument as in Section 5.2 using Conjectures
1 and 2. DefineE⋆

νϕϕϕ(τR|xxx) = g(Eνθθθ(θθθ|xxx)) andEνθθθ(θθθ|xxx) is given by (1).

Theorem 2 Denote by rab the indicator variable of(a,b) ∈ R and R′ the comple-
ment of R in A×B. Compute mab = ∑A

i=1 r ibxi +∑ j=1...B ra jx j for each cell(a,b).
ThenE⋆

νϕϕϕ(τR|xxx) is minimized by lettingϕab → 1 for cell (a,b) ∈ R′ maximizing
mab. (We have no simple formula for maximization ofE⋆

νϕϕϕ(τR|xxx).) Proof involves
tedious but rather simple algebra.

6.2 Stages data: Inference onδM
Consider the Stages data (Table 1) and the modelM defined therein. We found
dM = 0.851 and we now want to make inferences about parameterδM using
the IDM(ν = 2). For various statements aboutδM , we find the following proba-
bility intervals: [1.00;1.00] for δM > 0, [0.95;1.00] for δM > 0.50, [0.84;0.98]
for δM > 0.60 and[0.62;0.93] for δM > 0.70. We thus may assess that the data
quasi-agree withM at thresholddquasi= 0.50, with probability at least 0.95.
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6.3 Inferences about a complex directional association model

The IDM can be applied to study any kind of complex model expressed as a
conjunction of constraints about association rates of specific cells or regions of
anA×B table. Consider the Dyad data in Table 2(left) and the two modelsM1 =
τL < τU < 0 < τD andM2 = τL < −0.70 < τU < 0 < 0.50 < τD. Both try to
express the expected pattern shown in Table 2(right), in a more or less strong way.
Computing the posterior lower and upper probabilities ofM1 or M2 can be done
numerically by minimization/maximization over the set of Dirichlet posteriors.
Using the IDM withν = 2, we findP(M1) = 0.98,P(M1) = 1.00, andP(M2) =
0.84,P(M2) = 0.96. ModelM1 only is supported by the data with a sufficiently
high lower probability.

Of course, modelsM1 andM2 are only two candidates amongst the possible
inductive summaries of the data. The task of model selection(which is not ad-
dressed here) would require taking into account, not only the (lower) probability
of each model, but also the degree of specificity or generality of each model.

7 Concluding remarks

This paper proposes a method for analyzing local or asymmetric dependencies
in a contingency table, by focusing on previously suggestedindices — (mean)
association rates [5, 10] andDel index [7] —, which, we believe, are simple and
natural, and yet provide means to define a wide variety of association models.

We showed how the imprecise Dirichlet model (IDM) can be applied to assess
whether the data support such association models or not. Several results provide
approximate solutions to the minimizing/maximizing problems required by the
IDM. Further research would be needed to develop exact solutions or to measure
the accuracy of our approximate procedures.

The exact comparison between the IDM and alternative frequentist or objec-
tive Bayesian models, carried out in Section 5.4 (see especially Theorem 1), pro-
vides a new argument for choosingν = 2 in the IDM, for a problem involving a
possibly large number of categories (see also [4]). The large discrepancies which
can be obtained in the inferences from these various alternative models are trans-
lated as a high imprecision in the IDM (see an example in Section 5.5). Section
5.4 shows that this phenomenon occurs whenever the frequentist probability of
the observed data(under some particular null hypothesis) is not negligible.

References

[1] A LTHAM , P. M. E. Exact Bayesian analysis of a 2× 2 contingency table
and Fisher’s exact significance test.J. Roy. Statist. Soc. Ser. B 31, 2 (1968),
261–269.



Bernard: Analysis of Contingency Tables Using the IDM 61

[2] BERNARD, J.-M. Bayesian interpretation of frequentist proceduresfor a
Bernoulli process.The American Statistician 50, 1 (1996), 7–13.

[3] BERNARD, J.-M. Non-parametric inference about an unknown mean us-
ing the imprecise Dirichlet model. InProceedings of the 2nd International
Symposium on Imprecise Probabilities and their Applications (ISIPTA’01)
(Maastricht, 2001), G. de Cooman, T. Fine, and T. Seidenfeld, Eds., Shaker
Publishing BV, pp. 40–50.

[4] BERNARD, J.-M. Implicative analysis for multivariate binary data using an
imprecise Dirichlet model.J. Statist. Plann. Inference 105(2002), 83–103.

[5] DANIS, A., BERNARD, J.-M., AND LEPROUX, C. Shared picture-book
reading: A sequential analysis of adult-child verbal interactions. British
Journal of Developmental Psychology 18(2000), 369–388.

[6] GOODMAN, L. A., AND KRUSKAL, W. H. Measures of association for
cross classifications. II: Further discussion and references. J. Amer. Statist.
Assoc. 54(1959), 123–163.

[7] H ILDEBRAND , D. K., LAING , J. D., AND ROSENTHAL, H. Prediction
Analysis of Cross Classifications. John Wiley & sons, 1977.

[8] JAMISON, W. Developmental inter-relationships among concrete opera-
tional tasks: An investigation of Piaget’s stage concept.Journal of Experi-
mental Child Psychology 24(1977), 235–253.

[9] K ENDALL , M. G., AND STUART, A. The Advanced Theory of Statistics,
Vol. 2: Inference and Relationship, 3rd ed. Griffin, 1973.

[10] ROUANET, H., BERT, M.-P., AND LE ROUX, B. Statistique en Sciences
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Abstract

Based on the coherence principle of de Finetti and a related notion of gener-
alized coherence (g-coherence), we adopt a probabilistic approach to uncer-
tainty based on conditional probability bounds. Our notionof g-coherence is
equivalent to the ”avoiding uniform loss” property for lower and upper prob-
abilities (a la Walley). Moreover, given a g-coherent imprecise assessment
by our algorithms we can correct it obtaining the associatedcoherent assess-
ment (in the sense of Walley and Williams). As is well known, the problems
of checking g-coherence and propagating tight g-coherent intervals areNP−
andFPNP−complete, respectively, and thusNP−hard. Two notions which
may be helpful to reduce computational effort are those of non relevant gain
and basic set. Exploiting them, our algorithms can use linear systems with
reduced sets of variables and/or linear constraints. In this paper we give some
insights on the notions of non relevant gain and basic set. Weconsider several
families with three conditional events, obtaining some results characterizing
g-coherence in such cases. We also give some more general results.

Keywords

uncertain knowledge, coherence, g-coherence, imprecise probabilities, conditional
probability bounds, lower and upper probabilities, non relevant gains, basic sets

1 Introduction

Among the many symbolic or numerical approaches to the management of uncer-
tain knowledge, the probabilistic treatment of uncertainty by means of precise or
imprecise assessments is a well known formalism often applied in real situations.
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A general framework which allows a consistent management ofprobabilistic as-
sessments is obtained by resorting to de Finetti’s coherence principle ([2], [7],
[8], [11]), or suitable generalizations of it given for upper and lower probabilities
([20], [19]). In our approach we adopt the notion of g-coherence (i.e. general-
ized coherence) introduced in [1] (see also [10]), which is weaker than the notion
of coherence given in [19]. Actually, the notion of g-coherence is equivalent to
the property of ”avoiding uniform loss” given in [19]. Within our framework, a
given g-coherent assessment can be corrected, obtaining the associated coherent
one, and possibly extended to further conditional events. As is well known, if we
discard the case of conditioning events with zero probability the probabilistic rea-
soning can be reduced to a linear optimization problem (we also point out that
g-coherent probabilistic reasoning generally does not coincide with probabilis-
tic reasoning as in, e.g., [12], [14], when the conditioningevent has a non-zero
probability). When conditioning events may have zero lower/upper probability,
the methods presented in the literature (our one too) usually exploit sequences of
linear programs. Among them, a ”dual” approach for the extension of lower and
upper previsions, explicitly based on random gains, has been developed in [20].
With the aim of improving the method given in [20], an interesting technique for
computing lower conditional expectations through sequences of pivoting oper-
ations has been proposed in [9]. Roughly speaking, probabilistic reasoning can
be developed by local approaches, based on the iteration of suitable inference
rules, and global ones (the issue of local versus global approaches has been ex-
amined especially in [17], [18]). We recall that probabilistic reasoning based on a
global approach tends to become intractable. Hence, it is worthwhile to examine
any method which try to eliminate or reduce computational difficulties, possibly
finding efficient special-case algorithms. This problem hasbeen faced by many
authors (see, e.g., [5], [7], [8], [9], [12], [14], [20]). Many aspects concerning
the complexity of probabilistic reasoning under coherencehave been studied in
[3]. The relationship between coherence-based and model-theoretic probabilis-
tic reasoning has been widely explored in [4]. In [16] an efficient procedure has
been proposed for families ofconjunctiveconditional events. Such procedure can
be characterized in the framework of coherence introducingsuitable notions of
non relevant gains and basic sets ([2]). Exploiting such notions, our algorithms
for g-coherence checking and propagation of conditional probability bounds can
use linear systems with reduced sets of variables and/or constraints. In this pa-
per we illustrate the notions of non relevant gain and basic set, by examining
several examples of families constituted by three conditional events. We obtain
some theoretical results which characterize g-coherence in such particular cases.
In this way, the characterization of g-coherence in the caseof larger families
of conditional events should be facilitated. We obtain somenecessary and suf-
ficient conditions for the g-coherence of lower probabilitybounds. We also give
some more general results. Notice that the case of families with three conditional
events may have a specific importance, e.g., in the field of default reasoning where
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many inference rules consist of two premises and one consequence. We also recall
that coherence-based probabilistic reasoning can be reduced to standard reasoning
tasks in model-theoretic probabilistic logic, using concepts from default reason-
ing ([4]). The rest of the paper is organized as follows. In Section 2 we recall
some preliminary concepts. In Section 3 we illustrate the notions of non relevant
gain and basic set and we recall some theoretical results. InSection 4 we con-
sider several cases of families constituted by three conditional events and we give
some necessary and sufficient conditions of g-coherence. InSection 5 we give
some more general results. Finally, in Section 6 we give someconclusions and an
outlook on further developments.

2 Some preliminary concepts

For each integern, we setJn = {1, . . . ,n}. Given any eventE, we denote by the
same symbol its indicator and byEc its negation. Given a further eventH, we de-
note byEH (resp.E∨H) the conjunction (resp. disjunction) ofE andH. Let P be
a conditional probability assessment defined on a family of conditional eventsK .
Given a finite subfamilyFn = {E1|H1, . . . ,En|Hn} ⊆ K , let Pn be the vector
(p1, . . . , pn), wherepi = P(Ei |Hi), i ∈ Jn. With the pair(Fn,Pn) we associate the
random quantityGn = ∑i∈Jn siHi(Ei − pi), with s1, . . . ,sn arbitrary real numbers.
Moreover, we denote byGn|Hn the restriction ofGn toHn = H1∨·· ·∨Hn. Then,
based on thebetting scheme, we have

Definition 1 The probability assessmentP on K is said coherent if, for every
integern = 1,2, . . ., for every subfamilyFn ⊆ K and for every real numbers
s1, . . . ,sn, the conditionMax Gn|Hn ≥ 0 is satisfied.

We denote byAn a vector(α1, . . . ,αn) of lower probability bounds onFn. We say
that the pair(Fn,An) is associated with the setJn.

Definition 2 The vector of lower boundsAn is g-coherent iff there exists a coher-
ent probability assessmentPn = (p1, . . . , pn) onFn such thatpi ≥ αi , ∀ i ∈ Jn.

By expanding the expression
V

i∈Jn
(EiHi ∨Ec

i Hi ∨Hc
i ) , we obtain the constituents

associated withFn. We denote byC1, . . . ,Cm, wherem≤ 3n−1, the constituents
contained inHn =

W

j∈Jn
H j . A further constituent (if it is not impossible) isC0 =

H c
n = Hc

1 · · ·Hc
n.

Remark: With the family Fn we associate a setL which describe the logical
relationships among the eventsEi,Hi , i ∈ Jn. Then, the set of constituents is the set
of those conjunctionsχ1 · · ·χn, with χi ∈ {EiHi ,Ec

i Hi ,Hc
i },∀ i ∈ Jn, which satisfy

the set of logical relationsL. Notice that, ifL = /0, thenm= 3n−1 andC0 6= /0,
i.e. the number of constituents is 3n.

For each constituentCr , r ∈ Jm, we introduce a vectorVr = (vr1, . . . ,vrn), where
for eachi ∈ Jn it is respectivelyvri = 1, or vri = 0, or vri = αi , according to
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whetherCr ⊆ EiHi , orCr ⊆ Ec
i Hi , orCr ⊆ Hc

i . With the pair(Fn,An) we associate
the random gainGn = ∑i∈Jn siHi(Ei −αi), wheresi ≥ 0, ∀ i ∈ Jn. Moreover, we
denote by

gh = Gn(Vh) = ∑
i∈Jn

si(vhi −αi) = ∑
i:Ch⊆Hi

si(vhi −αi) (1)

the value ofGn|Hn associated withCh. We denote by(Sn) the following system
in the unknownsλr ’s.

∑
r∈Jm

λrvri ≥ αi , i ∈ Jn; ∑
r∈Jm

λr = 1; λr ≥ 0, ∀ r ∈ Jm. (2)

Remark: The solvability of(Sn) means that there exists a non negative vector
(λr ; r ∈ Jm), with ∑r∈Jm λr = 1, such that∑r∈Jm λrVr ≥ An. In other words, in
the convex hull of the pointsVr ’s there exists a pointV∗ = ∑r∈Jm λrVr such that
V∗ ≥ An (this geometrical approach will be used in the proof of Theorem 4).

As shown in [10], a set of lower boundsA defined onK is g-coherent iff, for
everyn and for everyFn ⊆ K , the system (2) is solvable. Moreover, based on a
suitable alternative theorem, it can be shown ([2]) that thesolvability of system
(2) is equivalent to the following condition

Max Gn|Hn ≥ 0. (3)

Then, we have

Proposition 1 A set of lower boundsA defined on a family of conditional events
K is g-coherent iff∀ n,∀ Fn ⊆K , and∀ si ≥ 0, i ∈ Jn , it is Max Gn|Hn ≥ 0.

We remark that, if the case of zero probability for conditioning events is dis-
carded, then to check g-coherence of the assessmentAn on Fn it is enough to
check solvability of system (2). However, in our coherence-based approach, some
(or possibly all) conditioning events may have zero probability. Then, to check
g-coherence we should study the solvability of a very large number of systems,
like (2). Actually, we can exploit algorithms which only check (the solvability of)
a small number of linear systems (see, e.g., [1], [2], [5]).

3 Non relevant gains and basic sets

In this section we illustrate the notions of non relevant gain and basic set. Ex-
ploiting such notions, the algorithms for g-coherence checking and propagation
of conditional probability bounds can use linear systems with reduced sets of vari-
ables and/or constraints. We recall some theoretical conditions given in [2].

Definition 3 Let G = {g j} j∈Jm be the set of possible values of the random gain
Gn|Hn. Then, a valuegr ∈ G is said”not relevant for the checking of condition
(3)” , or in short”not relevant”, if there exists a setTr ⊆ Jm\ {r} such that:

Max{g j} j∈Tr < 0 =⇒ gr < 0 . (4)
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Remark: Notice that, in the previous definition, it wouldn’t be equivalent to use
the conditionTr = Jm\{r} instead ofTr ⊆ Jm\{r}. In fact, it may happen that (4)
holds withTr ⊂ Jm\ {r}, so thatgr is not relevant, while at the same time it may
beMax{g j} j∈Jm\{r} > 0.

Definition 4 A setGΓ = {gr}r∈Γ , with Γ ⊂ Jm, is saidnot relevantif, ∀r ∈ Γ,
there exists a setTr ⊆ Jm\Γ such that (4) is satisfied.

Definition 5 A setT ⊂ Jm is saidbasicif the following property holds:
Basic Property.For everyr ∈ Jm\T there exists a setTr ⊆ T such that the con-
dition (4) is satisfied.
A basic setT is saidminimal if, for everyT ⊂ T , the setT is not basic.

We observe thatMax Gn|Hn = Max{g j} j∈Jm. Then, we have

Theorem 1 Let T ⊂ Jm be abasicset. Then

Max{g j} j∈Jm ≥ 0 ⇐⇒ Max{g j} j∈T ≥ 0 . (5)

Remark: We point out that, given a subsetT , if there existsr /∈ T such that, for
everyTr ⊆ T , the condition (3) is not satisfied, thenT is not a basic set. Moreover,
we observe that the condition (5) is trivially satisfied forT = Jm. Then, as for
T = Jm the setJm\T is empty, we can enlarge the class of basic sets by including
in it Jm too.

Givenr ∈ Jm and a setTr ⊆ Jm\ {r}, let us consider the following condition

gr ≤ ∑
j∈Tr

a jg j ; a j > 0 , ∀ j ∈ Tr . (6)

By Definition 3 one has that, if the above condition is satisfied, thengr is not
relevant. The condition (6) can be exploited in general to reduce the number of
variables. The basic idea is illustrated by the following theorem ([2], [5]).

Theorem 2 Let T be a strict subset of the setJm such that for everyr /∈ T there
existsTr ⊆ T satisfying the condition (6). Then:

Max{g j} j∈Jm ≥ 0 ⇐⇒ Max{g j} j∈T ≥ 0 . (7)

Based on the previous result and on suitable alternative theorems, in order to
check g-coherence we can replace(Sn) by an equivalent system(STn ), which has
a reduced vector of unknownsΛT = (λr ; r ∈ T ). We denote byST the set of
solutions of(STn ). Moreover, for eachj ∈ Jn, we consider the functionΦT

j (ΛT) =

∑r∈T :Cr⊆H j
λr . We denote byIT0 the (strict) subset ofJn defined as

IT0 = { j ∈ Jn : M j = MaxΛT ∈ST ΦT
j (ΛT ) = 0} (8)

and by(F T
0 ,AT

0 ) the pair associated withIT0 . Then, to check g-coherence ofAn,
we can exploit the following result ([2]).
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Theorem 3 The imprecise assessmentAn onFn is g-coherent if and only if:
1) the system(STn ) is solvable; 2) ifIT0 6= /0, thenAT

0 is g-coherent.

Note that, if|IT0 | = 1, sayIT0 = {h}, thenAT
0 = (αh) and the g-coherence ofAT

0
simply amounts to the condition:αh ≤ 1.

4 Some results on g-coherence of lower probability
bounds for families of three conditional events

In this section we will illustrate the notions of non relevant gain and basic set
by examining several examples which concern particular families of three condi-
tional events.
Remark: We recall that such kind of families may be relevant in the field of
default reasoning, where many inference rules are associated with two premises
and one conclusion. As an example, with the following basic inference rules of
SystemP ([15])

A |∼ B, A |∼C =⇒ A |∼ BC, (And),

A |∼C, A |∼ B =⇒ AB |∼C, (Cautious Monotonicity),

A |∼C, B |∼C =⇒ A∨B |∼C, (Or),

are associated, respectively, the following families of conditional events

{B|A, C|A, BC|A} ; {C|A, B|A, C|AB} ; {C|A, C|B, C|(A∨B)} .

We also note that the theoretical results obtained in the case n = 3 may be useful
in establishing more general results whenn > 3.

In what follows, to avoid the analysis of trivial or particular cases, we assume

/0 ⊂ EiHi ⊂ Hi , 0 < αi < 1, ∀ i .

Then, for eachr ∈ Jm, asαi < 1, if vri = 1 for somei, it follows Cr ⊆ EiHi .
LetA3 = (α1,α2,α3) be a vector of lower bounds onF3 = {E1|H1,E2|H2,E3|H3}.
Given the setV = {V1, . . . ,Vm}, we define

W = {Vr ∈V : vri 6= 0,∀ i ∈ Jn} (9)

and, for eachVr ∈W ,
Nr = {i ∈ Jn : Cr ⊆ Hc

i } . (10)

Of course,Nr ⊂ Jn. Then, we define

Vh = {Vr ∈W : |Nr | = h}, h = 0,1, . . . ,n−1 . (11)
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With eachVr ∈ V , r ∈ Jm, we associate the setNr defined in (10) and the set

Mr = {i ∈ Jn : vri = 0} . (12)

Then, introducing the setI = {(h,k) : h = 0, . . . ,n−1; k = 1, . . . ,n}, we define
the sets

Uh,k = {Vr ∈ V : |Nr | = h, |Mr | = k}, (h,k) ∈ I . (13)

We observe that, if the setsUh,0 were defined, then recalling (11) we would have
Vh =Uh,0. Then, recalling (9), we have

V =W ∪ (
[

(h,k)∈I
Uh,k) = (

n−1
[

h=0

Vh)∪ (
[

h,k

Uh,k) . (14)

As n= 3, the set of vectorsV = {V1, . . . ,Vm}, wherem≤ 26, is a subset of the set

{(1,1,1),(1,1,α3),(1,α2,1),(α1,1,1), . . . ,(α1,0,0),(0,α2,0),(0,0,α3),(0,0,0)} .

By (14), we have

V = V0∪V1∪V2∪U0,1∪U1,1∪U0,2∪U2,1∪U1,2∪U0,3 , (15)

where

V0 ⊆ {(1,1,1)} , V1 ⊆ {(1,1,α3),(1,α2,1),(α1,1,1)} ,

V2 ⊆ {(1,α2,α3),(α1,1,α3),(α1,α2,1)} , U0,1 ⊆ {(1,1,0),(1,0,1),(0,1,1)} ,

U1,1 ⊆ {(1,α2,0),(1,0,α3),(α1,1,0),(0,1,α3),(α1,0,1),(0,α2,1),} ,

U0,2 ⊆ {(1,0,0),(0,1,0),(0,0,1)} , U2,1 ⊆ {(α1,α2,0),(α1,0,α3),(0,α2,α3)} ,

U1,2 ⊆ {(α1,0,0),(0,α2,0),(0,0,α3)} , U0,3 ⊆ {(0,0,0)} .

Remark: Notice that each given set of logical relationshipsL among the events
Ei ,Hi , i = 1,2,3, determines a particular representation (15) for the set of vectors
V . Then, in what follows, instead of assigning the setL, we directly assume some
hypotheses on the subsetsVh’s andUh,k’s. We list below some sufficient condi-
tions, proved in [6], for g-coherence of the vector of lower boundsA3 onF3.
1. |V0| = 1; 2. V0 = /0, |V1| ≥ 1; 3. V0 = V1 = /0, |V2| ≥ 2;
4. V0 = V1 = /0, V2 = {(1,α2,α3)} , E2H2E3H3∨E2H2Hc

3 ∨Hc
2E3H3 6= /0.

Some further conditions obtained in [6] are given below.
5. If V0 = V1 = /0, V2 = {(1,α2,α3)} , E2H2E3H3 = E2H2Hc

3 = Hc
2E3H3 = /0,

then A3 is g-coherent iffα2 +α3 ≤ 1.
6. V0 = V1 = V2 = /0, α1 +α2+α3 > 2 =⇒ A3 not g-coherent.
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7. If V0 = V1 = V2 = /0, |U0,1| = 3, αi < 1, ∀ i, then: a) there exists a basic set
T , with |T | = 3; b)A3 is g-coherent iffα1 +α2 +α3 ≤ 2.
8. If V0 = V1 = V2 =U0,1 = U1,1 = /0, U0,2 = {(1,0,0),(0,1,0),(0,0,1))} ,
αi < 1, ∀ i, then:
a) if α1 +α2 ≤ 1, α1 +α3 ≤ 1, α2 +α3 ≤ 1, thenT = {1,2,3} is a basic set;
b)A3 is g-coherent iffα1 +α2 +α3 ≤ 1.

Now we give further results concerning the casen = 3. Besides providing
a better understanding of the notions of basic set and non relevant gain, these
results permit in particular the deepening of the condition(6). In next theorem the
hypotheses concerning the set of logical relationsL specify that the conjunctions

E1H1E2H2E3H3 , E1H1E2H2Hc
3 , E1H1Hc

2E3H3 , Hc
1E2H2E3H3 ,

E1H1Hc
2Hc

3 , Hc
1E2H2Hc

3 , Hc
1Hc

2E3H3 , Ec
1H1E2H2E3H3

are impossible, while the conjunctions

E1H1E2H2Ec
3H3 , E1H1Ec

2H2E3H3 , Ec
1H1E2H2Hc

3 , Ec
1H1Hc

2E3H3

are possible. Then, concerning the numbermof unknowns in the system(S3), one
has: 4≤ m≤ 18. Actually, we will use a system(ST3 ) with only 3 or 4 unknowns.

Theorem 4 If V0 =V1 =V2 = /0, U0,1 = {V1,V2}= {(1,1,0),(1,0,1)},{V3,V4}=
{(0,1,α3),(0,α2,1)} ⊆U1,1 , 0 < αi < 1, ∀ i, then one has:
a) for everyr > 4, the gaingr is not relevant;
b) if α1 +α2 ≤ 1, orα2 +α3 ≤ 1, orα1 +α3 ≤ 1, then there exists a basic setT ,
with |T | ≤ 3, andA3 is g-coherent;
c) if α1 +α2 > 1, α2 +α3 > 1, α1 +α3 > 1, thenA3 is g-coherent iff

α1α3 +α2 ≤ 1, or α1α2 +α3 ≤ 1.

Proof. a) by the hypotheses, it follows that for eachVr ∈ V , with r > 4,
there existsh ∈ {1,2,3,4} such thatVr ≤ Vh; hencegr is not relevant. Then,
T = {1,2,3,4} is a basic set.
In order to study the g-coherence ofA3, we first determine the gains associated
with the vectorsV1,V2,V3,V4. Recalling (1), these gains are respectively

g1 = s1(1−α1)+s2(1−α2)−s3α3 , g2 = s1(1−α1)−s2α2 +s3(1−α3) ,
g3 = −s1α1 +s2(1−α2) , g4 = −s1α1 +s3(1−α3) .

We also need the equations of the planesπ1, π2, π3, π4, containing respectively
the trianglesV1V2V3, V1V2V4, V1V3V4, V2V3V4, which are given below

π1 : α3x+y+z= 1+α3 ; π3 : α3(1−α2)x+(1−α3)y+(1−α2)z= 1−α2α3 ;
π2 : α2x+y+z= 1+α2 ; π4 : α2(1−α3)x+(1−α3)y+(1−α2)z= 1−α2α3 .
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The intersection points of the segment(x,α2,α3), 0≤ x≤ 1, with the planesπ1

andπ2, are respectivelyV∗
x = (1−α2

α3
,α2,α3) andV∗∗

x = (1−α3
α2

,α2,α3). Moreover,

V∗
x ≥ A3 ⇐⇒ α1α3 +α2 ≤ 1 ; V∗∗

x ≥ A3 ⇐⇒ α1α2 +α3 ≤ 1 .

The intersection point of the segment(α1,y,α3), 0≤ y≤ 1, with the planeπ3 is

V∗
y = (α1,

1−α3−α1α3(1−α2)
1−α3

, α3) ≥ A3 , ∀ α2 ∈ [0,1] .

The intersection point of the segment(α1,α2,z), 0≤ z≤ 1, with the planeπ4 is

V∗
z = (α1,α2,

1−α2−α1α2(1−α3)
1−α2

) ≥ A3 , ∀ α3 ∈ [0,1] .

b.1) assume thatα1 +α2 ≤ 1 and consider the set

S= {(a,b) : a≥ 1−α2

1−α1−α2
, 1+

α2

1−α2
a ≤ b ≤ 1−α1

α1
a− 1−α1

α1
} .

We have:a> 0, b > 0, ag2+bg3 ≥ g1 , ∀(a,b) ∈ S. Then,g1 is not relevant
andT = {2,3,4} is a basic set. Moreover,V∗

z = λ2V2 +λ3V3 +λ4V4 , with

λ2 = α1 , λ3 =
α1α2

1−α2
, λ4 =

1−α1−α2

1−α2
.

We recall that 0< αi < 1, i = 1,2,3, so thatλ2 > 0, λ3 > 0, λ4 ≥ 0. Then, the
vector(λ2,λ3,λ4) is a solution of the system(ST3 ), with |IT0 | ≤ 1, and hence, by
Theorem 3,A3 is g-coherent.
b.2) assume thatα2 +α3 ≤ 1 and consider the sets

S1 = {(a,b) : 0< a≤ 1−α2−α3 +α2α3

1−α2−α3
,

α3

1−α3
a ≤ b ≤ 1−α2

α2
a− 1−α2

α2
} ;

S2 = {(γ,δ) : 0 < γ≤ α2α3(1−α3)

1−α2−α3
, 1+

α3

1−α3
γ ≤ δ ≤ 1−α2

α2
γ} .

For each(a,b) ∈ S1 , (γ,δ) ∈ S2 , one has

a > 0, b > 0, γ> 0, δ > 0, ag1 +bg2 ≥ g3 , γg1 +δg2 ≥ g4 .

Then,g3 andg4 are not relevant andT = {1,2} is a basic set. Moreover, defining
V∗ = (1,α2,1−α2) , λ1 = α2 , λ2 = 1−α2, one has

V∗ ≥ (1,α2,α3) ≥ A3 ; V∗ = λ1V1 +λ2V2 , λ1 > 0 , λ2 > 0, λ1 +λ2 = 1 .

Then, the vector(λ1,λ2) is a solution of the system(ST3 ), with IT0 = /0, and hence,
by Theorem 3,A3 is g-coherent.
b.3) assume thatα1 +α3 ≤ 1 and consider the set

S= {(a,b) : a≥ 1−α3

1−α1−α3
, 1+

α3

1−α3
a ≤ b ≤ 1−α1

α1
a− 1−α1

α1
} .
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We have:a > 0, b > 0, ag1+bg4 ≥ g2 , ∀(a,b) ∈ S. Then,g2 is not relevant
andT = {1,3,4} is a basic set. Moreover,V∗

y = λ1V1 +λ3V3 +λ4V4 , with

λ1 = α1 > 0, λ3 =
1− (α1+α3)

1−α3
≥ 0, λ4 =

α1α3

1−α3
> 0.

Then, the vector(λ1,λ3,λ4) is a solution of the system(ST3 ), with |IT0 | ≤ 1, and
hence, by Theorem 3,A3 is g-coherent. Therefore, under the condition

α1 +α2 ≤ 1 , or α2 +α3 ≤ 1 , or α1 +α3 ≤ 1 ,

A3 is g-coherent.
c) assume thatα1 +α2 > 1, α2 +α3 > 1, α1 +α3 > 1.
c.1) if α1α3 +α2 ≤ 1, thenV∗

x ≥ A3. Moreover,V∗
x = λ1V1 +λ2V2 +λ3V3, with

λ1 =
(1−α2)(1−α3)

α3
> 0, λ2 = 1−α2 > 0, λ3 =

α2 +α3−1
α3

> 0.

Then, considering the basic setT = {1,2,3,4}, the vector(λ1,λ2,λ3,0) is a solu-
tion of the system(ST3 ), with IT0 = /0, and hence, by Theorem 3,A3 is g-coherent.
c.2) if α1α2 +α3 ≤ 1, thenV∗∗

x ≥ A3. Moreover,V∗∗
x = λ1V1+λ2V2 +λ4V4, with

λ1 = 1−α3 > 0, λ2 =
(1−α2)(1−α3)

α2
> 0, λ4 =

α2 +α3−1
α2

> 0.

Then, considering the basic setT = {1,2,3,4}, the vector(λ1,λ2,0,λ4) is a solu-
tion of the system(ST3 ), with IT0 = /0, and hence, by Theorem 3,A3 is g-coherent.
c.3) assume thatα1α2 +α3 > 1, α1α3 +α2 > 1, and let us make the (absurd) hy-
pothesis thatA3 were g-coherent. Then, considering the basic setT = {1,2,3,4},
the system(ST3 ) should be solvable and hence, for suitable non negative values
λ1, . . . ,λ4, with λ1 + · · ·+λ4 = 1, defining

V∗ = λ1V1 +λ2V2+λ3V3 +λ4V4 = (λ1 +λ2 , λ1 +λ3+α2λ4 , λ2 +α3λ3 +λ4) ,

it should be:V∗ ≥ A3 , that is

λ1 +λ2 ≥ α1 ; λ1 +λ3 ≥ α2−α2λ4 ; λ2 +λ4 ≥ α3(λ1 +λ2+λ4) , (16)

or, equivalently

λ1 +λ2 ≥ α1 ; λ1 +λ3 ≥ α2(λ1 +λ2+λ3) ; λ2 +λ4 ≥ α3−α3λ3 . (17)

Then, assumingα3−α2 ≥ 0 and recalling thatα1α3 +α2 > 1, by summing the
last two inequalities in (16) we would obtain

1 ≥ α3(λ1 +λ2)+α2 +(α3−α2)λ4 ≥ α1α3 +α2 +(α3−α2)λ4 > 1,
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which is absurd. On the other hand, assumingα3 − α2 < 0 and recalling that
α1α2 +α3 > 1, by summing the last two inequalities in (17) we would obtain

1 ≥ α2(λ1 +λ2)+α3 +(α2−α3)λ3 ≥ α1α2 +α3 +(α2−α3)λ3 > 1,

which is absurd too. Hence,(ST3 ) is not solvable andA3 is not g-coherent. ✷

We observe that the hypotheses concerning the set of logicalrelationsL can be
modified in many ways. Then, by the same reasoning as in Theorem 4, we obtain
many similar results, which we give without proof in the remaining part of this
section (the proofs of these results can be found in [6]).

Theorem 5 If V0 = V1 = V2 = /0, U0,1 = {V1,V2} = {(1,1,0),(1,0,1)},V3 =
(0,1,α3) ∈U1,1,(0,α2,1) /∈U1,1, αi < 1,∀ i, then one has:
a) for everyr > 3, the gaingr is not relevant;
b) if α2 + α3 ≤ 1, then there exists a basic setT , with |T | = 2, andA3 is
g-coherent;
c) if α2 +α3 > 1, thenA3 is g-coherent iffα1α3 +α2 ≤ 1.

Theorem 6 If V0 = V1 = V2 = /0, U0,1 = {V1} = {(1,1,0)},{V2,V3,V4,V5} =
{(α1,0,1),(0,α2,1),(1,0,α3),(0,1,α3)} ⊆U1,1, αi < 1,∀ i, then one has:
a) for everyr > 5, the gaingr is not relevant;
b) if α1 + α2 ≤ 1, then there exists a basic setT , with |T | = 4, andA3 is
g-coherent.
c) if α1 +α2 > 1, thenA3 is g-coherent iff

α3 ≤ Max{α1 +α2−2α1α2

α1 +α2−α1α2
, 1−α1+α1α3−α1α2α3 , 1−α1α3} .

Remark: We observe that, by suitably modifying the hypotheses in Theorems 4,
5, and 6, we obtain similar results on non relevant gains and basic sets, with fur-
ther conditions characterizing the g-coherence of the assessmentA3 onF3. As an
example, by Theorem 4, still assumingV0 = V1 = V2 = /0, under the hypotheses

U0,1 = {V1,V2} = {(1,1,0),(0,1,1)}, {V3,V4} = {(1,0,α3),(α1,0,1)} ⊆U1,1 ,

we obtain a new result, which is similar to such theorem, and so on.

Theorem 7 If V0 = V1 = V2 =U0,1 = /0, U1,1 = {V1,V2,V3,V4,V5,V6} =
{(1,α2,0),(1,0,α3),(α1,1,0),(0,1,α3),(α1,0,1),(0,α2,1))}, αi < 1, ∀ i, then one
has:
a) for everyr > 6, the gaingr is not relevant;
b) if α1 +α2 ≤ 1, orα1 +α3 ≤ 1, orα2 +α3 ≤ 1, then there exists a basic setT ,
with |T | = 4, andA3 is g-coherent.
c) if α1 +α2 > 1, α1 +α3 > 1, α2 +α3 > 1, thenA3 is not g-coherent.
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Theorem 8 If V0 = V1 = V2 = U0,1 = /0, U1,1 = {V1,V2,V3,V4} =
{(1,α2,0),(α1,1,0),(α1,0,1),(0,α2,1))}, αi < 1∀ i, then one has:
a) for everyr > 4, the gaingr is not relevant;
b) if α1 + α3 ≤ 1, or α2 + α3 ≤ 1, then there exists a basic setT , with |T | = 2,
andA3 is g-coherent.
c) if α1 +α3 > 1, α2 +α3 > 1, thenA3 is not g-coherent.

Theorem 9 If V0 = V1 = V2 = U0,1 = /0, U1,1 = {V1,V2,V3,V4} =
{(1,0,α3),(0,1,α3),(α1,1,0),(α1,0,1))}, αi < 1∀ i, then one has:
a) for everyr > 4, the gaingr is not relevant;
b) if α1 + α2 ≤ 1, or α2 + α3 ≤ 1, then there exists a basic setT , with |T | = 2,
andA3 is g-coherent.
c) if α1 +α2 > 1, α2 +α3 > 1, thenA3 is not g-coherent.

Theorem 10 If V0 = V1 = V2 = U0,1 = /0, U1,1 = {V1,V2,V3,V4} =
{(1,0,α3),(0,1,α3),(1,α2,0),(0,α2,1))}, αi < 1∀ i, then one has:
a) for everyr > 4, the gaingr is not relevant;
b) if α1 + α2 ≤ 1, or α1 + α3 ≤ 1, then there exists a basic setT , with |T | = 2,
andA3 is g-coherent.
c) if α1 +α2 > 1, α1 +α3 > 1, thenA3 is not g-coherent.

5 Some general results

In this section we give some theorems on g-coherence of a vector of lower prob-
ability boundsAn defined on a family ofn conditional eventsFn. Notice that
detailed proofs of all theorems presented in this section are given in [6].
In the next theorem we generalize the condition 6 in Remark 4.In such theorem
the set of logical relationsL specifies that the conjunctions

E1H1 · · · EnHn , E1H1 · · · En−1Hn−1Hc
n , . . . , Hc

1E2H2 · · · EnHn ,
E1H1 · · · En−2Hn−2Hc

n−1Hc
n , . . . , Hc

1Hc
2E3H3 · · · EnHn , . . . . . . ,

E1H1Hc
2 · · · Hc

n , . . . , Hc
1 · · ·Hc

n−1EnHn

are impossible. Then, under such hypotheses, the conditionα1 + · · ·+αn ≤ n−1
is necessary for the g-coherence ofAn.

Theorem 11 If V0 = V1 = · · · =Vn−1 = /0 and α1 + · · ·+αn > n−1, thenAn is
not g-coherent.

In the next theorem we generalize the condition 7 given in Remark 4.

Theorem 12 If V0 = · · · = Vn−1 = /0, |U0,1| = n, 0 < αi < 1∀ i, then one has:
a) there exists a basic setT , with |T | = n;
b)An is g-coherent iffα1 + · · ·+αn ≤ n−1.
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We denote byZ the set defined as

Z = {(h,k) : h+k = n−1 , h > 0} ∪ {(h,k) : h+k < n−1} .

Then, we have

Theorem 13 If V0 = · · · = Vn−1 = /0, Uh,k = /0 for each(h,k) ∈ Z, and
α1 + · · ·+αn > 1, thenAn is not g-coherent.

The next result generalizes the condition 8 in Remark 4.

Theorem 14 If V0 = · · ·=Vn−1 = /0,Uh,k = /0, for each pair(h,k)∈Z, |U0,n−1|=
n, 0 < αi < 1∀ i, then one has:
a) if, for every j ∈ Jn, it is ∑i∈Jn\{ j}αi ≤ 1, thenT = Jn is a basic set;
b)An is g-coherent iffα1 + · · ·+αn ≤ 1.

6 Conclusions

Exploiting the coherence principle of de Finetti and the related notion of g-coherence,
we illustrated a probabilistic approach to uncertain reasoning based on lower
probability bounds. We examined the notions of non relevantgain and basic set
which may be helpful, in g-coherence checking and propagation of conditional
probability bounds, to reduce the sets of variables and/or constraints in the linear
systems used in our algorithms. We observe that such notionsand in particular
the condition (6), in the formgr = ∑ j∈Tr g j , have been used in ([3], Theorem 5.6)
to characterize in term of random gains an efficient procedure proposed in [16]
for families of conjunctive conditional events. To providea better understanding
of these notions, we examined several examples of families constituted by three
conditional events. This case may have a specific importance, e.g., in default rea-
soning where many inference rules consist of two premises and one conclusion.
We obtained some necessary and sufficient conditions of g-coherence and we also
generalized some theoretical results. Further work shouldallow to extend the re-
sults of this paper to the case of families ofn conditional events, withn > 3.
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The Maximal Variance of Fuzzy Interval∗

A.G. BRONEVICH
Taganrog State University of Radio-Engineering, Russia
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Abstract

The paper gives the solution of calculating maximal variance of fuzzy inter-
val in the scope of the theory of imprecise probabilities. Asit appears, this
problem is more difficult than analogous one connected with evaluation of
lower and upper expectations of fuzzy interval. This paper gives some con-
tribution to possibility theory in the framework of probability approach.

Keywords

possibility measure, upper and lower probabilities, maximal variance

1 Introduction

There is a well-known interpretation of fuzzy interval in the framework of the
theory of imprecise probabilities [1, 2]. To get this, we associate with any fuzzy
interval a possibility or necessity measure, and then consider that values of the
pointed measures give us lower or upper assessments of probabilities. This inter-
pretation was discussed in detail in [3], and there it is proposed to use upper and
lower expectations for evaluating uncertainty of such intervals. These character-
istics and other crude moments of orderk can be easily calculated by Choquet
integral. However, to calculate upper and lower central moments is more difficult
as it is shown in investigations, presented below.

Throughout the paper we will use the following notations: 1)E [ξ] is an or-

dinary expectation of the random variableξ, i.e. E [ξ] =
+∞
R

−∞
xdP(x), whereP is a

probability measure associated with the random variableξ; 2) σ2[ξ] is an ordinary
variance of the random variableξ, i.e.σ2 [ξ] = E

[
ξ2
]
− (E [ξ])2.

∗I would like to express my sincere thanks to the German Academic Exchange Service (DAAD),
Bremen University and Prof. Dr. Dieter Denneberg for the research opportunity provided.
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Figure 1: Membership function of a fuzzy interval

2 Basic definitions and problem statement

We will consider fuzzy intervals with a form (fig.1). The function µ is assumed
to be continuous, and the functionsµ1 andµ2 are differentiable on the intervals
(a,b) and(c,d) correspondingly.

µ(x) =





0, x≤ a or x≥ d,
µ1(x), a < x < b,

1, b≤ x≤ c,
µ2(x), c < x < d.

(1)

In addition,µ1 is increasing on(a,b), µ2 is decreasing on(c,d).
In possibility theory, for each fuzzy interval, a possibility measureΠ(A) =

sup
x∈A

µ(x) and a necessity measureN(A) = inf
x/∈A

[1− µ(x)] are introduced, and can

be considered as lower or upper estimation of probability ofthe eventA ∈ ℑ
(whereℑ is Borel algebra of real axis). Taking this into account, possibility mea-
sureΠ and necessity measureN define a family of probability measuresΞ =
{P|N(A) ≤ P(A) ≤ Π(A)}, and the problem arises, how to calculate digital char-
acteristics of such family, in particular, the maximal varianceσ2(µ) = sup

Pi∈Ξ
σ2[ξi ].

In the last expression, it is assumed that the probability measurePi determines a
random valueξi . For the fuzzy interval, the valueσ2(µ) can serve as some char-
acteristic of uncertainty.

3 The research of possibilistic inclusion

Theorem 1 [4, 5]. Let P be a probability measure,Ξ a family of probability
measures, generated by a fuzzy interval with a membership function µ. Then P∈Ξ
iff P{A(p)} ≤ p for all p∈ [0,1], where A(p) = {x∈ R|µ(x) ≤ p}.

Theorem 1 can be reformulated by using standard terms for random values as
follows.
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Theorem 1*. Let we use the same notations as in theorem 1, and the random
valueξ is described by the probability measure P onℑ . Consider also a random
valueη = µ(ξ) ∈ [0,1]. Then P∈ Ξ iff Fη(y) ≤ y, where Fη(y) = P{η ≤ y).

Remark. The functionFη is a distribution function ofη, wheneverη is con-
tinuous.

4 The solution of the optimization problem

Theorem 2.Let ξ be a random value, described by a probability measure P∈ Ξ,
in addition,σ2[ξ] = σ2(µ). Then we have P{(b,c)} = 0 for fuzzy interval (1).

Proof. Suppose that the coordinate system has been chosen in a way that
E[ξ] = 0. Assume also thatb < 0, and the condition of the theorem is not ful-
filled, i.e.P(b,0] > 0. The theorem is valid if one can find such a measureP∗ that
P∗ ∈ Ξ andσ2[ξ∗] > σ2[ξ]. We will search the probability measureP∗ in a form:

P∗(A) =





P(A)ε,
P{b}+P(b,0](1− ε),

P(A),

A⊆ (b,0],
A = {b},

A∩ [b,0] = /0.

It is obvious thatP∗ extends onℑ uniquely andP∗ ∈ Ξ. Calculate derivative of

σ2[ξ∗] =
+∞
Z

−∞

x2dP∗(x)−




+∞
Z

−∞

xdP∗(x)




2

w.r.t. ε at the pointε = 1. Since
+∞
R

−∞
xdP∗(x) = 0 at the pointε = 1,

d
dε
(
σ2[ξ∗]

)
ε=1 =

d
dε




+∞
Z

−∞

x2dP∗(x)




ε=1

.

Describe the last expression in detail.

+∞
Z

−∞

x2dP∗(x) =

Z

R\[b,0]

x2P(x)+b2(P{b}+P(b,0](1− ε))+ ε
Z

(b,0]

x2dP(x).

Therefore,
d
dε
(
σ2[ξ∗]

)
ε=1 = −b2P(b,0]+

Z

(b,0]

x2dP(x) < 0.

It means that there existsε < 1 thatσ2[ξ∗] > σ2[ξ]. For the complete proof of the
theorem, we must consider also a case, wherec > 0 andP[0,c) > 0.
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Corollary. Let P∈ Ξ, σ2[ξ] = σ2(µ) as in theorem 2, in addition, E[ξ] = 0.
Then

1) P[0,c) = 0 if c > 0;
2)P(b,0) = 0 if b < 0.
Theorem 3.Let P∈ Ξ, σ2[ξ] = σ2(µ) as in theorem 2. Then the random value

η has a distribution function Fη(y) = y.
Proof. We will assume that the coordinate system has been chosen in away

that E[ξ] = 0. Suppose the contrary assumption, that forξ from the theorem,
Fη(y) 6= y. The theorem will be proved, if under this condition, there exists a
random valueξ∗ associated with a probability measureP∗ ∈ Ξ for whichσ2[ξ∗] >
σ2[ξ]. The random valueξ∗ will be searched for a certainα ∈ [0,1], using the
expression:

ξ∗ =

{
µ−1

1 [αFη (µ(ξ))+ (1−α)µ(ξ)] ,

µ−1
2 [αFη (µ(ξ))+ (1−α)µ(ξ)] ,

ξ ∈ [a,b],
ξ ∈ [c,d].

Hence, we need to findα ∈ [0,1] such thatσ2[ξ∗] > σ2[ξ]. But at first, check that
ξ∗ generates the probability measureP∗ ∈ Ξ. To do this, we need to confirm that
the inequality

Fη∗(y) = P{µ(ξ∗) ≤ y} ≤ y

is valid. Actually,

η∗ = µ(ξ∗) = αFη (µ(ξ))+ (1−α)µ(ξ),

Fη∗(y) = P{αFη (µ(ξ))+ (1−α)µ(ξ)≤ y} .

SinceFη(y) ≤ y, then{αFη (µ(ξ))+ (1−α)µ(ξ)≤ y} ⊆ {Fη (µ(ξ)) ≤ y} . There-
fore,

Fη (y) ≤ P{Fη (µ(ξ)) ≤ y} = P
{

µ(ξ) ≤ F−1
η (y)

}
= Fη

(
F−1

η (y)
)

= y.

Thus, it has been shown thatP∗ ∈ Ξ. Further we will prove thatσ2[ξ∗] > σ2[ξ] for
a certainα ∈ [0,1] . To do this, calculate derivative of

d
dα

σ2 [ξ∗] =
d

dα

(
E
[
(ξ∗)2

]
− (E [ξ∗])2

)
α=0

at the pointα = 0. SinceE [ξ∗]α=0 = E [ξ] = 0,

d
dα

σ2 [ξ∗]
∣∣∣∣
α=0

=
d

dα
E
[
(ξ∗)2

]∣∣∣∣
α=0

=

d
dα




b
Z

a

[
µ−1

1 [αFη (µ(x))+ (1−α)µ(x)]
]2

dP(x)




α=0

+
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+
d

dα




d
Z

c

[
µ−1

2 [αFη (µ(x))+ (1−α)µ(x)]
]2

dP(x)




α=0

.

Taking derivative w.r.t.α at the pointα = 0, we get

d
dα

σ2 [ξ∗]
∣∣∣∣
α=0

=

b
Z

a

2x
d
dy

µ−1
1 (y)

∣∣∣∣
y=µ(x)

(Fη (µ(x))−µ(x))dP(x)+

+

d
Z

c

2x
d
dy

µ−1
2 (y)

∣∣∣∣
y=µ(x)

(Fη (µ(x))−µ(x))dP(x).

Analyze signs of factors stating in the integrands.
1)Fη (µ(x))−µ(x)≤ 0, in addition, since according to our suppositionFη(y) 6=

y, y∈ [0,1], there exists a non-empty set of points, in whichFη (µ(x))−µ(x) < 0.
SinceFη is continuous, increasing function,P{Fη (µ(ξ))−µ(ξ) < 0} > 0.

2) The functionµ1 is increasing on[a,b], therefore, d
dyµ−1

1 (y)
∣∣∣
y=µ(x)

> 0 if

x∈ (a,b).
3) According to the corollary of theorem 2,P[0,c) = 0. It enables to exchange

the area of integration to(a,min{b,0}). Notice that(2x) < 0 if x is in this interval.

4) The functionµ2 is decreasing on[c,d], thus, d
dyµ−1

2 (y)
∣∣∣
y=µ(x)

< 0, whenever

x∈ (c,d).
5) According to the corollary of theorem 2,P[d,0) = 0. It enables to exchange

the area of integration to(max{c,0} ,d) in the second integral. Note that the factor
(2x) > 0 in this interval.

Analyzing signs of integrals, one can confirm that value of each of them is
non-negative; in addition, one of them is strictly positive. Hence, d

dα σ2 [ξ∗]
∣∣
α=0 >

0. It means that one can findα > 0 thatσ2[ξ∗] > σ2[ξ], i.e. the supposition has
been made is wrong, and it impliesFη(y) = y.

The proved theorems enable to make some simplifying of our optimization
problem. To do this, introduce into consideration the functions

Fη1(y) = P{µ1(ξ) ≤ y|ξ ∈ [a,b]} ,Fη2(y) = P{µ2(ξ) ≤ y|ξ ∈ [c,d]} .

It is clear thatη1 = µ(ξ1), η2 = µ(ξ2), and also the random valueξ1 is associated
with the probability measureP{∗|ξ ∈ [a,b]}, ξ2 with the probability measure
P{∗|ξ ∈ [c,d]}. Let P∈ Ξ andσ2[ξ] = σ2(µ), thenP{R\[a,b]∪ [c,d]} = 0, and,
using formula of composite probability, one can write:

Fη(y) = Fη1(y)P{ξ ∈ [a,b]}+Fη2(y)P{ξ ∈ [c,d]} .
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By theorem 3,Fη(y) = y. Assume that functionsFη1(y) andFη2(y) are differen-
tiable, then the calculation of probability is transformedto Riemannian integral:

P{ξ ∈ A} = P{ξ ∈ [a,b]}
Z

µ{A∩[a,b]}

dFη1(y)+P{ξ ∈ [c,d]}
Z

µ{A∩[c,d]}

dFη2(y).

(2)

By analogy, using the expressionξ =

{
µ−1

1 (η1),ξ ∈ [a,b],

µ−1
2 (η2),ξ ∈ [c,d],

one can write the

formula for calculating moments:

E
[
ξk
]

= P{ξ ∈ [a,b]}
1

Z

0

[
µ−1

1 (y)
]k

dFη1(y)+P{ξ ∈ [c,d]}
1

Z

0

[
µ−1

2 (y)
]k

dFη2(y).

Introduce the following notations:

h1(y) = P{ξ ∈ [a,b]}F ′
η1

(y), h2(y) = P{ξ ∈ [c,d]}F ′
η2

(y).

Then

E
[
ξk
]

=

1
Z

0

[
µ−1

1 (y)
]k

h1(y)dy+

1
Z

0

[
µ−1

2 (y)
]k

h2(y)dy. (3)

It is clear, that functionsh1, h2 have to be non-negative in[0,1], in addition,
h1(y)+h2(y) = 1 by theorem 3.

Theorem 4.Letξ be associated with a probability measure P, P∈ Ξ, σ2[ξ] =

σ2(µ), E[ξ] = 0, and E
[
ξk
]

is calculated by formula (3). In addition, functions
h1, h2 are piecewise continuous. Then in the range of hi continuity the following
formula is valid:

h1(y) =

{
1,
∣∣µ−1

1 (y)
∣∣>
∣∣µ−1

2 (y)
∣∣ ,

0,
∣∣µ−1

1 (y)
∣∣<
∣∣µ−1

2 (y)
∣∣ , h2(y) = 1−h1(y). (4)

Proof. Assume, on the contrary, that the condition of the theorem takes place,
but formula (4) is not valid at least for one point ofhi(y) continuity. The theorem is
valid if, for this case, we can find a random valueξ∗, associated with a probability
measureP∗ ∈ Ξ such thatσ2[ξ∗] > σ2[ξ]. To do this, introduce into consideration
the following functions:

g1(y) =





1,
0,

h1(y),

∣∣µ−1
1 (y)

∣∣>
∣∣µ−1

2 (y)
∣∣ ,∣∣µ−1

1 (y)
∣∣<
∣∣µ−1

2 (y)
∣∣ ,∣∣µ−1

1 (y)
∣∣=
∣∣µ−1

2 (y)
∣∣ ,

g2(y) = 1−g1(y),

and also

h∗1(y) = g1(y)α +h1(y)(1−α), h∗2(y) = g2(y)α +h2(y)(1−α), y∈ [0,1].
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It is assumed that functionsh∗1, h∗2 generate the probability distribution ofξ∗ by
the formula:

P{ξ∗ ∈ A} =

Z

µ{A∩[a,b]}

h∗1(y)dy+

Z

µ{A∩[c,d]}

h∗2(y)dy.

It is clear that the last formula is an analog of formula (2), and the random value
ξ∗ generates the probability measureP∗ ∈ Ξ for all valuesα ∈ [0,1]. Calculate

derivative of d
dα σ2 [ξ∗] = d

dα

(
E
[
(ξ∗)2

]
− (E [ξ∗])2

)
α=0

at the pointα = 0. Since

E [ξ∗] = 0 for α = 0, we get d
dα σ2 [ξ∗]

∣∣
α=0 = d

dα E
[
(ξ∗)2

]∣∣∣
α=0

. Then

d
dα

E
[
(ξ∗)2

]
=

d
dα

1
Z

0

[
µ−1

1 (y)
]2

[g1(y)α +h1(y)(1−α)]dy+

+
d

dα

1
Z

0

[
µ−1

2 (y)
]2

[g2(y)α +h2(y)(1−α)]dy=

=

1
Z

0

[
µ−1

1 (y)
]2

[g1(y)−h1(y)]dy+

1
Z

0

[
µ−1

2 (y)
]2

[g2(y)−h2(y)]dy.

Sinceg1(y)−h1(y) = h2(y)−g2(y), we get at last

d
dα

σ2 [ξ∗]
∣∣∣∣
α=0

=

1
Z

0

([
µ−1

1 (y)
]2−

[
µ−1

2 (y)
]2)

[g1(y)−h1(y)]dy.

Analyze signs of integrands factors.
1) Letg1(y) > h1(y), theng1(y) = 1, i.e.µ−1

1 (y) > µ−1
2 (y) by formula (4).

2) Letg1(y) < h1(y), theng1(y) = 0. i.e.µ−1
1 (y) < µ−1

2 (y) by formula (4).
From this, one can make a conclusion that the integrand on[0,1] is non-

negative. In addition, by our assumption, there is a point inthe range ofh1(y)
continuity such thatg1(y) 6= h1(y). It implies d

dα σ2 [ξ∗]
∣∣
α=0 > 0. It means, there

is a pointα > 0 such thatσ2[ξ∗] > σ2[ξ], i.e. the assumption made is wrong. It
proves the theorem in the whole.

Theorem 5.Let a set{ξi} of random values with maximal varianceσ2[ξi ] =

σ2(µ), E[ξi ] = 0, be in a fuzzy interval F with the membership function µ. Then
there is a random valueξ∗ = {ξi} such that

h∗1(y) =





1,
∣∣µ−1

1 (y)
∣∣>
∣∣µ−1

2 (y)
∣∣ ,

0,
∣∣µ−1

1 (y)
∣∣<
∣∣µ−1

2 (y)
∣∣ ,

α,
∣∣µ−1

1 (y)
∣∣=
∣∣µ−1

2 (y)
∣∣ ,

h∗2(y) = 1−h∗1(y), α ∈ [0,1].
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Proof. By theorem 4, the set{ξi} includes a random valueξ such that

h1(y) =

{
1,
∣∣µ−1

1 (y)
∣∣>
∣∣µ−1

2 (y)
∣∣ ,

0,
∣∣µ−1

1 (y)
∣∣<
∣∣µ−1

2 (y)
∣∣ , h2(y) = 1−h1(y).

DenoteA =
{

y∈ [0,1]|
∣∣µ−1

1 (y)
∣∣=
∣∣µ−1

2 (y)
∣∣}. For the random valueξ∗, choose

parameterα ∈ [0,1] as follows. Under the condition,E [ξ] = E [ξ∗] = 0, in addi-
tion, hi(y) = h∗i (y) if y∈ Ā. Therefore,

E [ξ∗]−E [ξ] =
Z

A

µ−1
1 (y)h1(y)dy+

Z

A

µ−1
2 (y)h2(y)dy−

−




Z

A

µ−1
1 (y)h∗1(y)dy+

Z

A

µ−1
2 (y)h∗2(y)dy


 .

Fory∈ A, µ−1
1 (y) = −µ−1

2 (y), thus,
Z

A

µ−1
1 (y)h1(y)dy+

Z

A

µ−1
2 (y)h2(y)dy=

=

Z

A

µ−1
1 (y)(h1(y)−h2(y))dy= β

Z

A

µ−1
1 (y)dy,

whereβ ∈ [0,1]. The last equality is obtained with the help of mean-value theo-
rem. By analogy,

Z

A

µ−1
1 (y)h∗1(y)dy+

Z

A

µ−1
2 (y)h∗2(y)dy=

=
Z

A

µ−1
1 (y)(h∗1(y)−h∗2(y))dy= (2α−1)

Z

A

µ−1
1 (y)dy.

Thus,E [ξ] = E [ξ∗] = 0 if β = 2α−1. Let us show thatσ2[ξ∗] = σ2[ξ] in this case.
Actually,

σ2 [ξ]−σ2 [ξ∗] = E
[
ξ2]−E

[
(ξ∗)2

]
=

−




Z

A

[
µ−1

1 (y)
]2

h∗1(y)dy+
Z

A

[
µ−1

2 (y)
]2

h∗2(y)dy


=

=

Z

A

[
µ−1

1 (y)
]2

dy−
Z

A

[
µ−1

2 (y)
]2

dy= 0.

The theorem is proved.
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5 The practical calculation of maximal variance

Theorem 6.Let the function µ−1
1 + µ−1

2 be increasing. Then functions hi for cal-
culating the maximal variance have a form:

h1(y) =

{
1,y < α,
0,y > α,

h2(y) = 1−h1(y), y,α ∈ [0,1]. (5)

Proof. Let ξ be associated with a probability measureP ∈ Ξ and σ2[ξi ] =

σ2(µ). Suppose thatE[ξ] = m, then by theorem 4,

h1(y) =

{
1,
∣∣µ−1

1 (y)−m
∣∣>
∣∣µ−1

2 (y)−m
∣∣ ,

0,
∣∣µ−1

1 (y)−m
∣∣<
∣∣µ−1

2 (y)−m
∣∣ .

Thus, we need to solve the inequality,
∣∣µ−1

1 (y)−m
∣∣>
∣∣µ−1

2 (y)−m
∣∣. One can con-

sider thatµ−1
1 (y)−m< 0 andµ−1

2 (y)−m> 0 (see corollary of theorem 2). There-
fore, the last inequality is transformed to a form:

µ−1
1 (y)+µ−1

2 (y) < 2m.

Let the number 2m belong to the range of values of the functionµ−1
1 +µ−1

2 , g be
an inverse function to this median, then, sinceg is increasing function, we get
thaty < g(2m) = α. The cases, where 2mdoes not belong to the range of median
values, are also described by formula (5).

Corollaries of theorem 6.Let we use notations of theorem 6. Then

1) h1(y) =

{
1,µ−1

1 (y)+µ−1
2 (y) < 0,

0,µ−1
1 (y)+µ−1

2 (y) > 0,
h2(y) = 1−h1(y), if E[ξ] = 0.

2) Let the function µ−1
1 + µ−1

2 be increasing on[0,1], then there is a certain

α ∈ [0,1] such that h1(y) =

{
1,y > α,
0,y < α,

h2(y) = 1−h1(y), y,α ∈ [0,1].

Theorem 7.Let ξ belong to a fuzzy interval F with a membership function µ
andσ2[ξ] = σ2(µ). Then E[ξ] ∈

{
µ−1

1 (y)+µ−1
2 (y) |y∈ [0,1]

}
.

Proof. Assume that the condition of the theorem is not satisfied. Then, using
corollary 1 of theorem 6, we get that eitherh1(y)≡ 1 orh2(y)≡ 1. For the sake of
determinacy, letE[ξ] = 0. 1) Leth1(y) ≡ 1, thenE[ξ] < b. It means thatP[0,c) >
0, but this contradicts to the corollary of theorem 2. 2) Leth2(y)≡1, thenE[ξ] > c.
It means thatP(b,0] > 0, but this contradicts to the corollary of theorem 2. The
contradictions found prove the truth of the theorem.

Corollary. Let a fuzzy interval F be symmetric, i.e. µ−1
1 (y)+µ−1

2 (y) = const,

and, for the sake of determinacy, const= 0. Thenσ2(µ) =
1
R

0

[
µ−1

1 (y)
]2

dy.

Proof. According to theorem 7, forξ with maximal variance, the valueE[ξ]
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belongs to the range ofµ−1
1 +µ−1

2 values, i.e.E[ξ] = const= 0. Therefore,

σ2 [ξ] =

1
Z

0

[
µ−1

1 (y)
]2

h1(y)dy+

1
Z

0

[
µ−1

2 (y)
]2

h2(y)dy.

Since
[
µ−1

1 (y)
]2

=
[
µ−1

2 (y)
]2

andh1(y)+h2(y)= 1, we getσ2 [ξ] =
1
R

0

[
µ−1

1 (y)
]2

dy.

The corollary is proved.
Theorem 8. Let functions hi(y) in the formula (3) for calculating maximal

variance have a form:

h1(y) =

{
1,y < α,
0,y > α,

h2(y) = 1−h1(y), y,α ∈ [0,1]. (6)

Thenα can be found from the equality:

µ−1
1 (α)+µ−1

2 (α)

2
+

α
Z

0

[
µ−1

2 (y)−µ−1
1 (y)

]
dy− 1

2

1
Z

0

[
µ−1

2 (y)−µ−1
1 (y)

]
dy= 0,

(7)

if the coordinate system is chosen such that
1
R

0

[
µ−1

2 (y)+µ−1
1 (y)

]
dy= 0. There is

a unique solution if the function µ−1
1 +µ−1

2 is increasing.
Proof. Let the functionshi have a form (6). Then

σ2 [µ] = E
[
ξ2]−E2 [ξ] =

α
Z

0

[
µ−1

1 (y)
]2

h1(y)dy+

+

1
Z

α

[
µ−1

2 (y)
]2

h2(y)dy−




α
Z

0

µ−1
1 (y)dy+

1
Z

α

µ−1
2 (y)dy




2

.

Taking derivative w.r.t.α and using the necessity condition for extremum, we get
the equality:

[
µ−1

1 (α)
]2−

[
µ−1

2 (α)
]2−2

[
µ−1

1 (α)−µ−1
2 (α)

]



α
Z

0

µ−1
1 (y)dy+

1
Z

α

µ−1
2 (y)dy


= 0.

Sinceα < 1 andµ−1
1 (α)−µ−1

2 (α) < 0, then we can reduce this factor. As result,

µ−1
1 (α)+µ−1

2 (α)−2




α
Z

0

µ−1
1 (y)dy+

1
Z

α

µ−1
2 (y)dy


= 0. (8)
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Transform the expression:

2




α
Z

0

µ−1
1 (y)dy+

1
Z

α

µ−1
2 (y)dy


=

α
Z

0

µ−1
1 (y)dy−

α
Z

0

µ−1
2 (y)dy+

1
Z

0

µ−1
2 (y)dy

+

1
Z

0

µ−1
1 (y)dy−

1
Z

α

µ−1
1 (y)dy++

1
Z

α

µ−1
2 (y)dy=




1
Z

α

[
µ−1

2 (y)−µ−1
1 (y)

]
dy−

−
α

Z

0

[
µ−1

2 (y)−µ−1
1 (y)

]
dy


+

1
Z

0

[
µ−1

2 (y)+µ−1
1 (y)

]
dy.

By the supposition,
1
R

0

[
µ−1

2 (y)+µ−1
1 (y)

]
dy= 0, in addition, the first item in the

last expression can be transformed to a form:

1
Z

0

[
µ−1

2 (y)−µ−1
1 (y)

]
dy−2

α
Z

0

[
µ−1

2 (y)−µ−1
1 (y)

]
dy.

Taking this into account, the equality (8) is written as follows:

µ−1
1 (α)+µ−1

2 (α)+2

α
Z

0

[
µ−1

2 (y)−µ−1
1 (y)

]
dy−−

1
Z

0

[
µ−1

2 (y)−µ−1
1 (y)

]
dy= 0,

(9)
i.e. we really prove the truth of equation (7).

Denote the left part of equation (9) byf (α). Let the functionµ−1
1 + µ−1

2 be

increasing, then, since by supposition
1
R

0

[
µ−1

2 (y)+µ−1
1 (y)

]
dy = 0, it is obvious

thatµ−1
1 (0)+µ−1

2 (0) ≤ 0 andµ−1
1 (1)+µ−1

2 (1) ≥ 0. Taking this into our account,
analyze signs off (α) at the ends of[0,1]:

f (0) = µ−1
1 (0)+µ−1

2 (0)−S,

f (1) = µ−1
1 (1)+µ−1

2 (1)+S,

whereS is an area of the fuzzy interval. Therefore,f (0) < 0 and f (1) > 0, i.e. the
equation has at least one root. Analyze the sign of

f ′(α) =
d

dα
[
µ−1

1 (α)+µ−1
2 (α)

]
+2
[
µ−1

2 (α)−µ−1
1 (α)

]
.

It is obvious, thatf ′(α) > 0 forα ∈ [0,1]. Thus, the equalityf (α) = 0 has only one
root, and this root is a point of maximum (you should remind, that for obtaining
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equality (8), we reduce the expression by the negative factor
(
µ−1

1 (α)−µ−1
2 (α)

)
).

Thus, the theorem is proved in the whole.
Remarks.
1) Theorem 8 is easily generalized for the case, where

h1(y) =

{
1,y > α,
0,y < α,

h2(y) = 1−h1(y), y,α ∈ [0,1],

and the functionµ−1
1 + µ−1

2 is decreasing. In this caseα can be found from the
equation:

µ−1
1 (α)+µ−1

2 (α)

2
−

α
Z

0

[
µ−1

2 (y)−µ−1
1 (y)

]
dy+

1
2

1
Z

0

[
µ−1

2 (y)−µ−1
1 (y)

]
dy= 0.

We also suppose that
1
R

0

[
µ−1

2 (y)+µ−1
1 (y)

]
dy= 0.

2) The equation (7) has a geometrical interpretation (fig. 2).

a
 b
 c
 d


1


x


µ
1

-1
(y)


y


µ
2

-1
(y)


0.5[
µ
1

−1
(y)
+
µ
2


−1
(y)
]


α


Figure 2: Fuzzy interval: inverse functions

a) 0.5(µ−1
1 +µ−1

2 ) is the median of the fuzzy interval;

b)
1
R

0

[
µ−1

2 (y)−µ−1
1 (y)

]
dy is the area of the fuzzy interval;

c)
α
R

0

[
µ−1

2 (y)−µ−1
1 (y)

]
dy is the area of the part of the fuzzy interval that is

below ofα level ;
d) µ−1

2 (α)−µ−1
1 (α) is the length of the level liney = α for the fuzzy interval.

3) Introduce into consideration functions

m(y)=
µ−1

1 (y)+µ−1
2 (y)

2
, w(y)=

µ−1
2 (y)−µ−1

1 (y)

2
, F(α)=

α
Z

0

[
w(y)+

m′(y)
2

]
dy.

Then equation (7) can be transformed to a form:

2F(α)−F(1) = 0. (7∗)
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Example.Consider, how to calculate the maximal variance for the fuzzy inter-
val having a form of trapezium (fig. 3). In this case, the functionsm, w are linear.

A


B
 C


D


y


x


m
(
y
)


0.5


Figure 3: Fuzzy interval with a form of trapezium

We assume thatm is increasing and
1
R

0
m(y)dy= 0. In this case, one can easily

show thatm(y) = k(y−0.5), wherek > 0. The functionw is expressed through
lengths of the trapezium sidesl1 = |BC| and l2 = |AD|. Sincew(0) = 0.5l2 and
w(1) = 0.5l1, thenw(y) = 0.5[l2− (l2− l1)y]. The parameterα can be found from
equation (7*). ThenF(α) = 0.5(k+ l2)α−0.25(l2− l1)α2 , and we need to solve
the equation:

(l2− l1)α2−2(k+ l2)α +
l1 + l2 +2k

2
= 0.

Solving it, we get

α =

(k+ l2)−
√

0.5
[
(k+ l2)

2 +(k+ l1)
2
]

l2− l1
,

in addition,α ∈ [0,1]. The precise value ofσ2(µ) can be calculated by formula
(3). Namely, according to the form ofh1,h2 we can write

σ2(µ) =

α
Z

0

[
µ−1

1 (y)
]2

dy+

1
Z

α

[
µ−1

2 (y)
]2

dy−




α
Z

0

µ−1
1 (y)dy+

1
Z

α

µ−1
2 (y)dy




2

,

where
µ−1

1 (y) = [k+0.5(l2− l1)](y−0.5)−0.25(l2+ l1),

µ−1
2 (y) = [k−0.5(l2− l1)](y−0.5)+0.25(l2+ l1).

Let l1 = 1, l2 = 3, k= 0.5, thenα = 0.404,σ2(µ)= 1.342. Fig. 4 shows this fuzzy
interval, and probability distribution functionF of the extreme random valueξ,
being in the fuzzy interval, for whichσ2(µ) = σ2 [ξ].
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µ x( )

F x( )

x

2 1 0 1 2

0

1

Figure 4: Numerical example
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Abstract

We analyze communication of uncertainty among individualsas a function of
the parties’ preference for modes of communication. We assume that differ-
ent individuals may prefer preciseNumericalprobabilities,Rangesof proba-
bilities orVerbaldescriptions of probabilities, and consider all possible pair-
ings of communicators and receivers under this classification. We propose
a general criterion of optimal conversion among the variousmodalities, de-
scribe several instantiations tailored to fit the special features of the various
modalities, and illustrate the efficacy of the proposed procedures with empir-
ical results from several experiments.

Keywords

subjective probability, judgment, inter-personal translation, verbal probabilities

1 Introduction

Consider a situation where two individuals communicate about stochastic events.
The two are equally interested and motivated to communicateas efficiently and
precisely as possible. This paper is concerned with procedures that can be em-
ployed to address the individuals’ different preferences for modality of commu-
nicating probabilistic opinions. Although many decision analysts and orthodox
Bayesians consider precise numerical probabilities to bethe language of uncer-
tainty, many people (layman and experts, alike) prefer to use probability phrases
(e.g. review by Budescu and Wallsten [6]) or other imprecisevariants of probabil-
ity. In this paper we propose ways to achieve the highest possible level of accuracy
in communication while accommodating these individual preferences.

∗This work has been supported by the US National Science Foundation under Award No. SES
9975360. Any opinions, findings, and conclusions or recommendations expressed in this publication
are those of the authors and do not necessarily reflect the views of the US National Science Foundation.
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1.1 Reasons for preferences of specific communication modes

Spontaneous preferences for one particular mode may be due to several factors:
The perceivednature of the uncertainty to be communicated–Budescu and

Wallsten [6] have speculated, and Olson and Budescu [14] have documented em-
pirically that most individuals prefer to use precise numerical estimates to com-
municate uncertainty about repeated events with aleatory uncertainty, but tend
to use more imprecise methods when communicating the probabilities of unique
events with epistemic uncertainty.

The perceivedstrength of the available information–The responses to the sur-
vey conducted by Wallsten, Budescu, Zwick, and Kemp [18], indicate that people
would gravitate towards more precise modes of communication, if they perceive
the available information to be firmer, reliable and valid.

The person’srole in the communication–In the same survey Wallsten et al.
[18] have found that most people prefer to use imprecise terms when they com-
municate to others, but prefer others to communicate to themin precise terms, if
possible (see also, Brun and Teigen [2] and Erev and Cohen [8]).

In addition to these systematic factors, preferences may bedue to plainin-
dividual differencesthat reflect one’s lifetime experiences in dealing with, and
communicating, uncertainties.

1.2 The problem

The need to communicate probabilities arises in a variety ofsituations. A common
case is when both individuals have prior opinions, have access to some relevant
(possibly overlapping) information, and wish to exchange information to further
refine their respective estimates. In thissymmetriccase the designation of commu-
nicator and receiver is arbitrary, as the two individuals can act in both capacities.
For example, think of two friends who talk about the chances of their favorite team
to win a game. The other prototypical case involvesasymmetriccommunication:
only one individual, the Forecaster (F for short), has access to, or possesses the
necessary expertise to make sense of, the relevant information for the probability
estimation. The second individual, the Decision Maker (orDM ) needs to make a
choice or decision on the basis of the F’s estimate, and without the benefit of his,
or her, own probability assessment. For example, think of aninvestor (the DM)
who gets from his, or her, favorite financial advisor estimates of the likelihood
that certain investment policies will succeed.

The two situations are similar in many respects but the former is more com-
plex because a complete analysis should take into account the processes that gov-
ern the combination of one’s own opinions with estimates obtained form oth-
ers (Yaniv and Kleinberger [19]). To simplify the analysis,we will focus on the
second case. In the same spirit, we will not consider the casewhere one needs
to aggregate multiple forecasts from various sources (Budescu, Rantilla, Yu and
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Karelitz [5], Wallsten, Budescu and Tsao [17]).
To summarize, we analyze an asymmetric dyadic communication situation

where one F and one DM share a common interest in optimizing communication,
but they may have different preferences for modality of communicating proba-
bilistic opinions.

1.3 A typology of communication preferences in a dyad

We distinguish between three modes of communication: precise (point)Numerical
probability estimates (e.g., 0.45), preciseRanges of numerical values (e.g., 0.3 -
0.55), andVerbal phrases (e.g., good chance). Ranges with precise end points ex-
clude implicit vague ranges such as ”in the forties” or ”at least 0.80”, but such
expressions can be analyzed as verbal terms.

The three modes can be ranked from the most precise (N) to the most vague
(V). In fact, the more precise modes can be represented as special cases of the
more vague modes: clearly an N is an R where the lower and upperlimit coincide,
and we will show later how N and R can be viewed as special casesof V under
a particular representation of the probability phrases. This typology implies 9
distinct dyadic patterns of dyadic preferences for modes ofcommunication that
will be denoted by ordered pairs, where the first character inthe pair refers to the
F’s preference.

2 The translation process

The problem we wish to address is deceptively simple – How tobestconvert a
judgment originally expressed in the F’s favorite responsemode (N, R or V), to
an estimate in the DM’s favorite mode (N, R or V).

The criterion of optimalityis the level of (dis)similarity between the F’s judg-
ments translated into the DM’s favorite mode, and the DM’s spontaneous (and
independent) judgments of the same events in his, or her, favorite mode. For ex-
ample, assume that the F prefers numbers and the DM prefers verbal terms (i.e.,
an [N,V] dyad). If both had the same prior probability distribution and could ac-
cess the same information pertaining to the target event,Xi , their spontaneous and
independent judgments would benF(Xi), andvDM(Xi), respectively.

Any mapping of the F’s spontaneous judgment into the DM’s favorite commu-
nication mode is atranslation. For example,vDM[nF(Xi)] is the verbal translation
of the F’s original numerical judgments. Anoptimal translationis one that maxi-
mizes the similarity between the translation of the F’s terminto the DM’s favorite
mode, and the DM’s spontaneous judgment of the target event (assuming he/she
has the same priors and could access the same information).

Note that (dis)similarity is measured in the scale of the target modality (i.e.,
the one that is favored by the DM), so it always relies on commeasurable units or
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entities. On the other hand, these entities vary as a function of the DM’s favorite
modality. Next we describe some sensible choices for the dissimilarity metrics.
Our goal in this paper is to provide a general framework for the translation process
and illustrate the feasibility of the approach. We make no claim of optimality, or
uniqueness on behalf of these choices, and realize that other metrics could be used
in this context.

Dissimilarity between two numbers,nDM andnF , is defined as the distance
between them:

DSn{nDM,nF} = |nDM −nF |. (1)

Dissimilarity between two ranges,rDM andrF , is a function of their respective
lengths, and their overlap. Consider two ranges,r1 (ranging froml1 to u1) and
r2 (from l2 to u2). The width of the range over which the two overlap isOV12 =
Max{0, [Min(u1,u2)−Max(l1, l2)]}, and the joint range of values they span is
JR12 = [Max(u1,u2)−Min(l1, l2)]. We define the dissimilarity between the two
ranges as:

DSr{rDM, rF} = JRDM,F −OVDM,F . (2)

This measure is zero if, and only if, the two ranges coincide.For any pair of
ranges,rDM andrF , the index is maximal when they are disjoint.

Dissimilarity between two verbal terms,vDM andvF , is defined in the con-
text of a particular representation of such phrases. Wallsten, Budescu, Rapoport,
Zwick, and Forsyth [16] suggested that probability phrasesare fuzzy concepts and
proposed using Membership Functions (MFs) over the[0,1] probability interval
to represent their vague meanings (see Zadeh [20]). A phrase’s MF assigns to each
probability a real number that represents the (non-negative) degree of its member-
ship in the concept defined by the phrase. These values are scaled between 0 and
1 (Norwich and Turksen [13]), such that memberships of 0 denote probabilities
that are absolutely not in the concept and memberships of 1 denote elements that
are perfect exemplars of the concept. All other positive values represent interme-
diate degrees of membership. MFs can be estimated directly (non-parametrically)
based on the participants’ direct or indirect judgments (see Budescu and Wall-
sten [6], Wallsten et al. [16]). Alternatively, one can fit MFusing specific families
of functions, such as polynomials (Budescu, Karelitz and Wallsten [4]), or trape-
zoidal functions.

Let µvDM (p) andµvF (p) be the MFs representing the two words being com-
pared. The similarity between the two words should reflect the closeness between
their respective MFs. There are many possible single-valued indices of closeness
between the two functions (see review by Zwick, Carlstein, and Budescu [21]),
and we will only list two of them here (these are not necessarily monotonically re-
lated). The first measure is the total absolute distance between the two functions.



Budescu & Karelitz: Inter-personal Communication of Probabilities 95

Formally, we can write1:

DSvµ{vDM,vF} =
Z 1

p=0
|µvDM(p)−µvF (p)|dp. (3)

The second index is the distance between the peaks of the two functions. Assume
that bothµvDM (p) andµvF (p) are single peaked (see Budescu and Wallsten [6] on
this point). Letπ(v) be the probability (or the center of the range of probabili-
ties) at which the functionµv(p) reaches its maximal value. We define, a second
measure of dissimilarity as:

DSvπ{vDM,vF} = |π(vDM)−π(vF)|. (4)

2.1 General comments on the measures of dissimilarity

The various measures may appear at first glance to be unrelated and, somewhat
arbitrary, so a few comments and clarifications are in order.First, we should point
out that all the dissimilarity indices aredistances. In all cases they assign to every
pair of (N,R or V) judgments a non-negative real number(DS= 0 only if the
two members of the pair are identical). The measures are symmetric, satisfy the
triangle inequality and induce a weak order over all pairs.

One could invoke other metrics for these comparisons. A particularly elegant
approach would be to use the same metric for all modalities. Technically, this
is feasible since numbers can be represented by point MFs (membership of 0
everywhere, and 1 for the chosen number) and ranges can be represented by flat
MFs (membership of 0 everywhere outside, and 1 everywhere within the chosen
range), and treated in the same fashion as the MFs obtained for verbal terms.
However, we believe that the metrics identified above are better suited for our
purposes because they are more in line with the particular level of (im)precision
implied by the three modalities.

The last comment is subtler. Our definition of similarity relies on a counter-
factual scenario that gives rise to a hypothetical entity - the DM’s spontaneous
judgment of the target event if he, or she, had the same prior probability distri-
bution and could access the same information that was used bythe F as a ba-
sis for his/her judgment. Strictly speaking, this definition is meaningful only in
those cases where it makes sense to assume that a person’sjudgment depends only
on the specificinformation presented. This implies that the relevant information
is unambiguous and does not lend itself to different (subjective) interpretations.
In other words, the observed variability among probabilities assigned to a target
event by different individuals can be attributed solely to different response styles
and/or random factors within the judges. This formulation makes perfect sense

1In most empirical applications the MFs are approximated by aset ofn points over[0,1], so a
discrete version of this measure can be used to approximate it.
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for repeatable and exchangeable events, but not for unique events where subjec-
tive probabilities rely on internal epistemic uncertaintythat can vary systemati-
cally across individuals. (Ariely, Au, Bender, Budescu, Dietz, Gu, Wallsten and
Zauberman [1] and Wallsten, Budescu, Erev and Diederich [15], discuss various
facets of this key distinction).

For example, it is quite unlikely that if we were to present anti-smoking ac-
tivists and tobacco lobbyists with the results of a new studyon the effects of
second-hand smoking, they would agree in their estimation of the probabilities
that second-hand smoking has serious public health consequences. The differ-
ences between their estimates would reflect (a) their different prior probabilities,
and (b) their differential assessment of the quality, reliability and validity of the
new data. Clearly, no translation method can be expected to reconcile disagree-
ments of this type. Despite these irreconcilable differences in their opinions, we
can still take advantage of optimal translation schemes derived for various pairs
of communicators based on their judgments of a standard set of exchangeable
events. When these translation methods are applied they canreduce the effect of
other sources of variability among the participants and provide the most accurate
representation of the F’s assessment in the DM’s favorite communication mode,
where accuracy is measured by one of the dissimilarity metrics discussed above.

2.2 Methods of translation

We return now to our original question: how tobestconvert a judgment originally
expressed in the F’s favorite response mode (N, R or V), to an estimate in the
DM’s favorite mode (N, R or V). Before we discuss translationschemes for each
of the 9 cases, it makes sense to classify them into three distinct groups:

Common modalities- In three cases ([N,N], [R,R] and [V,V]) both individuals
share a common preference for mode of communication, so there is no need to
worry about differential precision. Conversions may be employed to account for
inter-personal differences in the way the relevant terms are chosen and used.

Resolving vagueness- In three cases ([R,N], [V,R] and [V,N]) the DM prefers
a more precise mode of communication than the F. Thus, the challenge is to find a
translation that resolves the vagueness implicit in the F’sjudgment to achieve the
higher level of precision required by the DM.

Imputing vagueness- In the other three cases ([N,R], [N,V] and [R,V]) the
DM prefers a more vague mode of communication than the F. Thus, the challenge
is to find a translation that replaces the precision implicitin the F’s judgment to
reflect the higher level of vagueness expected by the DM.

We will discuss the three classes separately. In each case wedescribe and
justify a translation method designed to optimize our stated goal and, when ap-
propriate, we review and discuss relevant results from several empirical studies
that are described in the next section.
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2.3 The data

Over the last two years we have conducted four experiments designed to test the
efficacy and accuracy of various translation methods of probability phrases (V).
The studies vary in many specific details (Budescu and Karelitz [3] and Kare-
litz and Budescu [11]) but they share a set of common featuresthat allow us to
analyze some of their results jointly. The focus on the N and Vresponses is nei-
ther accidental, nor arbitrary. Subjects rarely communicate their probabilities by
means of ranges even when offered the opportunity (e.g. references in Budescu
and Wallsten [6]). For example, in one of the studies analyzed below when this
option was present, it was used in less that 7.5% of the cases.Thus, we will not
present any empirical results concerning translations involving Rs.

The four studies involved a total of 128 individuals (all students at the Univer-
sity of Illinois in Urbana Champaign, and most of them nativeEnglish speakers2).
All the experiments were computer controlled, and includedthe following three
tasks: (1) Selection of a personal verbal probability lexicon including 5-11 phrases
(In a few cases some, or all, the phrases were selected by the experimenters based
on previous research); (2) Elicitation of MFs for all the phrases; and (3) Numerical
and verbal estimation of probabilities of a common set of events.

Subjects created their lists by selecting combinations of words and semantic
operators (modifiers, intensifiers, etc.) from two lists, ortyping in phrases. They
were instructed to select phrases that span the whole probability range, and they
tend to use regularly. Membership functions were elicited using a method vali-
dated by Budescu et al. [4]. Each phrase was presented with a set of eleven proba-
bilities ranging from 0 to 1 in increments of 0.1. The subjects judged the degree to
which the target phrase captured the intended meaning of each of the eleven nu-
merical probabilities by using a bounded scale, anchored bythe terms ’not at all’
and ’absolutely’. In the last task, the participants saw a series of circular, partially
shaded, targets. Their task was to assess the likelihood that a dart, aimed at the
center of the target, would hit the shaded area. The shaded areas varied from one
trial to another and covered the full (0,1) range. On separate presentations these
probabilities were judged numerically (by selecting one value from a list of 21
probabilities, ranging from 0 to 1 in increments of 0.05), or verbally by selecting
(in some cases up to four) phrases from their lexicons.

2.4 Common modalities

[N,N] This is the ”gold standard” case of Bayesian decision analysis. Pre-
sumably numbers are universal and everyone understands, interprets and uses
them in identical fashion. Therefore, no transformation isrequired. There is, how-
ever, evidence that people’s mapping of their internal feelings of uncertainty into

2One of the studies was concerned with translation of probability phrases across languages and we
recruited native speakers of French, German, Spanish, Russian and Turkish.
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numbers is imperfect. In particular, most people over-(under-) estimate low(high)
probabilities (e.g. references in Erev, Wallsten and Budescu [9]), and it is con-
ceivable that there are systematic differences in the degree to which individuals
tend to avoid (or favor) the extreme values. In principle, one could quantify this
tendency and apply appropriatestretching (or contracting) transformations. To
illustrate this point consider multiple judges (1,2, . . . , j, j ′, . . . ,J) who judge a set
of stochastic events (1,2, . . . , i, . . . , I ). Assume that: (1) All judges have access to
the same amount of information, implying that differences in their judgments are
due only to (a) differences in their use of the response scales and (b) random
components. (2) All judges spontaneously recognize eventsthat are impossible
(probability = 0), certain (probability = 1), and as likely as not (probability = 0.5).
(3) Assume an ”ideal judge” who is perfectly calibrated (no biases) and accurate
(no random component). Thus his/her judgments,p1, p2, . . . pi , coincide with the
events’ ”objective probabilities”.

The probability assigned by judgej to eventi is denoted bypi j , and can be
expressed as a function of the objective probability,pi , his/her bias parameter,α j ,
and the random component,ei j which we assume is distributed withµe = 0 and
(finite) σe. We use a variation of Karmarkar’s [10] model, that assumes that the
logit of the judged probabilities is a linear function of thelogit of their objective
counterparts:

Log

[
pi j

(1− pi j )

]
= α j ·Log

[
pi

(1− pi)

]
+ei j (5)

Individual differences between judges are captured by the parameterα j , which
is bounded from below by 0 (when all events are assigned a probability of 0.5).
An unbiased judge should have anα j of 1, but we expect that most individu-
als would have parameters between 0 and 1 that are consistentwith the regressive
model described above. We used a least-squares procedure toestimate the individ-
ual parameter,α j , in model 5. The model fits the data well for almost all subjects
(medianR2 = 0.98, medianMSE= 0.13). The distribution of the individual pa-
rameters matches our expectations: 64 values (50%) are between 0.55 and 0.98,
45 participants (35.2%) are almost perfectly calibrated (0.99≤ α j ≤ 1.01), and
only 19 individuals (14.8%) have parameters values above 1. To verify that these
differences reflect systematic individual differences rather than pure random error,
we performed two additional analyses: (a) we compared theseresults with a model
where the parameter,α j , was constrained to be 1 (thus the model includes only
random error). A comparison of the two models in terms ofR2

ad j favors slightly
the fitted model. The modal difference (34% of the cases) is 0,but there is a clear
majority (43% vs. 23%) of cases where the fitted model fits better (mean differ-
ence in fit = 0.02), even after we account for its extra parameter. Significance tests
comparing the fit of the two models (separately for each subject) revealed that this
differences was significant at the traditional 0.05 level, for 25.2% of the subjects.
(b) We re-analyzed two of the studies in which all subjects judged all the displays
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twice, so we could obtain two estimates of the parameter,α j , for each person.
In both studies (involving a total of 55 subjects) the between-subjects variance
component was considerably larger than the within-subjectcomponent (in fact
the within-subject component was not significantly greaterthen 0).

In principle, one could convert numerical estimates from one person to another
in an optimal fashion by applying simple stretching (contracting) transformation
based on the estimates of the individual parameters,α j , α j ′.
[R,R] The use of precise ranges instead of simple point estimatesreflects
one’s perceived level of imprecision in his or her estimate of the probability of the
target event. Clearly, the arguments invoked in the [N,N] case regarding the nature
of the numbers, apply here as well. This would suggest that notransformations
are indicated. It is conceivable, however, that there are systematic differences in
the degree of imprecision perceived by different individuals and this would in-
duce systematic differences in the widths of their ranges. One could quantify this
tendency and apply appropriateimprecision equatingtransformations.
[V,V] This situation is, probably, the most interesting and it has been the
focus of much of our recent research. This case is qualitatively different from
the previous two for several reasons. There is a large literature indicating that (a)
spontaneously, people tend to use highly different and diverse lexicons, and (b)
the numerical meanings (as well as other forms of representation) associated with
these words vary dramatically across people (e.g. review inBudescu and Wall-
sten [6]). Thus, one cannot assume that everyone is equally comfortable with, or
interprets identically terms such as ”likely”, ” poor chance”, etc. For this case we
advocate the following multi-stage procedure that is sensitive to these empirical
findings: (a) each participant selects his/her own subjective lexicon; (b) MFs are
elicited for all the terms in the list; (c) the MFs of the wordsselected by the F
and the DM are placed on a common probability scale and are matched accord-
ing to the criterion of choice (DSvµ or DSvp). Occasionally this procedure does
not yield a unique solution, i.e., one of the F’s words can be translated equally
well into several of the DM’s words. Of course, all these words are equally valid
translations of the F’s judgment. If practical considerations prevent one-to-many
translations, one of them can be selected randomly (or by some other sensible
tie-breaking procedure).

We have done quite a lot of empirical work documenting the efficacy of this
approach (Karelitz and Budescu [11], Karelitz, Dhami, Budescu, and Wallsten
[12]). In each of our studies we compared the level of agreement in assignment
of verbal phrases to the same events among numerous pairs of distinct individu-
als. We hypothesized that the lowest level of agreement would be observed with
spontaneous (un-aided), verbal discourse, and the best level of agreement would
be found in the case of numerical communication. Most importantly, we expect
that communication with converted phrases would be superior to un-aided verbal
communication, and closer in quality to the numerical case.To quantify the level
of inter-personal agreement we defined two indices of co-assignment. We use two
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measures because some of the events were judged more than once and yielded
different responses from the subjects. Both measures rangefrom 0 to 1 (higher
values indicate stronger agreement), and can be interpreted as measures of the
accuracy of inter-personal communication of imprecise opinions.
PIA - Proportion ofIdenticalAssignments- the proportion ofcomparisonswhere
both participants assigned thesamephrase to a given event.
PMA - Proportion ofM inimal Agreement - the proportion ofstimuli for which
both participants assignedat least onecommon phrase to a given event.

In the interest of brevity we only report results based on PIA, which is a more
stringent measure than PMA (PIA≤ PMA) because it weighs the agreement by
the number of comparisons made (The PMA results are very similar in a quali-
tative sense). Table 1 summarizes the results of 4 studies (details in Karelitz and
Budescu [11]). Each cell presents the mean (and SD) PIA in thevarious modes,
and across all pairs of subjects analyzed.

Table 1: Summary of agreement indices from 4 studies

Translation Criterion
Study No. of VJ: Unaided DSvµ DSvπ NJ: Unaided

pairs Verbal Judgments (Eq. 3) (Eq. 4) Numerical Judgments
1 306 0.05 (0.03) 0.23 (0.12) 0.22 (0.10) 0.29 (0.07)
2 90 0.04 (0.04) 0.22 (0.11) 0.19 (0.09) 0.36 (0.09)
3 86 0.04 (0.07) 0.35 (0.16) 0.35 (0.16) 0.40 (0.15)
4* 509 0.06 (0.09) 0.34 (0.15) 0.35 (0.14) 0.40 (0.13)

* Experiment 4 involves translations of words across various languages. VJ is based of the subjects’

spontaneous translation of words from their native languages to English.

The results clearly support our predictions: unaided VJ hadthe lowest values
for both indices in all the studies and NJ had the largest values. The two translation
criteria clearly outperformed the unaided verbal communication3.

2.5 Resolving vagueness

[R,N] In principle, any sensible person should be able to infer a single N
value from his/her partner range without invoking any translation scheme. The
individual differences discussed in the [N,N] and [R,R] cases apply here as well.
In principle, one could improve the quality of communication by (a) inferring the
F’s best guess (presumably, the center of the reported range) and, if necessary, (b)
applying the appropriatestretching (or contracting) transformation.
[V,N] Recall that every word in the F’s lexicon has a (single-peaked) MF
defined over the [0,1] interval that describes the degree to which the various prob-

3Dhami and Wallsten [7] and Karelitz and Budescu [11] report similar results with several other
translation methods.
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abilities match the intended meaning of that particular word. The MF’s peak,
π(v), is the single numerical probability that is most representative of the word’s
meaning and is the translation of choice. Occasionally, theMF does not have a
unique maximum, so all probabilities within a given range can be considered to
be equally good representations of the word’s meaning. In these cases it is conve-
nient to translate the word into the mid-range of these probabilities. To illustrate
the potential accuracy of this approach we compared the peaks of the 977 verbal
phrases used by 113 of the subjects in our experiments with the mean of their
numerical judgments when judging the same events. We found aremarkable sim-
ilarity between the two sets: (a) the median within-subjectdifference between
the two is 0.006 and the median absolute difference between them is 0.097; (b)
the median within-subject rank order correlation between the peaks of the words
and the mean numerical judgments is 0.89; and (c) the two setsare almost per-
fectly related linearly with a median within-subject intercept of−0.022, a median
within subject slope of 1.06, and a medianR2

ad j of 0.90. These results indicate
that the translation procedure can map with high accuracy the intended meaning
of the words and predict accurately the numerical probabilities used to describe
the same events.
[V,R] Every MF is, essentially, a collection of ranges since every level of
membership,ν (0 ≤ ν ≤ 1), defines a range of values,R(ν), such thatµ(v)≥ ν.
Typically, asν increases,R(ν) becomes narrower indicating the range of values
that possess that (higher) level of membership is more restrictive. Thus, the trans-
lation from a V to a R boils down to the issue of which threshold, ν, to choose.
Presumably, there are systematic differences in the ”typical” threshold that indi-
viduals tend to use in these circumstances, so one could quantify this tendency
and identify the most appropriate range for each individual. We are not aware of
any studies that have collected both verbal and upper and lower numerical bounds
of the probabilities of the same events, so we are not in a position to assess the
efficacy of the proposed approach.

2.6 Imputing vagueness

[N,R] If numbers are the universal language of uncertainty and everyone
interprets them identically, any sensible DM would infer that the F’s single N is
the center of a range that describes his/her opinions, but there is no clue regarding
the implied imprecision of the F’s opinion. One could improve the quality of
communication by reversing the procedure described for [R,N], i.e., (a) applying
the appropriatestretching (or contracting) transformationfor the DM, and (b)
imputing the DM’s typical band of imprecision. We are not familiar with any
empirical work along these lines.
[N,V] Recall that all the words in the F’s lexicon have single-peaked MFs
defined over the [0,1] interval. These functions describe the degree to which any
given probability matches the intended meaning of the various phrases. The pro-
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posed translation rule calls for the choice of that phrase that has the highest mem-
bership at the N in question. This procedure is not guaranteed to yield a unique
solution, i.e. there could be several words with equally high membership at that
probability, and all these words should be considered equally valid translations
of the numerical judgment. If necessary, one of these words can be selected ran-
domly (or by some other tie-breaking procedure). In analyzing our studies we
looked at responses from 118 subjects who used an average of 14.85 distinct nu-
merical judgments. We analyzed the verbal responses that were assigned by the
subjects to the events to which they assigned a certain numerical response. On
the average, each set of events that were judged to be equallyprobable (in the
numerical mode) generated 1.81 distinct verbal phrases, and in 68% of the cases
at least one4 of these verbal responses had, indeed, the maximal membership for
that probability. Another look at the same data indicates that for 59.7% of the nu-
merical judgments at least one of the verbal terms used was predicted from the
MFs. Interestingly, we found large individual differences: 30 subjects (25.4%)
are at, or below a 40% success rate, while for 27 subjects (22.9%) the rate of ac-
curate translation is greater than, or equal to 75%. Not surprisingly, the level of
agreement is considerably higher for the extreme (0 and 1), and the central (0.5)
numerical probabilities.
[R,V] All the words in the F’s lexicon have (single-peaked and continuous)
MFs defined over the [0,1] interval. For any fixed range of numerical probability
these functions describe the degree to which the probabilities in that range match
the intended meaning of the various phrases. The proposed translation rule calls
for the choice of that verbal term that has the highest average membership over the
R in question. It is possible that there would be several words with equally high
membership over that range probabilities. All these words should be considered
equally valid translations. We are not aware of studies thathave collected the
relevant data for the empirical evaluation of this procedure.

3 General Discussion

In this paper we proposed a unifying conceptual framework for optimal interper-
sonal translation of probabilistic information for the 9 distinct cases we identified.
We discussed the 9 scenarios at different levels of details,and provided extensive
empirical support for some of them. Although the cases are not encountered with
similar frequency in applied settings, we decided to reviewall of them to illustrate
the generality, feasibility and flexibility of the overall approach.

This line of research is part of an effort to create a general Linguistic Probabil-
ity Translator (LiProT, for short) that could serve both as a useful research tool,
and a general decision aid.LiProT would facilitate communication of subjec-

4In 14.5% of the cases more than one word tied for the highest membership at a given probability.
The mean number of words tied for maximal membership was 1.14.
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tive uncertainties between participants in various decision situations - forecasters,
judges, experts and decision makers - by reducing the dangers of miscommunica-
tion of probabilities among the various members of the group.

To fix ideas consider a group of experts (physicians, intelligence officers, fi-
nancial forecasters, etc.) who communicate with each other, possibly electroni-
cally form various locations. As part of this process they need to exchange prob-
abilistic information based on the evidence available to them and reflecting their
own unique expertise. If various people in this group have differential preferences
for modes of communicating probabilities to others and receiving information
from others, then each of the 9 cases discussed above may be relevant for some
of the pairs. The procedures described and partially testedin this paper provide
a foundation for such a system. Before the meeting, the participants’ preferred
modes of communication are ascertained, their verbal probability lexicons are
mapped, andLiProT derives the appropriate translation scheme for each dyad.
During the meeting, every probability (N, R or V) used by eachof the experts is
instantly converted optimally to the favorite modality (N,R or V) of each of the
other participants.

For example, assume that participantA prefers to communicate and to re-
ceive numbers, participantB has a universal preference for Vs, and participantC
prefers to communicate with V, but to receive Ns (the modal pattern according to
Wallsten et al. [18]). Every uncertainty judgment providedby A (using Ns) will
be translated byLiProT into the closest V in judgeB lexicon (using the [N,V]
module), and into the most appropriate N for judgeC (using the [N,N] module).
Similarly, the verbal uncertainty judgments provided byC will be translated into
the closest N for judgeA (using the [V,N] module), and into the most appropriate
V in B’s lexicon (using the [V,V] module). Thus, all judges communicate their
opinions and receive information in their respective preferred modes. This ap-
proach may be too restrictive, since preferences for a particular mode may vary
as a function of the situation, the nature of the target eventand its underlying
uncertainty. A good translator should allow the receiver ofthe communication to
choose the mode of communication. For example, judgeB may choose to have
judgeA numerical translated byLiProT into the closest V in judge in most cases,
but occasionally he/she may opt for a simpler, and more direct, translation into
the most appropriate N.

In closing we emphasize that this work has focused on communication of un-
certainty, and has not addressed the issue of the efficacy of the proposed transla-
tions in the context of specific decision situations. We are now conducting empiri-
cal work that seeks to determine the degree to which these translation rules, which
were shown to improve the inter-personal communication of uncertainties, could
also improve the quality of the ultimate decisions involving these uncertainties.
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Relevance of Qualitative Constraints in
Diagnostic Processes
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Abstract

This paper reviews recent results obtained in the medical diagnosis field by
adding to a coherent inference process qualitative constraints. Such further
considerations turn out to be significant whenever a basic lower-upper con-
ditional probability assessment induces extension boundstoo vague to take
any decision. Three general types of qualitative judgements are proposed and
fully described. They do not constitute a “panacea” to solveany problematic
situation, but their application can considerably improveinferences results
in specific fields, as two practical applications show.

Keywords

coherent inference, conditional exchangeability, qualitative constraints, diagnosis
procedures

1 Introduction

In many practical applications, and in particular in the medical field, there is the
problem that the information at hand is not so fully detailedand sound to adopt
sophisticated statistical tools. This happens especiallywhenever information is
based on data collected from different sources or by heterogenous samples. In
these cases agenuinelyprobabilistic reasoning can anyway help to reach con-
siderable results about relevant statements. Of course, with such approach, an-
swers differ from usualuniquely determinedstatistical results, having, in general,
interval-based conclusions. Unluckily, there is the widespread bad habit of avoid-
ing not unique answers by forcing in the modelartificial assumptions, such as
independence, and this can bring to misleading inferences.On the other hand, it
is true that, especially if information is very limited , results could be so vague
that it is impossible to make any reasonable decision. Hence, it is reasonable to
search for further properties that can help us to reach sharper conclusions. This
can be obtained by a deeper analysis of the problem and also byfurther quali-
tative judgements. Of particular importance are conditional exchangeability as-
sumptions, which are more general and reasonable than thoseof independence,
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comparisons between conditional probabilities, which areapt to capture expert
convictions not numerically expressible, and restrictions on the admissible class
of agreeing conditional measures, which are induced by indirect considerations
on some statement not considered at the beginning.

In this paper we will explicitly show how such further considerations can be
formalized and operationally adopted in general inferenceprocesses. Moreover
we will have an idea of their relevance by applying them on twomedical diag-
nostic procedures: amedian decisionprocess for the asbestosis diagnosis based
on X-ray film’s readings and a reliability judgement of aGIST (gastrointestinal
stromal tumor)diagnosis based on istochemical results.

2 Coherent Inferences with Limited Information

As already sketched out in the Introduction, whenever a problem does not al-
low a description by usual statistical models, a simple probabilistic approach can
anyway be adopted to extrapolate which are the bounds induced by the available
information. This is possible by embedding the problem at hand in a coherent
setting, i.e. representing the relevant entities through conditional events endowed
with numerical values or bounds and looking for some class ofconditional mea-
sures agreeing with them. Once a class has been detected, it can be used to make
inference on relevant quantities (usually called “indexes”).

With such approach, we have, on one side, the peculiarity of adirect intro-
duction of conditional probability assessments, hence they are not derived as
sub-products of joints and marginal evaluations, on the other hand we are aware
of working with imprecise tools (interval assessments, classes of distributions,
bounds for conclusions, etc.). The wide range of subjects covered in the previous
ISIPTAs symposia ([8, 9]) testifies of the meaningfulness and soundness of the
last aspect, while appropriateness and usefulness, both from a theoretical and a
practical point of view, of the first are contained in the workstarted in [6] and
recently fully described in Coletti & Scozzafava’s book [7].

2.1 Preliminaries

Let us now introduce a proper formalization to operate with the framework de-
picted before. For the sake of simplicity we will use conditional and unconditional
events, but everything can be easily generalized to (finite)random variables, con-
ditional or not (see for example what it has been done about conditional previ-
sions in [4]). The initial information, usually a knowledgeand/or rule base, is
represented trough a conditional lower-upper probabilityassessment. Hence we
will have a generic list ofn conditional eventsF = (S1|C1, . . . ,Sn|Cn), where each
Si|Ci represents some macro-situationSi (i.e. some combination of events) consid-
ered in some particular hypothetical circumstancesCi (usually theCis represent
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different scenarios).
Incompleteness of the information can have two origins: theSis do not de-

scribe all possible combinations and the different circumstancesCis canoverlap
or do not cover all possibilities. For this, it is crucial to know which are the re-
lationships of incompatibility, implication, coincidence or whatever, among the
eventsUF = {C1, . . . ,Cn,S1, . . . ,Sn} because they represent constraints that any
model must fulfill. Moreover they limit which are the possible atoms. The atoms
are elementary events obtained by full combinations of affirmed or negated events
in UF

1.
We will generally denote byLC the set of such logical constraints and we will

refer only to atomsAr , with r = 1, . . . ,a, spanned byUF and inside the disjunc-
tion

Wn
i=1Ci . In the sequel we will also need to use the characteristic vectors of the

events, i.e. vectors whose components are 1 or 0 depending ifthe corresponding
atom implies or not the event, and we will denote them with thesame letter of
the event but in boldface lower-cases. Hence, for example,si andci will denote
the characteristic vectors ofSi andCi , respectively, while their juxtapositionsici
will represent the characteristic vector of the conjunction SiCi (for the sake of
simplicity we will omit the usual conjunction operator∧). To complete this nota-
tional parenthesis, in the following we will use the logicaloperator¬ to denote
negations.

The last component of an assessment is represented by numerical bounds
p = ([lb1,ub1], . . . , [lbn,ubn]), each closed interval[lbi ,ubi] associated to the cor-
responding conditional eventSi |Ci , and usually estimated by expert believes, lit-
erature reports or by collected data.

Note that someSi |Ci could be actually unconditional (i.e. the situationSi is
considered independently from any specific circumstance) and in such caseCi

will coincide with the sure eventΩ. Moreover some of the numerical bounds
[lbi ,ubi] could degenerate in a single valuepi , representing a precise assessment.

2.2 Coherence

If we don’t want, or we cannot, adopt for the domain(F ,LC ,p) a unique proba-
bilistic model, it is just possible to search for a classPF of conditional probability
distributions, such thatp coincides with the restriction toF of the closed envelop
of PF . This can be operationally checked by the satisfiability of aclass of se-
quencesof linear systems.Sequencesof linear systems are necessary to allow
the possibility that conditioning eventsCis have induced probability not bounded
away from 0. Hence there could be the need of classifying the conditional events
in differentzero layers. On the other hand, aclassof linear systems is required
because, to be surep agrees with aclosed envelope, each boundlb j or ubj must
be cyclically forced to be strictly fulfilled as an equality (for a deeper exposition

1In some discipline atoms are calledpossible worlds.
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of both aspects refer again to [7], in particular to chapt. 12and 15).
Such linear systems will anyway have a common structure like





E ·x = 0
L ·x ≥ 0
U ·x ≤ 0

x ≥ 0 , x 6= 0

(1)

where· represents the row-column matrix product,x is a column vector of un-
knowns, with each componentxr associated to an atomAr , r = 1, . . . ,a, while E,
L andU are matrices that reflect the numerical constraints inducedby p. Hence
in E a generic row is of the form

(sici − pici)

for eachSi|Ci with a precise assessmentpi and cyclically for oneSk|Ck with an
imprecise assessment and forcingpk to be equal tolbk or to ubk. On the other
hand, inL andU there are, respectively, rows like

(sj cj − lb jcj )

and
(sj cj −ubjcj )

for eachSj |Cj with probability boundslb j andubj different from the chosenpk.
Through the set of solutionsx, it is possible to represent the searched class

PF .

2.3 Extension

Once coherence of the assessment(F ,LC ,p) has been assured, and in practical
application this turns out to be a compulsory step whenever information comes
from different sources, it is possible to perform inferenceon any conditional event
H|E judged important to reach conclusions on the problem. Usually H represents
some hypothesis to test on the basis of some factE.

In this context, inference reduces to compute the coherent extension ofp to
H|E, obtainable as the closed envelop[lbH|E,ubH|E] of the valuesP(H|E) with
P∈PF . Operationally we need to perform sequences of optimizations of the form

minimize/maximizehe·x
s.t.

E ·x = 0
L ·x ≥ 0
U ·x ≤ 0
e·x = 1

x ≥ 0

(2)
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where the normalization constrainte· x = 1 permits the optimization problem to
be linear instead of fractional.

The main difficulty of such procedure is the usually huge numbera of atoms
but, thanks to a smart use of null probabilities, in [2, 5] this complexity problem
has been tackled and mainly solved for practical applications.

3 Results Improvement by Qualitative Constraints

Extension bounds[lbH|E,ubH|E] are what, from a pure probabilistic point of view,
our information implies onH|E but, sometimes, they could result too wide to
take any decision. Anyway, it is possible, maintaining amodel freeapproach, to
shrink the reference conditional probability classPF adding qualitative (i.e. not
numerically expressed) considerations to the numerical constraintsp. Of course
there are several possible different kinds of constraints to introduce, but we will
focus on few of them, either because they are quite natural orbecause by them we
have reached quite satisfactory results.

3.1 Conditional Exchangeability vs Independence

As already mentioned, a widespread tool for restricting thevariability of the con-
clusions is to adopt some assumption of independence. And itis actually a pow-
erful restriction, but usually it is a too strong assumption, not supported by the
problem. It is in fact usually confused with the informationthat some evalua-
tions are madeindependently(i.e. one given without knowing the others), while it
should be used to model situations whose measure of uncertainty cannot bemod-
ified by simply taking into account some other aspect. Moreover its formalization
and use in a context of partial information should be done with the awareness
of all its implications, that are deeper then the simple factorization of some joint
probabilities (for more details see once more [7], chapt. 17).

In the presence of strong symmetries, like for example assessment on the same
statement madeindependentlyby different experts with similar skills (see for ex-
ample Lad et al. [11]), it is more suitable to introduce some kind of exchangeabil-
ity. This is opportune whenever it is relevanthow manyinstead ofwhich events
realize, or, in other words, whenever it possible to identify a sumas a sufficient
statistic (for a detailed explanation refer to [10], sect. 3.9). In particular, whenever
the assessment is mainly conditional, the judgement ofconditional exchangeabil-
ity could be the more suitable and it is formulated as follows:
if there is a group ofk eventsE1, . . . ,Ek regarded exchangeableunder a specific
scenarioCj , then any conjunction of theEis with the same number of affirmed and
negated events must be equally evaluated. In other words, for any fixed number
s∈ {0, . . . ,k} there must be a constantcs such that

P(Ei1 . . .Eis¬Eis+1 . . .¬Eik|Cj) = cs (3)
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for any permutation of the indexesi1, . . . , ik.
Conditions like (3) actually reduce the “degree of freedom”for the unknowns

x respect the constraints (1) of the original assessment, restricting “de facto” the
admissible class of conditional measuresPF and, possibly, shrinking some exten-
sion bounds.

Since (3) refers to a fixed conditioning eventCj , restriction of this type are eas-
ily reported as linear constraints. In fact, denoting withπs andπ′

s the characteristic
vectors of two different permutations of the combinationEi1 . . .Eis¬Eis+1 . . .¬Eik,
extensions with the further conditional exchangeability requirement obtain by
adding to (2) pairwise equalities of the form

(πscj −π′
scj ) ·x = 0 (4)

for each pair of permutationsπs andπ′
s and eachs= 1, . . . ,k−1 (note that extreme

casess= 0 ands= k do not actually constitute any constraint).

3.2 Conditional Probabilities Comparison

Sometimes there are conditional events which an expert believes more than some
other, but he/she cannot express neither precise nor imprecise probability assess-
ments on them, being only capable to compare them.

This is immediately interpretable as

P(Si |Ci) ≥ k+P(Sj |Cj) (5)

for some constant valuek+.
Anyway, if none of the conditional probabilities present in(5) is uniquely

constrained, its direct representation by vectors would be

xT · [(sici)
T ·cj − (k+sj cj )

T ·ci ] ·x ≥ 0 (6)

that has the drawback of being quadratic. This increases thedifficulties for the
computation of the extension bounds. In fact, to deal with quadratically con-
strained optimization problems there are specific Operational Research’s tech-
niques, like interior-point algorithms [13] or duality bound methods [14], but they
are not so safe and confirmed like those for linear programming problems.

That is why we propose an approximation of (5) that, even being a weaker
constraint, has the advantage of leaving the extension problem in a linear form.
The idea is of expressing (5) in a parametric way and introducing further un-
knowns that can capture the basic structure of the parameterization.

If we focus our attention on one of the two conditional probabilities in (5), let
us sayP(Sj |Cj), we can take it as aninference targetand compute its extension
bounds[lbSj |Cj

,ubSj |Cj
] as it has been illustrated in Subsection 2.3. We can now

introduce new variablesyi , i = 1, . . . ,a, representing the quantitiesP(Sj |Cj)xi , so
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that the inequality (5) can be represented by

sici ·x−k+ci ·y ≥ 0; (7)

the link by new and old variables by

sj cj ·x−cj ·y = 0; (8)

while the variability bounds forP(Sj |Cj) imply the constraints

lbSj |Cj
xi ≤ yi ≤ ubSj |Cj

xi for i = 1, . . . ,a. (9)

These constraints are all implied by (5), while the vice versa does not hold in
general. Hence, if the minimization/maximization ofhe·x is performed with con-
straints (2), (7), (8) and (9) we are not guaranteed to have obtained the coherent
extension forP(H|E) of p plus (5), but just an interval containing it. However,
once such optimal solutionsx are obtained, they can be substituted in (6) to check
if the interval[lbH|E,ubH|E] is coherent. If not, the left-hand-side of (6) will result
a negative value that can be adopted as ameasure of violationof (5).

Of course it is not needed to add sequences of optimizations to cyclically
impose equalities in (7) and (9) because they must be fulfilled as they are by each
P∈ PF .

Anyway, (7), (8) and (9) increase significantly the space complexity of the
optimization procedure. Hence, before to adopt them it would be better to check
if the optimal solutions of the original linear program (2) already satisfy (6). If
it is the case, it means that the qualitative comparison (5) is redundant because it
actually does not restrict the classPF .

3.3 Selectors Restriction

We introduce now a consideration that will result more technical than the previous
ones. It will be less intuitive and also more debatable, hence it should be used
more carefully and it will anyway need aninterpretation processbefore being
presented to a field’s expert for its acceptance.

Analyzing the inference procedure for some conditional event H|E, it could
happen to notice that results are mainly influenced by the possible variability of
some otherK|F. As usualK|F can be conditioned to a properF or unconditional,
i.e. with F = Ω. If K|F does not belong to the initial list of conditional events
F , the induced bounds[lbK|F ,ubK|F ] for its conditional probability could be ex-
tremely vague, and usually this is not noted at the beginningbecauseK|F could
be of no direct interest.

However, it could be impossible to assess bounds forP(K|F) either because
the data on whichp was built are not available anymore or because there is not
direct information onK|F . Anyway, anindirect consideration is possible.
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Variability range[lbK|F ,ubK|F ] results from the union of all the extensions, say

[lb j
K|F ,ubj

K|F ], with 1≤ j ≤ n, of theextremeconditional distributionsP j ⊂ PF .
With extreme distributionwe mean thoseP∈ PF that reach at least one the lower
or upper bounds (lb j or ubj ) of the assessmentp. It could happen that some of the

[lb j
K|F ,ubj

K|F ] is narrow enough to drastically influenceP(H|E), showing that not
all the admissible distributions play the same role for the inference.

Hence, adopting a morerestrictiveattitude and thanks also to some extra con-
sideration, it is possible to select only some of the admissibleP j ⊂ PF by choos-
ing more informative lower-upper bounds forP(K|F) (possibly coinciding with
the narrower interval[lb j

K|F ,ubj
K|F ]) so that the initial assessment can be updated

and a new inference onH|E performed.

4 Two Medical Applications

We will show now how the procedures described before can be applied on prac-
tical problems. In particular we will illustrate the results we recently attained for
two different medical diagnostic processes. The first problem will show how to
apply and the relevance of the conditional exchangeabilityassumptions and of the
conditional probabilities comparisons as depicted in subsections 3.1 and 3.2. On
the contrary, with the second one we will show the importanceof a preliminary
check of coherence whenever information comes from different sources and the
influence in the results of selector restrictions, in line with subsections 2.2 and
3.3, respectively.

4.1 Accuracy Rates for an Asbestosis Median Decision Proce-
dure

In [3] we re-examined the procedure of median decision making in the context of
radiological determination of asbestosis. Median decision applies whenever there
is a pool of experts, usually equivalent in skill, examiningthe same patients and
each single case is finally diagnosed on the basis of the agreement of the majority
of judgments.

In particular, in a recent paper [12], Tweedie and Mergersenanalyze a pre-
vious case-report about incidence of asbestosis among a group of people with a
similar history of asbestos exposure. Opinions of three radiologists are based on
X-ray films readings, and the authors have rather limited information about the
median decision procedure. Anyway, they are able to proposea tricky method-
ology to retrieve some conclusion about the probability of the diagnosis being
correct.

However, the authors’ analysis deeply relies on a assumption of independence
for the experts’ assessments and they adopt it because X-rayfilms are readin-
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dependentlyby the radiologists. But this consideration should pertainto experts’
assessment procedure, not toour belief about information’s influence one expert
opinioncouldhave on an other. Actually, since the experts have similar skills, the
response of one of them is already a significant indicator of what we could expect
from an other.

Tweedie and Mergersen are aware of the inadequacy of the independence pre-
sumption, but they wonder how it could be replaced. The fact is that they ”need” to
introduce independence to maintain uniqueness of the agreeing conditional prob-
ability distribution. On the other hand, the information that the three experts are
judged equivalently because of their similar skill cannot be ignored. As we have
underlined in Subsection 3.1, assumptions of conditional exchangeabilities could
be an appropriate answer to this need.

To make a synthesis (a full description can be obviously found in the cited
papers), we can formalize the problem as it follows.

First of all we introduce events that refer to a generic patient with a X-ray film
available:

label description

F asbestosis (fibrosis) presence
Di , i = 1,2,3 i-th expert positive asbestosis judgment
D∗ positive median decision diagnosis
S∗ positive median decision with a splitting vote

Since the similarity among radiologists, theirsensitivitiesfor the films’ read-
ing processP(Di |F), i = 1,2,3, are thought to be equal.

On the basis of recorded data on 642 patients and of specific literature refer-
ences, the following conditional probability assessmentp on
F = (D1|F,D2|F,D3|F,D∗,S∗|D∗) is considered2:

P(Di |F) = .82 i = 1,2,3
P(D∗) = .12
P(S∗|D∗) = .42

The first probabilityP(Di |F) comes from literature results on sensitivity anal-
yses performed by comparing radiological and histopathological evaluations. The
other twoP(D∗) andP(S∗|D∗) derives from the only data reported in [12]. In
particular,P(D∗) is directly estimated by the ratio 77/642 of positive median di-
agnoses, whileP(S∗|D∗) is attained indirectly by the three individual 82%, 86%
and 90% positive assessments through the formula

P(S∗|D∗) = (100−82)%+(100−86)%+(100−90)%= 42%.

To complete the assessment we must explicitly give which arethe possible
logical relationsLC among the unconditional eventsUF = {F,D1,D2,D3,D∗,S∗}.

2In [12] and [3] several assessments with different sensitivity values are examined, here we report
only the first one as prototype
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By the problem description we can pick out logical dependencies among the me-
dian decisions, with or without splitting vote, and individual experts’ diagnosis

S∗ = (D1D2¬D3) ∨ (D1 ¬ D2D3) ∨ (¬D1D2D3)

D∗ = S∗ ∨ (D1D2D3)

It is easy to check that the numeric assessmentp is coherent and that, even
being a precise conditional probability assessment, the admissible classPF is not
a single conditional distribution, as it will appear in the sequel.

We can consider the assessment(F ,LC ,p) as a partial knowledge base whose
main “lack” is the absence of an estimate for the expert’sspecificity P(¬Di |¬F).
Anyhow, thanks to the conditional independence assumptions

P(Di |D jF) = P(Di |F) and P(Di |D j¬F) = P(Di |¬F) (10)

and thanks to some algebraic manipulation involving Bayes’Theorem, Tweedie
and Mergersen uniquely determine probability values for the usual accuracy in-
dexesspecificity, positive predictive value, negative predictive valueand estimate
thetrue positive proportion. We can compare their results with what we obtained
firstly without any assumption, secondly adopting the method of Subsection 3.1
to incorporate the following conditions of conditional exchangeability3

P(D1D2¬D3|F) = P(D1¬D2D3|F) = P(¬D1D2D3|F)

P(D1¬D2¬D3|F) = P(¬D1¬D2D3|F) = P(¬D1D2¬D3|F)

(11)

P(D1D2¬D3|¬F) = P(D1¬D2D3|¬F) = P(¬D1D2D3|¬F)

P(D1¬D2¬D3|¬F) = P(¬D1¬D2D3|¬F) = P(¬D1D2¬D3|¬F)

and finally using considerations of Subsection 3.2 to consider the following condi-
tional probabilities’ comparisons that arise from the formalization of an interview
with a further physician4:

3With respect to the notation of Subs.3.1 we havek = 3,Ei = Di andCj equal at first toF and after
to ¬F

4These comparisons are the result of the formalization of a long and detailed analysis of the in-
fluence of the knowledge of the answers of some expert on the behaviors of the others. It has been
performed with a physician extraneous to the rest of the work
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P(D3|D1D2F)
P(¬D3|D1D2F)

≥ 3/2 P(D1|F)
P(¬D1|F)

P(D3|¬D1¬D2F)
P(¬D3|¬D1¬D2F)

≤ 2/3 P(D3|F)
P(¬D3|F)

(linear) (linear)

P(D3|¬D1¬D2¬F)
P(¬D3|¬D1¬D2¬F)

≤ 2/3 P(D3|¬F)
P(¬D3|¬F)

P(D3|D1¬D2F) ∈ [.5, .5+(P(D3|F)− .5)]

(quadratic) (linear)

P(D3|D1¬D2¬F) ∈ [.5− (P(D3|F)− .5), .5] P(D2|D1F) ≥ P(D2|F)
(linear) (linear)

P(D3|D2D1F) ≥ P(D3|D1F) P(D2|¬D1¬F) ≤ P(D2|¬F)
(quadratic) (quadratic)

P(D3|¬D2¬D1¬F) ≤ P(D3|¬D1¬F)
(quadratic)

Note that such relations, even being similar in structure (the first three actu-
ally reflect odds ratios comparisons), are distinguished, by labels, between those
of them that are actually linear constraints since some quantity is uniquely deter-
mined and those that are properly quadratic and need the proposed linear approx-
imation.

We cannot go into technical details, but it is important to mention just one
computational feature: the number of atoms in this problem is 16, but condi-
tional independence assumptions (10) reduce at two the degrees of freedom for
their probabilities, i.e. everything is fully determined once the experts’ sensitiv-
ity P(Di |F) and specificityP(¬Di |¬F) could be selected, while with conditional
exchangeabilities (11) we have only a reduction at 8 degreesof freedom.

Here we report the different inferences performed on several accuracy in-
dexes, specifying the particular assumptions adopted

extension bounds under
index description ———————–

cond. idep. no ass. cond. exch. qual. comp.

P(¬Di |¬F) experts’ specificity .957 [0 , 1] [.603 , 1] [.820 , .970]
P(F|D∗) positive predict. val. .961 [0 , 1] [0 , 1] [0 , .779]

P(¬F|¬D∗) negative predict. val. .988 [.970 , 1] [.971 , 1] [.979 , 1]
P(F) asbestosis incidence .126 [0 , .130] [0 , .130] [0 , .106]

P(D∗|F) med. dec. sensitivity .994 [.730 , 1] [.730 , 1] [.820 , .878]
P(¬D∗|¬F) med. dec. specificity .995 [.880 , 1] [.880 , 1] [.954 , .970]

Whenever conditional exchangeability cannot help on limiting vague infer-
ence bounds, the further qualitative probabilistic comparisons are determinant. In
fact, apart from the positive predictive value, all the intervals in the last column
are tight enough to judge the procedure. About the only ”vague” interval[0, .779],
even it does not bound from below the positive predictive value, it gives an inter-
esting upper limitation for such index.
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Moreover, note that some interval of the last column do not contain the cor-
responding values obtained by Tweedie and Mergersen. This because the further
constraints go in the opposite direction of independence, bringing some kind of
correlation but leaving ”untouched” the conditional exchangeability framework.

Our computations needed to solve several liner programmingproblems, but
what we obtained is really based on reasonable probabilistic statements and not
on tricky manipulation that have the only justification of bringing to single values
instead of intervals.

4.2 Reliability of GIST Diagnosis Based on Partial Informa-
tion

Other prototypes of applications of inference with a not fully detailed model are
the medical diagnostic procedures where there is not agolden standardprotocol
to follow. This happens when new advances in the understanding of the biology
are done or new techniques are discovered. In such situations, different opinions
appear in scientific literature and they are based on disparate case studies, each
one with its peculiarity and heterogeneity of data.

In particular, in [1] we analysed a diagnostic process forgastrointestinal stro-
mal tumors(GISTs) where only recently a new and reliable phenotypic marker
(the KIT protein CD117) for these neoplasm has been introduced.

The diagnosis path consist mainly of two stages: at first a histological analysis
is done and later an immunohistochemical schema is adopted to confirm cases pre-
viously suspected to be GISTs. What we have done was to numerically evaluate
the quality of the first discrimination and it was possible bymatching information
from a personal case study5 and immunohistochemical behaviors reported in the
relevant literature.

The problem can be synthesized as it follows: we have selected as relevant for
a lesion the events

label description

DIAGNOSIS lesion is histologically suspected to be a GIST
GIST lesion is really a GIST
CD117 KIT protein expression
CD34 Hematopoietic progenitor cell antigen expression
SMA Muscle actin expression
DESM Desmin expression
S100 S-100 protein expression

where the first two distinguish the suspected tumors by thoseactually belonging
to the GIST’s family, while the others represent the positivity for specific im-
munohistochemical markers.

5Data was collected atIstituto di Anatomia e Istologia Patologica - Divisione di ricerca sul cancro
- Universit degli Studi di Perugia - Italyduring the period Jan.1998–Sept.2002
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We had only the following logical restriction due to the extreme specificity of
the KIT marker

CD117⊆ GIST.

By the personal case study we estimated (by observed frequencies) the fol-
lowing “knowledge base”

statement cond. prob.

DIAGNOSIS .510
CD117 CD34¬DESM¬S100| DIAGNOSIS .308

¬SMA ¬CD117 CD34 DESM¬S100| DIAGNOSIS .077
¬SMA CD117 CD34¬DESM S100| DIAGNOSIS .077

SMA ¬CD117 CD34¬DESM¬S100| DIAGNOSIS .077
SMA CD117¬CD34¬S100| DIAGNOSIS .231

SMA CD117¬CD34¬DESM S100| DIAGNOSIS .077
¬SMA CD117¬CD34¬DESM S100| DIAGNOSIS .077

but it turned out to be incoherent with the “rule base” we derived by collecting
different literature sources

statement expected frequencies bounds

CD34| CD117 [.60 , .70]
SMA | CD117 [.30 , .40]
S100| CD117 [.096 , .105]

DESM | CD117 [.01 , .02]

A deeper analysis of the observed results has shown that there were two cases
with dubious S100 positivity and they have judged as the cause of the inconsis-
tency. In fact, performing an inference based only on the knowledge base, we
obtain that the percentage for S100| CD117 results between 13% and 70%, while
it should be around 10% as indicated in the rule base.

Revising these two judgements, we have obtained a differentknowledge base
consistent with the literature rule base

statement cond. prob.

DIAGNOSIS .510
CD117 CD34¬DESM¬S100| DIAGNOSIS .380

¬SMA ¬CD117 CD34 DESM¬S100| DIAGNOSIS .077
SMA ¬CD117 CD34¬DESM¬S100| DIAGNOSIS .077

SMA CD117¬CD34¬S100| DIAGNOSIS .077
SMA CD117¬CD34¬DESM S100| DIAGNOSIS .077

¬SMA CD117¬CD34¬DESM¬S100| DIAGNOSIS .077

Further considerations has induced us to add the further constraint
P(CD117|GIST) ∈ [0.95,0.99] for the sensitivity of the KIT marker.

Putting together all these assessments, they force the usual accuracy indexes
to be in the following bounds
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index description extension bounds

P(DIAGNOSIS| GIST) sensitivity [.47 , .76]
P(¬DIAGNOSIS| ¬GIST) specificity [0 , .88]

P(GIST| DIAGNOSIS) positive predictive value [.85 , .94]
P(¬GIST | ¬DIAGNOSIS) negative predictive value [0 , 69]

that, apart from the positive predictive value, reflect a weak ”influence” of the
constraint considered.

Adding to the assessment the probabilistic comparison
P(DIAGNOSIS | GIST) ≥ P(DIAGNOSIS | ¬GIST) we have not obtained ap-
preciable improvements.

On the contrary, reasoning as described in Subsection 3.3, we have focused
the attention on the ”a priori” values of GIST’s incidence. In fact, its coherent
bounds resultP(GIST) ∈ [.59, .97] while one extreme sub-class of the admissi-
ble conditional probabilities induce the more restrictivelower bound of.81. Since
the pathologist judged as reasonable a variability around 81% of the GISTS’s inci-
dence, we have added to the whole assessment the restriction
P(GIST) ∈ [.806, .815] obtaining the more relevant results

index description extension bounds

P(DIAGNOSIS| GIST) sensitivity [.53 , .59]
P(¬DIAGNOSIS| ¬GIST) specificity [.58 , .80]

P(GIST| DIAGNOSIS) positive predictive value [.85 , .93]
P(¬GIST | ¬DIAGNOSIS) negative predictive value [.22 , .32]

that confirm a good positive predictive performance of the diagnostic procedure,
while they express a really bad reliability in the case of a negative diagnosis. This,
in a way, reverses the role that the KIT marker should have. Instead of being used
as aconfirmatorytool in already suspected cases, it should have a crucial role for
the right diagnosis of lesion at first not suspected to be GISTs.
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Abstract

Let % be a preference relation on a convex setF . Necessary and sufficient
conditions are given that guarantee the existence of a set{ul} of affine util-
ity functions onF such that% is represented byU ( f ) = ul ( f ) if f ∈ Fl ;
where eachFl is a convex subset ofF . The interpretation is simple: facing a
“non-homogeneous” setF of alternatives, a decision maker splits it into “ho-
mogeneous” subsetsFl , and acts as a standard expected utility maximizer on
each of them.

In particular, whenF is a set of simple acts, eachul corresponds to a
subjective expected utility with respect to a finitely additive probabilityPl ;
while whenF is a set of continuous acts, each probabilityPl is countably
additive.

Keywords

preference representation, subjective probability, nonexpected utility, integral
representation, multiple priors, countable additivity

1 Introduction

Given a preference relation% on a convex setF, we provide necessary and suffi-
cient conditions that guarantee the existence of a set{ul} of affine utility functions
onF such that% is represented by

U ( f ) = ul ( f ) if f ∈ Fl ,

∗We gratefully acknowledge the financial support of CNR and MIUR. First version: November
1999.
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where eachFl is a convex subset ofF . This representation has a simple interpre-
tation: facing a “non-homogeneous” set of alternativesF , a decision maker splits
it into “homogeneous” subsetsFl and, on each of them, she behaves as a standard
expected utility maximizer. For example, theFl can be commodities traded in a
local marketl andF be the global market, or theFl can be sets of lotteries on
which the decision maker feels she has the same information.

The idea underlying these results is close to the one of Castagnoli and Mac-
cheroni (2000), but the difference of setups heavily reflects on the techniques we
use in the proofs.

In particular, ifF is a convex set of objective lotteries, the model falls in the
class of lottery dependent utility (see, e.g., Maccheroni,2002, and the references
therein).

While, whenF is a set of simple (resp. continuous) acts, eachul corresponds
to a subjective expected utility with respect to a finitely additive (resp. countably
additive) probabilityPl . This time we are in the spirit of multiple priors mod-
els: for example, Choquet Expected Utility of Schmeidler (1989) and Maxmin
Expected Utility of Gilboa and Schmeidler (1989) are particular cases of the pro-
posed model when the family{Fl}l∈L consists of sets of comonotone and affinely
related acts, respectively. In fact, many recent papers focus on specific cases of the
model obtained here, and provide interesting interpretations on the derived family
of probabilities. See, e.g. Nehring (2001), Ghirardato, Maccheroni, and Marinacci
(2002), Kopylov (2002), Siniscalchi (2003). In particular, the latter work builds
on a similar idea and looks for conditions ensuring the uniqueness of the sub-
jective probability used to evaluate the expected utility of each act; furthermore,
differently from us, the setsFl are elicited from the preference.

2 A general representation result

Let F be a convex subset of a vector space,X a nonempty convex subset ofF ,
{Fl}l∈L a family of convex subsets ofF such thatF =

S

l∈L Fl andX ⊆ T

l∈L Fl ,
and% a binary relation onF . As usual, we denote by≻ and∼ the asymmetric
and the symmetric parts of%. In the sequel we will make use of the following
assumptions on%.

Weak Order (WO):For all f1 and f2 in F : f1 % f2 or f2 % f1. For all f1, f2,
and f3 in F : if f1 % f2 and f2 % f3, then f1 % f3.

Local Independence (LI):For all l ∈ L, all f1, f2, and f3 in Fl , and allα in
(0,1): f1 % f2 impliesα f1 +(1−α) f3 % α f2 +(1−α) f3. WhenL is a singleton
this property is the standardIndependence (I).

Local Continuity (LC):For all l ∈ L and all f1, f2, and f3 in Fl : if f1 ≻ f2
and f2 ≻ f3, then there existα andβ in (0,1) such thatα f1 + (1−α) f3 ≻ f2
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and f2 ≻ β f1 + (1−β) f3. WhenL is a singleton this property is the standard
Continuity (C).

Boundedness (B):For all f in F : there existx1,x2 ∈ X such thatx1 % f and
f % x2.

Quasiconcavity (Q):For all f1 and f2 in F and allα in (0,1): f1 ∼ f2 implies
α f1 +(1−α) f2 % f1.

As suggested by Siniscalchi (2003), a natural way to elicit the setsFl from the
preference is to look for the maximal convex subsets ofF on which it satisfies the
standard assumptions of expected utility. Next theorem shows that the first four
properties are necessary and sufficient to yield a piecewiseaffine representation
of %.

Theorem 1 Given a binary relation% on F, the following conditions are equiv-
alent:

(i) % satisfies WO, LI, LC, and B.

(ii) There exists a family{ul} of affine functionals on F such that the functional

U ( f ) = ul ( f ) if f ∈ Fl (1)

represents% on F and U(X) = U (F).

Moreover, U is unique up to positive affine transformations.

Ghirardato, Maccheroni, and Marinacci (2002), show that under suitable topo-
logical assumptions, the closed and convex hull of the family {ul} is the Clarke
subdifferential ofU .

Next we show that the quasiconcavity assumption Q implies concavity of the
representation.

Corollary 1 Let% be a binary relation represented by (1). Then,% satisfies Q if
and only if{ul} can be chosen such that

U ( f ) = min
l∈L

ul ( f )

for all f ∈ F.

It is easy to see that the assumptions WO, LI, LC, B, and Q are indepen-
dent. Moreover, the Example on page 216 of Castagnoli and Maccheroni (2000)
with F = R

2 andX = {0} shows that WO, LI, and LC are not sufficient to ob-
tain a representation like (1). Further notice thatU (α f +(1−α)x) = αU ( f )+
(1−α)U (x) for all α ∈ [0,1], f ∈ F, andx∈ X. We call this propertyX-affinity.
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A special case of interest is the one in which onlyF andX area priori given
and, for all f ∈ F −X, Ff is the convex hull co{ f ,X} of { f} andX. In this case
LI and LC can be restated with no explicit reference to the family Ff , moreover
they can be replaced by

X-Independence (X-I):For all f1, f2 in F , all x in X, and allα in (0,1): f1 % f2
iff α f1 +(1−α)x % α f2 +(1−α)x.

X-Continuity (X-C):For all x1,x2 ∈ X and all f in F: if x1 ≻ f and f ≻ x2,
then there existα andβ in (0,1) such thatαx1 + (1−α)x2 ≻ f and f ≻ βx1 +
(1−β)x2.

The previous Theorem takes the following form.

Corollary 2 Let % be a binary relation on F, and Ff = co{ f ,X} for all f ∈
F −X. The following statements are equivalent:

(i) % satisfies WO, LI, LC, and B.

(ii) % satisfies WO, X-I, X-C, and B.

(iii) There exists an X-affine functional U: F → R representing% and such that
U (X) = U (F).

Moreover, U is unique up to positive affine transformations.
In this case,% satisfies Q iff there exists a familyU of affine functionals on F,

all of which are concordant on X, such that

U ( f ) = min
u∈U

u( f ) .

We think that the above general results shed some light on thecommon traits
of several well-known particular results in the literature. As an exemplification in
the next section we apply them to a problem of choice under uncertainty. We are
confident that they can be fruitfully employed to the study ofdifferent problems;
e.g., decision models in whichF is the convex set of all (closed and convex) sets
of lotteries over a finite setZ of outcomes, and its elements are considered as
menus of alternatives available to a decision maker (see, e.g., Dekel, Lipman, and
Rustichini, 2001).

3 The Anscombe - Aumann setup

We now consider the special case in whichF is a set of acts; more precisely, we
focus on two possible settings.

The first one is the classical Anscombe - Aumann setup.S is a nonempty set
of states of the world, Σ an algebra of subsets ofS calledevents, X a convex set
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of outcomes. A simple actis just anX-valued, simple andΣ-measurable function;
F = Fs is the set of all simple acts. In this setting aprobability on Σ is a finitely
additive set functionP : Σ→ [0,1] such thatP( /0) = 0 andP(S) = 1.

The second one is a topological variation of the first.S is a compact metric
set,Σ its Borel σ-field, andX a finite dimensional simplex. Acontinuous actis
just anX-valued, continuous function;F = Fc is the set of all continuous acts. In
this setting aprobability on Σ is a countably additive set functionP : Σ → [0,1]
such thatP( /0) = 0 andP(S) = 1.

For every f1, f2 ∈ F andα ∈ [0,1] we denote byα f1 +(1−α) f2 the act in
F which yieldsα f1(s)+ (1−α) f2(s) ∈ X for everys∈ S. With a slight abuse of
notation, we identifyX with the set of all constant acts (thus making it a convex
subset ofF).

We will replace assumption B with the mildly stronger conditions:

Monotonicity (M):For all f1 and f2 in F: if f1 (s) % f2 (s) onS, then f1 % f2.

Nondegeneracy (N):Not for all f1 and f2 in F , f1 % f2.

Let G ⊇ X be a subset ofF , a functionalU : G → R is said to bemono-
toneif g1 (s) % g2 (s) onS impliesU (g1) ≥U (g2); automonotoneif U (g1(s)) ≥
U (g2(s)) on S impliesU (g1) ≥U (g2) (that is, ifU is monotone with respect to
the pointwise dominance relation it induces onG). Next lemma is a little variation
on the von Neumann - Morgenstern Theorem to yield a subjective probability re-
sult à la Anscombe and Aumann (1963). In particular, the lemma guarantees an
expected utility representation for any preference% on G that satisfies WO, I, C,
M, and N.

Lemma 1 Let G⊇ X be a convex subset of F, U: G → R a nonconstant, au-
tomonotone, affine functional, and u the restriction of U to X.1 There exists a
probability P onΣ such that

U (g) =

Z

S
(u◦g)dP

for all g ∈ G.

We are now ready to state the anticipated result.

Theorem 2 Given a binary relation% on F, the following conditions are equiv-
alent:

(i) % satisfies WO, LI, LC, M, and N.

1More precisely: denoted byxS the constant act taking valuex for all s∈S, u is the function defined
by u(x) = U (xS); the shorter expression we adopted derives from the identification ofX with the set
of all constant acts.
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(ii) There exists a family{Pl}l∈L of probabilities onΣ, and an affine noncon-
stant function u on X, such that the functional

U ( f ) =

Z

S
(u◦ f )dPl if f ∈ Fl (2)

represents% on F and it is monotone.

Moreover, U is unique up to positive affine transformations.

In the next corollary we consider the special case when the quasiconcavity
axiom Q holds.

Corollary 3 Let% be a binary relation represented by (2). Then,% satisfies Q if
and only if{Pl}l∈L can be chosen such that

U( f ) = min
l∈L

Z

S
(u◦ f )dPl

for all f ∈ F.

The counterpart of Corollary 2 forF = Fs is Theorem 1 of Gilboa and Schmei-
dler (1989), and we explicitly state it only in the caseF = Fc. Here, the set of all
probability measures is endowed with the weak* topology.

Corollary 4 A binary relation% on Fc satisfies WO, X-I, X-C, M, N, and Q
iff there exist an affine function u: X → R and a compact and convex setC of
probability measures, such that

f % g⇔ min
P∈C

Z

S
(u◦ f )dP≥ min

P∈C

Z

S
(u◦g)dP

for all f ,g∈Fc.C is unique and u is unique up to a positive linear transformation.

Differently from the Gilboa and Schmeidler (1989) result, the set of priorsC
consists of countably additive probability measures. Thisway of obtaining count-
able additivity is alternative to that used by Marinacci, Maccheroni, Chateauneuf,
and Tallon (2002); in fact, we add assumptions on the structure of the model rather
than assumptions on the preference.

4 Proofs

Next Lemma is a minor variation on the Hahn - Banach ExtensionTheorem. Its
proof is part of the one of Lemma 4 p. 829-830 in Maccheroni (2002).

Lemma 2 Let F ⊇ G ⊇ X be nonempty convex subsets of a vector space. If a
functional U : F → R is X-affine, concave, and U|G is affine, then there exists an
affine functional u: F → R such that u≥U and u|G = U|G.
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The following is a topological version of the previous one. We refer to Alipran-
tis and Border (1999) Chapter 5 for the basic notation and results on topological
vector spaces’ theory.

Lemma 3 Let E be a vector space, E′ be a total subspace of its algebraic dual,
and K be aσ(E′,E)-compact subset of E′. Set

I(e) = min
e′∈K

〈
e,e′
〉

for all e∈ E. If I is affine on a convex subset C of E, there exists an extreme point
e′C of K such that I|C = e′C, i.e.

e′C ∈ Argmine′∈K

〈
e,e′
〉

for all e∈C.

Proof of Lemma 3.For alle∈C, Argmine′∈K 〈e,e′〉 is aσ(E′,E)-closed subset of
K. By compactness ofK, it is enough to show that

Tn
j=1Argmine′∈K

〈
ej ,e′

〉
6= /0

for anye1,e2, ...,en ∈C. Choosew′ ∈ Argmine′∈K

〈
Σn

j=1
1
nej ,e′

〉
.

I
(
Σn

j=1ej
)

= nI

(
Σn

j=1
1
n

ej

)
= n

〈
Σn

j=1
1
n

ej ,w
′
〉

= Σn
j=1

〈
ej ,w

′〉

but, sinceI is affine onC

I
(
Σn

j=1ej
)

= nI

(
Σn

j=1
1
n

ej

)
= nΣn

j=1
1
n

I (ej) = Σn
j=1 min

e′∈K

〈
ej ,e

′〉 .

We can conclude thatw′ ∈ K and

Σn
j=1

〈
ej ,w

′〉= Σn
j=1min

e′∈K

〈
ej ,e

′〉 .

Hence 〈
ej ,w

′〉= min
e′∈K

〈
ej ,e

′〉

for all j = 1,2, ...,n, that isw′ ∈ Tn
j=1Argmine′∈K

〈
ej ,e′

〉
.

Moreover,
T

e∈C Argmine′∈K 〈e,e′〉 is a nonempty intersection of compact ex-
treme sets, hence it is a compact extreme set, and it containsan extreme point.
Q.E.D.

Proof of Theorem 1 and Corollary 1.2 By the von Neumann - Morgenstern
Theorem for alll ∈ L there exists an affine functional

ul : Fl → R

2The proofs are not separated to avoid duplicate notation.
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representing% onFl . We still denote byul an arbitrarily fixed affine extension of
ul to F . Sinceul |X is an affine representation of% onX, it is unique up to positive
affine transformations. Fix arbitrarilym∈ L and setu = um|X. For all l ∈ L choose
ul so thatul |X = u.

By B, for all f ∈ F there existx1,x2 ∈ X such thatx1 % f % x2. Therefore
u(x1) = ul (x1) ≥ ul ( f ) ≥ ul (x2) = u(x2), for all l ∈ L such thatf ∈ Fl , and there
existsα ∈ [0,1] such that

ul ( f ) = αu(x1)+ (1−α)u(x2)

= u(αx1 +(1−α)x2)

= ul (αx1 +(1−α)x2) ,

thereforeul ( f ) does not depend on the choice ofl ∈ L such thatf ∈ Fl . Moreover,
the argument above shows that there existsxf ∈ X (i.e.αx1+(1−α)x2) such that
xf ∼ f and

ul ( f ) = u(xf )

for all l ∈ L such thatf ∈ Fl .
We set

U ( f ) = ul ( f ) if f ∈ Fl .

What precedes guarantees thatU is well defined, andU ( f ) = u(xf ) = U (xf )
impliesU (F) = U (X). For all f1, f2 ∈ F , let fi ∼ xi ∈ X to obtain

f1 % f2 ⇔ x1 % x2 ⇔ u(x1) ≥ u(x2) ⇔U ( f1) ≥U ( f2) .

If U ′ : F → R is affine onFl for all l ∈ L and represents%, thenu′ =U ′
|X = au+b

for somea > 0 andb∈ R; for all f ∈ F , let f ∼ xf ∈ X to obtain

U ′ ( f ) = u′ (xf ) = au(xf )+b = aU ( f )+b.

This concludes the proof of Theorem 1.
For anyα ∈ [0,1], f ∈ F, andx∈ X, choosel ∈ L such thatf ∈ Fl to obtain

U (α f +(1−α)x) = ul (α f +(1−α)x)

= αul ( f )+ (1−α)ul (x)

= αU ( f )+ (1−α)U (x) ,

this shows thatU is X-affine.
Next we prove Corollary 1. IfU is constant, the result is trivial. IfU is not

constant, there existf1, f2 ∈ F such thatf1 ≻ f2 and, by B, there existx∗1,x
∗
−1 ∈ X

such thatx∗1 ≻ x∗−1. W.l.o.g. assumex∗−1 = −x∗1 (so that 0∈ X) andU (x∗1) = 1,
U
(
x∗−1

)
= −1, whenceU (0) = U

(1
2x∗1 + 1

2x∗−1

)
= 0. ThenU is positively homo-

geneous. The (unique) positively homogeneous extension ofU to the convex cone
H generated byF is the functional defined by

V (γf ) = γU ( f )
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if f ∈ F andγ> 0. Leth∈ H andy in the convex coneY generated byX, there
existγ> 0, f ∈ F andx∈ X such thath = γf andy = γx, whence

1
2

V (h+y) =
1
2

V (γ( f +x))

= γV
(

1
2

( f +x)

)

= γU
(

1
2

f +
1
2

x

)

= γ
(

1
2

V ( f )+
1
2

V (x)

)

=
1
2

(V (h)+V (y)) ,

that isV (h+y) = V (h)+V (y).
Let h1,h2 ∈ H; there existγ > 0, f1, f2 ∈ F such thathi = γfi . If V (h1) =

V (h2), U ( f1) = V ( f1) = V ( f2) = U ( f2), so thatf1 ∼ f2 andU
(1

2 f1 + 1
2 f2
)
≥

U ( f1) = 1
2U ( f1)+ 1

2U ( f2), that isV (h1 +h2)≥V (h1)+V (h2). Else ifV (h1) >
V (h2), there existsy∈Y such thatV (y)=V (h1)−V (h2) (take(V (h1)−V (h2))x∗1),
then

V (h1 +h2)+V (y) = V (h1 +h2+y)

≥ V (h1)+V (h2 +y)

= V (h1)+V (h2)+V (y) .

That is,V is superlinear andU is concave. Now using Lemma 2 for eachFl we
can choosevl such thatvl : F → R is affine,vl ≥U andvl |Fl

= U|Fl
. Replace the

ul chosen at the beginning of the proof withvl to obtain

U ( f ) = vl ( f ) = min
i∈L

vi ( f )

if f ∈ Fl . The rest is trivial. Q.E.D.

Given Theorem 1 and Corollary 1, theproof of Corollary 2 is a long, simple
exercise.

We denote byB0 (S,Σ) the vector space of all real valued, simple andΣ-
measurable functions, endowed with the supnorm topology. If S is a compact
metric set, we denote byC(S) the vector space of all real valued, continuous
functions, endowed with the supnorm topology. It is well known that the topo-
logical dual ofB0 (S,Σ) (resp.C(S)) is the vector spaceba(S,Σ) of all bounded,
finitely additive set functions onΣ (resp. the vector spaceca(S) of all countably
additive set functions onΣ): the duality being

〈ϕ,µ〉 =

Z

S
ϕdµ
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for all ϕ ∈ B0 (S,Σ) andµ∈ ba(S,Σ) (resp.ϕ ∈C(S) andµ∈ ca(S)). If k∈ R, the
constant element ofB0 (S,Σ) orC(S) taking valuek onSwill be denoted again by
k. A functionalI on a subset ofB0 (S,Σ) or C(S) is monotoneif ϕ1 ≥ ϕ2 implies
I (ϕ1) ≥ I (ϕ2). A monotone linear functionalI on B0 (S,Σ) or C(S) corresponds
to a positive set functionµ.

Proof of Lemma 1.Let u=U|X; obviouslyu is affine, (and continuous ifF = Fc).
For all g∈ G, let x∈ g(S) be such thatu(x) ≥ u(g(s)) for all s∈ Sandx∈ g(S)
be such thatu(x) ≤ u(g(s)) for all s∈ S. The existence of suchx andx descends
from the finiteness ofg(S) if F = Fs, from the continuity ofg andu if F = Fc.
ThenU (x) ≤ U (g) ≤ U (x), and there existsxg ∈ X such thatU (xg) = U (g).
HenceU (G) = U (X) and there existsx∗,x∗ ∈ intU (X) with U (x∗) < U (x∗).
Assume first−U (x∗) = U (x∗) = 1. Automonotonicity ofU yields thatg1,g2 ∈ G
andu◦g1 = u◦g2 imply U (g1) =U (g2). It is easy to see thatΦ = {u◦g : g∈ G}
is a convex subset ofB0 (S,Σ) or C(S) containing the constant functions 1 and
−1.

DefineI : Φ→ R by
I (ϕ) = U (g)

if ϕ = u◦g. I is monotone, affine,I (0) = 0 andI (1) = 1. It is routine to extendI to
the vector subspace〈Φ〉 of B0 (S,Σ) or C(S) generated byΦ and obtain a linear,
monotone functional̂I : 〈Φ〉 → R such thatÎ (0) = 0 and Î (1) = 1. A classical
extension result of Kantorovich (see, e.g., Aliprantis andBorder, 1999, Lemma
7.31) guarantees that there exists a linear, monotone extension Ĩ of Î to the whole
B0 (S,Σ) orC(S). We can conclude that there exists a probabilityP onΣ such that

U (g) = I (u◦g) =
Z

S
(u◦g)dP

for all g∈ G.
Finally, if it is not the case that−U (x∗) = U (x∗) = 1, there exista > 0 and

b∈ R such that−(aU (x∗)+b) = (aU (x∗)+b) = 1, and the proposed technique
yields

aU (g)+b =
Z

S
(a(u◦g)+b)dP

for all g∈ G, as wanted. Q.E.D.

Proof of Theorem 2 and Corollary 3.3 M implies B. If F = Fs, for any act f
takex ∈ f (S) such thatx % f (s) for all s∈ S andx ∈ f (S) such thatf (s) % x
for all s∈ S to obtainx % f and f % x. If F = Fc, let v : X → R be an affine
function that represents% on X; for any act f , there existss and s such that
v( f (s)) ≥ v( f (s)) ≥ v( f (s)) for all s∈ S, then M guarantees thatf (s) % f %
f (s). By Theorem 1 there exists a functionalU : F → R, affine onFl for all
l ∈ L, that represents% (and for all f ∈ F there existsxf ∈ X such thatxf ∼ f ).

3The proofs are not separated to avoid duplicate notation.
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M also implies thatU is automonotone onF (a fortiori on Fl for all l ∈ L). In
fact,U ( f1 (s)) ≥U ( f2 (s)) on S implies f1 (s) % f2 (s) on Sand f1 % f2, whence
U ( f1)≥U ( f2). M and N imply thatU is nonconstant onFl for all l ∈ L (just take
f ∗1 ≻ f ∗−1, andx∗1,x

∗
−1 ∈ X with x∗i ∼ fi to haveU (x∗1) > U

(
x∗−1

)
). Apply Lemma

1 toFl for eachl ∈ L to obtain a family{Pl}l∈L of probabilities onΣ such that

U ( f ) =
Z

S
(u◦ f )dPl if f ∈ Fl ,

whereu : X → R is the restriction ofU to X. This proves Theorem 2.
Next we prove Corollary 3. Assuming Q holds, thenU is concave.
If F = Fs, w.l.o.g.u(X)⊇ [−1,1], and{u◦ f : f ∈ F} is the setB0 (S,Σ,u(X))

of simple,Σ measurable functions fromS to u(X).
Else ifF = Fc, w.l.o.g.u(X)= [−1,1], and{u◦ f : f ∈ F} is the setC(S,u(X))

of continuous functions fromS to u(X).4

For all ϕ ∈ B0 (S,Σ,u(X)) or C(S,u(X)), set

I (ϕ) = U ( f )

if ϕ = u◦ f . I is monotone,u(X)-affine, concave,I (0) = 0 andI (1) = 1. There-
fore, its positive homogeneous extensionÎ to B0 (S,Σ) or C(S) is monotone, su-
perlinear, and such thatÎ (ϕ +k) = Î (ϕ)+ k for all ϕ ∈ B0 (S,Σ) or C(S) and all
k∈ R. Moreover, being bounded onB0 (S,Σ, [−1,1]) orC(S, [−1,1]), Î is contin-
uous in the supnorm. Standard convex analysis results guarantee that there exists
a unique convex and weak* compact setC of probabilities such that

Î (ϕ) = min
P∈C

Z

S
ϕdP

(just take asC the superdifferential of̂I at 0). The functional̂I is affine on the
convex setΦl = {u◦ f : f ∈ Fl} for all l ∈ L. In fact, for alll ∈ L and allϕi = u◦ fi
with fi ∈ Fl , andα ∈ [0,1] we have

Î (αϕ1 +(1−α)ϕ1) = I (u◦ (α f1 +(1−α) f2))

= U (α f1 +(1−α) f2)

= αU ( f1)+ (1−α)U ( f2)

= α Î (ϕ1)+ (1−α) Î (ϕ2) .

By Lemma 3, there existP′
l ∈ C such that

Î (ϕ) =

Z

S
ϕdP′

l

4Let x∗1 ∈ u−1 (1) andx∗−1 ∈ u−1 (−1). The restrictionν of u to
[
x∗−1,x

∗
1

]
is an homeomorphism

between
[
x∗−1,x

∗
1

]
and[−1,1]; so if ϕ : S→ [−1,1] is continuous,f = ν−1 ◦ϕ : S→

[
x∗−1,x

∗
1

]
⊆ X is

a continuous act such that

u( f (s)) = u
(
ν−1 (ϕ (s))

)
= ν

(
ν−1 (ϕ (s))

)
= ϕ (s) .
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for all ϕ ∈ Φl . Therefore for alll ∈ L and all f ∈ Fl

U ( f ) = I (u◦ f ) = min
P∈C

Z

S
(u◦ f )dP=

Z

S
(u◦ f )dP′

l = min
m∈L

Z

S
(u◦ f )dP′

m.

The rest is trivial. Q.E.D.

Theproof of Corollary 4 is immediate.
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Combining Belief Functions Issued from
Dependent Sources

MARCO E.G.V. CATTANEO
ETH Zürich, Switzerland

Abstract

Dempster’s rule for combining two belief functions assumesthe indepen-
dence of the sources of information. If this assumption is questionable, I
suggest to use the least specific combination minimizing theconflict among
the ones allowed by a simple generalization of Dempster’s rule. This in-
creases the monotonicity of the reasoning and helps us to manage situations
of dependence. Some properties of this combination rule andits usefulness
in a generalization of Bayes’ theorem are then considered.

Keywords

belief functions, propositional logic, combination, Dempster’s rule, independence,
conflict, monotonicity, nonspecificity, idempotency, associativity, Bayes’ theorem

1 Introduction

In the theory of belief functions, Dempster’s rule allows usto pool the information
issued from several sources, if we assume that these are independent. In his orig-
inal work [2], Dempster based the independence concept on the usual statistical
one and underlined the vagueness of its real world meaning. Shafer reinterpreted
Dempster’s work and in his monograph [8] defined a belief function without as-
suming an underlying probability space, making so the independence assumption
even more problematic.

In probability theory, the independence concept refers to classes of events or
to random variables, with respect to a single probability distribution (this kind of
independence for belief functions is studied for instance in Ben Yaghlane, Smets
and Mellouli [1]). On the contrary, the concept considered here refers to several
sources of information issuing several belief functions over the same frame of
discernment. The assumption of the independence of the sources can be justified
only by analogies with other situations in which this assumption proved to be
sensible (cf. Smets [10]).

Following Dubois and Prade [3], I consider a generalizationof Dempster’s
rule which allows the sources of information to be dependent. This general rule

133
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just assigns to a pair of belief functions a set of possible combinations, compelling
us to make a choice. If the independence of the sources of information is doubtful
(that is, we cannot adequately justify its assumption), I suggest to choose the least
specific combination minimizing the conflict. This increases the monotonicity of
the reasoning (in particular, complete monotonicity is assured if it does not en-
tail incoherence) and helps us to manage situations of dependence (in particular,
idempotency is assured).

2 Setting and Notation

It is assumed that the reader has a basic knowledge of the Dempster-Shafer the-
ory and of classical propositional logic (refer for instance to Shafer [8] and to
Epstein [4], respectively).

Let U be a finite set of propositional variables, which representsthe topic
considered.LU denotes the language of propositional logic built over the alphabet
U ∪{⊤,¬,∨,∧,→}, where⊤ is the tautology.VU denotes the set of (classical)
valuations ofLU , i.e. the consistent assignmentsv : LU −→ {t, f} of truth values
to the formulas ofLU (thus|VU | = 2|U|). The mapping

TU : LU −→ 2VU

ϕ 7−→ {v∈VU : v(ϕ) = t}

assigns to each formula ofLU the set of its models, i.e. the valuations for which
the formula is true.1

Definition 1 A basic belief assignment (bba) is a function

m : 2VU −→ [0,1] such that m( /0) = 0 and ∑
A⊆VU

m(A) = 1.2

MU is the set of bbas on2VU .
The belief and the plausibility aboutU with bba m are the functions

bel : LU −→ [0,1]

ϕ 7−→ ∑
A⊆TU (ϕ)

m(A) ,

pl : LU −→ [0,1]

ϕ 7−→ ∑
A∩TU (ϕ)6= /0

m(A) .

1TU is not injective (LU is redundant) but it is surjective (LU is sufficient).
2The beliefs are normalized, since the “open-world assumption” (see for instance Smets [9]) does

not make sense in the setting of classical propositional logic: a formula and its negation cannot both
be false.
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Consider two finite sets of propositional variablesU ⊆ V . If bel is a belief
aboutV , the beliefbel ⇃U aboutU is the restriction ofbel toLU . If bel is a belief
aboutU, the beliefbel ↿V aboutV is the vacuous extension ofbel toLV , i.e. the
minimal belief aboutV whose restriction toLU is bel (where minimal means that
if bel′ is a belief aboutV satisfyingbel′ ⇃U= bel, thenbel ↿V≤ bel′).3

Definition 2 A joint belief assignment (jba) with marginal bbas m1,m2 ∈MU is
a function

m : 2VU ×2VU −→ [0,1] such that

∑
B⊆VU

m(A,B) = m1 (A) for all A ⊆VU and

∑
A⊆VU

m(A,B) = m2 (B) for all B ⊆VU.

M
m1,m2
U is the set of jbas with marginal bbas m1,m2 ∈MU .
The conflict of a jba mis the quantity

c(m) = ∑
A∩B= /0

m(A,B) .

For anym1,m2 ∈MU , the functionmD on 2VU ×2VU defined by

mD (A,B) = m1 (A)m2 (B)

is a jba with marginal bbasm1 andm2 (it is the jba which corresponds to the
independence assumption). ThusM

m1,m2
U cannot be empty.

In the following,bel1 andbel2 will denote two beliefs aboutU with bbasm1

andm2, respectively (andpl1 andpl2 will denote the respective plausibilities). If
m∈M

m1,m2
U with c(m) < 1, the functionmon 2VU defined bym( /0) = 0 and

m(A) =
1

1−c(m) ∑
B∩C=A

m(B,C) if A 6= /0

is a bba. The belief aboutU with bbam is called combination ofbel1 andbel2 with
respect tom, and is denoted bybel1⊗mbel2. The rule⊗ generalizes Dempster’s
one⊕, since the latter is the combination with respect to the particular jbamD, or
symbolically⊕ = ⊗mD

.

3 Monotonicity and Conflict

A reasoning process is called monotonic if the acquisition of new information
does not compel us to give up some of our beliefs; otherwise itis called non-
monotonic. In the Dempster-Shafer theory, the reasoning process consists in the

3If m is the bba associated withbel, then the bba associated withbel ↿V is the functionm′ on 2
VV

defined bym′ (TV (ϕ)) = m(TU (ϕ)) for all ϕ ∈ LU , andm′ (A) = 0 if A /∈ TV (LU).
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combination of beliefs. That is, the reasoning would be monotonic only if

bel1⊗mbel2 ≥ max(bel1,bel2) ,

which does not always hold (cf. Yager [12]). Proposition 1 gives the best possible
lower bound forbel1⊗mbel2(ϕ) based only on the knowledge ofbel1 (ϕ), bel2(ϕ)
andc(m).

Proposition 1 If m∈M
m1,m2
U with c(m) < 1, andϕ ∈ LU , then

bel1⊗mbel2 (ϕ) ≥ max

(
bel1(ϕ)−c(m)

1−c(m)
,
bel2(ϕ)−c(m)

1−c(m)
,0

)
.

Proof. (1−c(m))bel1⊗mbel2 (ϕ) = ∑
/06=(A∩B)⊆TU (ϕ)

m(A,B) ≥

≥ ∑
A⊆TU(ϕ)

∑
B⊆VU

m(A,B)− ∑
A∩B= /0

m(A,B) = bel1 (ϕ)−c(m) .

Similarly, (1−c(m))bel1⊗mbel2 (ϕ) ≥ bel2(ϕ)−c(m). ✷

From Proposition 1 it follows that ifm has no conflict (i.e.c(m) = 0), then
we have monotonicity. But ifmhas some conflict (i.e.c(m) > 0), then the mono-
tonicity is assured only for the formulasϕ such that max(bel1(ϕ) ,bel2 (ϕ)) = 1.
In general we can affirm that the moremhas conflict, the more we have nonmono-
tonicity.

The monotonicity is admissible only if there is a beliefbel aboutU with
bel≥ max(bel1,bel2). If there is a formulaϕ with bel1(ϕ) > pl2(ϕ),4 then the
monotonicity is not admissible, sincebel≥ max(bel1,bel2) implies that

bel(⊤) ≥ bel(ϕ)+bel(¬ϕ) ≥ bel1(ϕ)+bel2(¬ϕ) > 1.

Proposition 2 assures that if the monotonicity is admissible, then it is feasible (that
is, there is a jba without conflict).

Proposition 2
min

m∈M m1,m2
U

c(m) = max
ϕ∈LU

(bel1 (ϕ)− pl2(ϕ)) .

Proof. Let m be a jba minimizing the conflict (such a jba certainly exists since

M
m1,m2
U ⊂ R

22|VU |
is compact and not empty).

If A1,A2,B1,B2 ⊆VU with A1∩B1 = /0, A1∩B2 6= /0, A1 6= A2, m(A1,B1) > 0
andm(A2,B2) > 0, thenA2∩B1 = /0 andA2∩B2 6= /0, and without loss of gener-
ality we may assume thatm(A2,B1) > 0.

4Notice thatbel2 (ψ)− pl1 (ψ) = bel1 (ϕ)− pl2 (ϕ) with ϕ = ¬ψ.
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To prove this, consider the functionm′ on 2VU ×2VU defined by

m′ (A,B) =





m(A,B)− ε if (A,B) ∈ {(A1,B1) ,(A2,B2)} ,
m(A,B)+ ε if (A,B) ∈ {(A1,B2) ,(A2,B1)} ,
m(A,B) otherwise,

for an ε such that 0< ε < min(m(A1,B1) ,m(A2,B2)). It is easily verified that
m′ ∈M

m1,m2
U andc(m′)≤ c(m), with equality only ifA2∩B1 = /0 andA2∩B2 6= /0.

LetA = {A⊆VU : ∃ B⊆VU A∩B= /0,m(A,B) > 0} andA =
[

A∈A
A.

If B∩A 6= /0, thenm2 (B) = ∑
A∈A ,A∩B6= /0

m(A,B).

This can be proven as follows. SinceB∩A 6= /0, there is anA1 ∈ A with
A1∩B 6= /0. SinceA1 ∈A , there is aB1 ⊆VU with A1∩B1 = /0 andm(A1,B1) > 0.
If A2 ⊆VU with A1 6= A2 andm(A2,B) > 0, then we are in the situation considered
above (withB2 = B). ThereforeA2 ∈ A (sinceA2∩B1 = /0 andm(A2,B1) > 0)
andA2∩B 6= /0. Thusm(A,B) > 0 impliesA∈ A andA∩B 6= /0.

Let ϕ ∈ LU with TU (ϕ) = A . Then

c(m) = ∑
A∈A ,A∩B= /0

m(A,B) = ∑
A∈A

m1 (A)− ∑
A∈A ,A∩B6= /0

m(A,B) =

= ∑
A∈A

m1 (A)− ∑
B∩A 6= /0

m2 (B) ≤ bel1(ϕ)− pl2(ϕ) .

On the other hand, for anyψ∈ LU (letC = TU (ψ) andC = VU\C),

c(m) ≥ ∑
A⊆C,B⊆C

m(A,B) = ∑
A⊆C

m1 (A)− ∑
A⊆C,B*C

m(A,B) ≥

≥ ∑
A⊆C

m1 (A)− ∑
B*C

m2 (B) = bel1 (ψ)− pl2(ψ)

✷

Let cm1,m2
min denote the value of min

m∈Mm1,m2
U

c(m), and letbel1 andbel2 be called

compatible ifbel1≤ pl2. Proposition 2 enables us to determinecm1,m2
min and to prove

Corollary 1.

Corollary 1 The following assertions are equivalent.

• The monotonicity of the combination of bel1 and bel2 is admissible.

• bel1 and bel2 are compatible.

• cm1,m2
min =0.
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4 The Choice of a Combination Rule

The only case in which the marginal bbas uniquely determine the jba is the con-
ditioning of a belief. The conditioning onϕ ∈ LU of a beliefbel aboutU is the
result of its combination withbelϕU, wherebelϕU denotes the minimal belief about
U assigning the value 1 to the formulaϕ.5 It is easily verified that if one of the
two beliefs which have to be combined has the formbelϕU , then the jba is unique
(i.e.M m1,m2

U = {mD}). Thus in the case of conditioning the general rule⊗ reduces
itself to Dempster’s one.

Generally, in order to combine two beliefsbel1 andbel2 aboutU, we must
choose a jbam∈M

m1,m2
U . Sometimes we can analyse in detail the situation and

base our choice on specific assumptions about the nature of the dependence of the
sources of information, but usually we can at most assume their independence.
Thus there is little loss of generality in considering only the two usual cases:
the one in which the independence is assumed, and the one in which nothing
is assumed about the sources. In both cases we need a combination rule; that
is, we need an operator⋆ assigning to every pair of bbasm1,m2 ∈ MU a jba
m1⋆m2 ∈M

m1,m2
U , for any finite set of propositional variablesU. Such an operator

can be sensible only if it satisfies the following basic requirements (the first two
make the combination rule independent of the particular logical formalization,
whereas the third one is a technical necessity).

• The influence ofU on⋆ must be limited to the cardinality ofVU. That is, if
V is a set of propositional variables andf : VV −→VU is a bijection, then

(m1◦ f )⋆ (m2◦ f ) (A,B) = m1 ⋆m2 ( f (A) , f (B)) for all A,B⊆VV .

• The operator⋆ must be “equivariant” with respect to the vacuous exten-
sions. That is, ifV is a finite set of propositional variables withU ⊆V and
m′

1,m
′
2 are the bbas associated withbel1 ↿V andbel2 ↿V , respectively, then

m′
1 ⋆m′

2(TV (ϕ) ,TV (ψ)) = m1 ⋆m2(TU (ϕ) ,TU (ψ)) for all ϕ,ψ∈ LU .

• The combination with respect tom1 ⋆m2 must be defined as often as possi-
ble. That is, ifcm1,m2

min < 1, thenc(m1 ⋆m2) < 1.

It is easily verified that the operator which corresponds to Dempster’s rule
(m1⋆m2 = mD) satisfies these basic requirements. Thus if in the considered situa-
tion the assumption of the independence of the sources of information is sensible,
we should employ Dempster’s rule. But if the independence isdoubtful, employ-
ing this rule can be hazardous, since the conflict is in general pretty high (even if

5The bba associated withbelϕU is the functionm on 2VU defined bym(TU (ϕ)) = 1 andm(A) = 0
if A 6= TU (ϕ). In particular,bel⊤U is the vacuous belief aboutU.
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the combined beliefs are exactly the same) and this means unnecessary nonmono-
tonicity.

In order to reduce the unnecessary nonmonotonicity, I suggest to choose the
jba which minimizes the conflict (with this choice the monotonicity is assured if it
is admissible). If this is not unique, it seems natural to me to choose the least spe-
cific one. This is the jba whose respective combination of beliefs maximizes the
well established measure of nonspecificity (see for instance Klir and Wierman [7])
among the combinations with respect to the jbas with minimalconflict.

Definition 3 If bel is a belief aboutU with bba m, the measure of nonspecificity
of bel is the quantity

N(bel) = ∑
A6= /0

m(A) log2 |A| .

Thus if cm1,m2
min < 1, I suggest to choose asm1 ⋆ m2 a jba m maximizing

N
(
bel1⊗mbel2

)
among them∈M

m1,m2
U with c(m) = cm1,m2

min (if cm1,m2
min = 1, the

choice of a jba is useless, since anyway we cannot combinebel1 andbel2). From
Proposition 3 follows that the task of finding such am is a problem of linear
programming.6

Proposition 3 If m1,m2 ∈MU , cm1,m2
min < 1 and f : N −→ R with f(0) < −|U|

and f(n) = log2n for all n > 0, then

arg max
m∈M m1,m2

U

c(m)=c
m1,m2
min

N
(
bel1⊗mbel2

)
= arg max

m∈Mm1,m2
U

∑
A,B⊆VU

m(A,B) f (|A∩B|) .

Proof. Let F(m) = ∑
A,B⊆VU

m(A,B) f (|A∩B|). If c(m) = cm1,m2
min , then

F(m) = cm1,m2
min f (0)+

(
1−cm1,m2

min

)
N
(
bel1⊗mbel2

)
.

Therefore it suffices to show that ifm maximizesF(m), thenc(m) = cm1,m2
min .

In the proof of Proposition 2 it is shown thatc(m) = cm1,m2
min is implied by the

following property: ifA1,A2,B1,B2 ⊆VU with A1∩B1 = /0, A1∩B2 6= /0, A1 6= A2,
m(A1,B1) > 0 andm(A2,B2) > 0, thenA2∩B1 = /0 andA2∩B2 6= /0.

Assume thatm maximizesF(m) and consider the transformationm 7−→ m′

defined in the proof of Proposition 2. If the hypothesis of theproperty stated
above holds, we have

F
(
m′)= F(m)+ ε( f (|A1∩B2|)+ f (|A2∩B1|)− f (|A1∩B1|)− f (|A2∩B2|)) >

> F(m)+ ε( f (|A2∩B1|)+ |U|− f (|A2∩B2|)) .

6The proof of Proposition 3 suggests an iteration algorithm for solving this problem: start for
instance frommD and recursively apply a transformation of the formm 7−→ m′ in order to increase
the value of the linear functional∑m(A,B) f (|A∩B|). I have not studied the properties of such an
algorithm yet.
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ThereforeF(m′) ≤ F(m) implies f (|A2∩B1|) < 0 and f (|A2∩B2|) ≥ 0; that is,
A2∩B1 = /0 andA2∩B2 6= /0. ✷

The least specific jba minimizing the conflict is not always unique, thus
m1 ⋆m2 is not always defined. Consider first the setS of pairs(m1,m2) for which
the operator⋆ is defined: the following properties can be easily verified. In S
the operator⋆ satisfies the three basic requirements stated above (noticethat if
(m1,m2) ∈ S , then(m1◦ f ,m2 ◦ f ) ∈ S and(m′

1,m
′
2) ∈ S ). If (m1,m2) ∈ S , then

(m2,m1) ∈ S andm1 ⋆ m2 (A,B) = m2 ⋆ m1 (B,A) for all A,B ⊆ VU. If m∈MU ,
then(m,m) ∈ S andm⋆m(A,A) = m(A) for all A⊆VU. The last two properties
imply commutativity and idempotency for the respective combinations of beliefs.

Commutativity is a necessary requirement in symmetrical situations where
the two sources of information have the same importance and credibility. In other
situations we can prefer that one of the two beliefs has a prominent role in the
combination: since these cases can be worked out with other methods (such as
discounting), I shall consider commutativity as necessary.

For any pair of bbasm1,m2 ∈MU , the least specific jbas minimizing the con-
flict form a convex polytope (i.e. the bounded intersection of a finite number of

closed half-spaces) inR22|VU |
. Therefore the completion of the definition of the

operator⋆ consists in a rule for assigning to every pair of bbas a point of the
respective convex polytope, in such a way that commutativity and the first two
basic requirements remain satisfied (the third one being trivially satisfied). Sym-
metry considerations could lead to the choice of the centre of the polytope (that
is, the barycentre with respect to the uniform mass density): this choice fulfills
the requirements. Another possibility fulfilling them is for instance the selection
of the point of the polytope which minimizes the Euclidean distance frommD. I
think that the choice of a rule should be based not only on its theoretical prop-
erties, but also on considerations about the computationalcomplexity of possible
implementations of this rule; since I have not analysed thisaspect yet, I leave the
question of the completion of the definition of⋆ open. The contents of the rest
of this paper are independent of any particular completion of this definition (such
that the above requirements are fulfilled): simply let⋆ be the obtained operator
and let⊙ be the respective rule for the combination of beliefs.

Both rules⊕ and⊙ satisfy the three basic requirements (to be precise, the
corresponding operators satisfy them) and commutativity;⊕ is associative, while
⊙ is idempotent. Dempster’s one is perhaps the only rule of theform ⊗ with
the four common properties and associativity;7 anyway, Example 1 shows that
associativity and idempotency are two incompatible properties for rules of this
form, even if we abandon every other assumption.

7The axiomatic derivations of Dempster’s rule in Klawonn andSchwecke [5] and Smets [9] do
not allow an answer to this question, since both sets of axioms contain a property which is stronger
than the ones considered here; while Klawonn and Smets [6] consider a framework which is more
restrictive than the one used here.



Cattaneo: Combining Belief Functions Issued from Dependent Sources 141

Example 1 Let q∈U and 1
2 < α < 1. Let bel1 and bel2 be the minimal beliefs

with bel1 (q) = α and bel2 (¬q) = α, respectively. That is, m1 (Q) = m2
(
Q
)

= α
and m1 (VU) = m2 (VU) = 1−α, with Q= TU (q) andQ = VU\Q.

Then the bba m associated with bel1⊗bel2 satisfies m(Q) = m
(
Q
)

= β and
m(VU) = 1−2β, for aβ such that0≤ β≤ 1

2 (the value ofβ depends on the choice
of a jba).

If we assume idempotency and associativity, we obtain

bel1⊗bel2 = (bel1⊗bel1)⊗bel2 = bel1⊗ (bel1⊗bel2) .

That is, there is a jba m∈M m1,m
U with

m
(
Q
)

=
m
(
VU,Q

)

1−c(m)
=

m
(
Q
)
−m

(
Q,Q

)

1−m
(
Q,Q

) .

Therefore c(m) = m
(
Q,Q

)
= 0, and from Proposition 1 follows that

β = bel1⊗bel2(q) ≥ bel1(q) = α,

which is a contradiction toβ ≤ 1
2 < α. Thus idempotency and associativity are

incompatible (if|U| ≥ 1).

In order to combine two beliefs without assuming the independence of the
sources, I suggest the rule⊙. This can be considered as the most conservative
rule of the form⊗: it conserves as much as possible of both beliefs (it has mini-
mal conflict, i.e. maximal monotonicity) without adding anything (it has minimal
specificity among the rules with minimal conflict). It is idempotent, thus it can-
not be associative. It can be easily verified (for instance byconsidering epistemic
probabilities, defined in Example 3) that associativity is incompatible also with
the minimization of the conflict (which is the basic feature of the rule⊙).

Idempotency is only a particular case of the following property of the rule⊙:
if bel2 is a specialization ofbel1 (i.e.m2 can be obtained through redistribution of
m1 (A) to the non-empty setsB⊆ A, for all A⊆VU ), thenbel1⊙bel2 = bel2. This
property is important if strong dependence is possible: ifbel2 is a specialization
of bel1, the information encoded bybel1 can be part of the information encoded
by bel2, in which case the result of pooling the information is actually bel2.

Associativity is important because (with commutativity) it implies that the re-
sult of the combination ofn beliefs is independent of the order in which these
beliefs are combined. In a sense, this independence of the order can be obtained
also for the rule⊙: if we have to combinen beliefs simultaneously, we can con-
sider the set ofn-dimensional jbas and extend our rule for the selection of a jba
to then-dimensional case. An interesting problem could be the search for an ana-
logue of Proposition 2 for then-dimensional case.

Example 2 and Example 3 illustrate the differences between the two rules⊕
and⊙ in two simple situations.
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Example 2 Consider the situation of Example 1. Since bel1 and bel2 are not com-
patible, the monotonicity of their combination is not admissible. In fact, for both
ϕ ∈ {q,¬q} we havemax(bel1,bel2)(ϕ) = α > 1

2, while bel1⊗bel2(ϕ) = β≤ 1
2.

Using⊕ we obtainβ = α
α+1 < 1

2, whereas using⊙ we obtainβ = 1
2. Thus, unlike

the rule⊕, the rule⊙ allows only the necessary nonmonotonicity.
In Example 1 we have seen that no rule of the form⊗ can satisfy both equa-

tions bel1⊗bel1 = bel1 and(bel1⊗bel1)⊗bel2 = bel1⊗(bel1⊗bel2). Obviously,
⊕ satisfies the second one, whereas⊙ satisfies the first one. If we want to combine
the three beliefs of the second equation in a unique way with the rule⊙, we can
extend it to the 3-dimensional case. The 3-dimensional jba minimizing the con-
flict is unique and the respective combination of the three beliefs is the one that
we obtain by using the rule⊙ in the left-hand side of the equation: bel1⊙bel2.

Example 3 The beliefs bel1 and bel2 considered in Example 2 are consonant. In
some senses, at the opposite extreme from consonant beliefswe find the epistemic
probabilities. A belief aboutU with bba m is an epistemic probability if m(A) = 0
for all A ⊆ VU with |A| 6= 1. Such a belief is completely defined by the r= |VU |
values p1, . . . , pr that m assigns to the A⊆ VU with |A| = 1 (it suffices to decide
an order for the elements of VU).

Let bel1 and bel2 be two epistemic probabilities defined by p(1)
1 , . . . , p(1)

r and

p(2)
1 , . . . , p(2)

r , respectively. Then their combination bel1⊗bel2 is still an epistemic
probability; let it be defined by p1, . . . , pr . The monotonicity is admissible only if
bel1 = bel2, and to assure this monotonicity a rule must be idempotent. Using⊕
we obtain that pi = bp(1)

i p(2)
i for each i∈ {1, . . . , r}, where b≥ 1 is a normaliz-

ing constant. Using⊙ we obtain that pi = cmin
{

p(1)
i , p(2)

i

}
≥ min

{
p(1)

i , p(2)
i

}

for each i∈ {1, . . . , r}, where c≥ 1 is a normalizing constant (notice that the
inequality is strict unless bel1 = bel2).

If we want to simultaneously combine n epistemic probabilities defined, re-

spectively, by p( j)
1 , . . . , p( j)

r (for each j∈ {1, . . . ,n}), we can easily extend the
rule ⊙ to the n-dimensional case. The result of the combination is the epis-

temic probability defined by p1, . . . , pr , with pi = dmin
{

p(1)
i , . . . , p(n)

i

}
for each

i ∈ {1, . . . , r}, where d≥ 1 is a normalizing constant.

5 A Generalization of Bayes’ Theorem

Now I present a situation in which a combination rule minimizing the conflict
is especially sensible and in which we can get many results without need to con-
sider the whole combination of beliefs: it suffices to know the value of the conflict
between them (which for a combination rule minimizing the conflict can be de-
termined thanks to Proposition 2).
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Consider a hypothesish implying a beliefbel aboutU (with h /∈ U). If we
have a beliefbelH aboutH = {h}, we can combine these two beliefs in the fol-
lowing way. We first expandbel to the belief aboutU′ = U ∪H which contains
nothing more than the implicationh ⇒ bel: let (h⇒ bel) be the minimal belief
aboutU′ assigning for allϕ ∈ LU the valuebel(ϕ) to the formulah→ ϕ.8 Then
we can combine(h⇒ bel) with the vacuous extension ofbelH to LU′ , obtaining

belH ↿U
′ ⊕(h⇒ bel) .

The use of Dempster’s rule is justified in the sense that this is only a formal con-
struction to apply a “metabelief”belH aboutH to the consequencebel of the
hypothesish (in particular, there can be no conflict). The resulting belief aboutU
is (

belH ↿U
′ ⊕(h⇒ bel)

)
⇃U= belH (h)bel+(1−belH (h))bel⊤U;

that is, the discounting ofbel with discount rate 1− belH (h). This is sensible,
sinceplH (¬h) = 1−belH (h) measures the amount of our uncertainty about the
hypothesish.

If we get some information in the form of a beliefbel′ aboutU, we can com-
bine its vacuous extension toLU′ with our belief aboutU′, obtaining in particular
a new beliefbel′

H
aboutH :

bel′H =
((

belH ↿U
′ ⊕(h⇒ bel)

)
⊗mbel′ ↿U

′)
⇃H .

Thus in order to getbel′
H

, we must choose a jbam. If we reason on the form of
the marginal bbas, we can see thatm is sensible only if it is “naturally” based on
a jbamh for the combination ofbel andbel′.9 Thenc(m) = belH (h)c(mh), so
the combination is possible unless we are sure of the hypothesis and this totally
conflicts with the new information (i.e.belH (h) = 1 andc(mh) = 1). The changes
in the belief aboutH are entirely determined by the conflictc(mh):

bel′H (h) =
belH (h)−c(m)

1−c(m)
≤ belH (h) and

bel′H (¬h) =
belH (¬h)

1−c(m)
≥ belH (¬h) .

8If m is the bba associated withbel, then the bba associated with(h⇒ bel) is the func-

tion m′ on 2
VU′

defined bym′ (TU′ (h→ ϕ)) = m(TU (ϕ)) for all ϕ ∈ LU , and m′ (A) = 0 if
A /∈ TU′ ({h→ ϕ : ϕ ∈ LU}).

9If mH andm′ are the bbas associated withbelH andbel′ , respectively, thenm is the jba which
satisfies (for allϕ,ψ ∈ LU )

m(TU′ (h∧ϕ) ,TU′ (ψ)) = mH (TH (h))mh (TU (ϕ) ,TU (ψ)) ,

m(TU′ (h→ ϕ) ,TU′ (ψ)) = mH (VH )mh (TU (ϕ) ,TU (ψ)) and

m(TU′ (¬h) ,TU′ (ψ)) = mH (TH (¬h))m′ (TU (ψ)) .
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If 0 < belH (h) < 1, thenbel′
H

(h) is a strictly decreasing function ofc(mh), and
in particular we maintain our belief inh only if c(mh) = 0. Thusc(mh) (that is,
the conflict between the implications of the hypothesish and the new information)
is clearly a measure of disagreement. Therefore it is especially sensible to choose
a jbamh minimizing the conflict (and if we are only interested in the new belief
aboutH , then knowing the minimal conflict suffices). With such a choice we
obtain in particular that ifbel andbel′ are compatible, then we maintain our belief
in h (this is in general not true ifmh = mD, even ifbel= bel′).

Consider now the general case withn hypothesesh1, . . . ,hn implying, respec-
tively, the beliefsbel1, . . . ,beln aboutU (with h1, . . . ,hn /∈U). Given an “a priori”
beliefbelH aboutH = {h1, . . . ,hn} and an “observation” beliefbel′ aboutU, we
can combine these beliefs to obtain an “a posteriori” beliefbel′

H
aboutH :

bel′H =

((
belH ↿U

′ ⊕
n

O

i=1

(hi ⇒ beli) ↿U
′
)
⊗mbel′ ↿U

′
)

⇃H .

As before,U′ = U ∪H and the use of Dempster’s rule in the first combination

can be justified as a formal construction. The new element is
n

O

i=1

(hi ⇒ beli) ↿U
′
,

which is any combination of then beliefs(hi ⇒ beli) ↿U
′
using the general rule⊗

(we can obtain it byn−1 applications of the binary rule or with an-dimensional
jba). This allows the hypotheses to be dependent (for instance if two hypotheses
differ only by a detail and the two implied beliefs are almostthe same), and it is
important to notice that anyway there can be no conflict amongthen+ 1 beliefs
belH ↿U

′
and(hi ⇒ beli) ↿U

′
.

This way to update a belief aboutH is a broad generalization of Bayes’ the-
orem for epistemic probabilities and of Smets’ generalizedBayesian theorem
(gBt) for normalized beliefs (see for instance Smets [11]).The construction of

n
O

i=1

(hi ⇒ beli) ↿U
′

allows a lot of freedom, which of course can be limited by

some additional assumptions. Before introducing two such assumptions, I con-
sider a simple special case.

Let belH be a belief aboutH satisfying

n

∑
i=0

belH (ϕi) = 1, where

ϕ0 = ¬h1∧ . . .∧¬hn and
ϕi = ¬h1∧ . . .∧¬hi−1∧hi ∧¬hi+1 . . .∧¬hn if i ∈ {1, . . . ,n} ;

that is,belH is an epistemic probability onϕ0, . . . ,ϕn. Then

belH ↿U
′ ⊕

n
O

i=1

(hi ⇒ beli) ↿U
′
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is independent of the choice of
n

O

i=1

(hi ⇒ beli) ↿U
′
, and its restriction toLU is

n

∑
i=1

belH (hi)beli +belH (ϕ0)bel⊤U.

This shows thatϕ0 can be considered as an additional hypothesish0 implying the
vacuous beliefbel0 = bel⊤U , andbelH can be seen as an epistemic probability on
the mutually exclusive and exhaustive hypothesesh0, . . . ,hn. As before, in order
to getbel′

H
, we must choose a jbam. And as before, if we reason on the form

of the marginal bbas, we can see thatm is sensible only if it is “naturally” based
on the jbasmi of the combinations ofbeli andbel′ (for eachi ∈ {0, . . . ,n}).10

Thenc(m) =
n

∑
i=1

belH (hi)c(mi) (notice thatc(m0) = 0), so the combination is

possible unless we are sure that the truth is among some hypotheses and these to-
tally conflict with the new information. The belief aboutH remains an epistemic
probability onϕ0, . . . ,ϕn, and as before, the changes are entirely determined by
the conflictsc(m1) , . . . ,c(mn):

bel′H (hi) =
1−c(mi)

1−c(m)
belH (hi) for eachi ∈ {0, . . . ,n} .

Thus the belief in a hypothesishi increases if and only if the respective conflict
c(mi) is less thanc(m), which is a weighted average of the conflicts of then+1
hypotheses (h0 included). Therefore the conflictsc(m1) , . . . ,c(mn) measure the
disagreement between the respective hypotheses and the newinformation, and
thus it is especially sensible to choose jbasm1, . . . ,mn minimizing the conflict.
With such a choice we obtain in particular that ifbeli andbel′ are compatible,
then the belief inhi does not decrease (and it increases ifc(m) > 0); this is in
general not true ifmi = mD, even ifbeli = bel′.

I now consider the two announced assumptions which limit thefreedom in the

construction of
n

O

i=1

(hi ⇒ beli) ↿U
′
. The first one is that the hypothesesh1, . . . ,hn

are mutually exclusive (i.e.belH (ϕ0∨ . . .∨ϕn) = 1), but not necessarily exhaus-
tive (which would meanbelH (ϕ1∨ . . .∨ϕn) = 1). The second one is that the
beliefs bel1, . . . ,beln are issued from independent sources of information (the
sources can be identified with the respective hypothesesh1, . . . ,hn). Since the hy-
potheses are mutually exclusive, this simply means that thebelief aboutU implied

10m is the jba which satisfies (for allϕ,ψ ∈ LU andi ∈ {0, . . . ,n})

m(TU′ (ϕi ∧ϕ) ,TU′ (ψ)) = belH (ϕi)mi (TU (ϕ) ,TU (ψ)) .
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by a disjunction of hypotheses is the disjunctive combination of the respective be-
liefs (the disjunctive rule of combination is defined for instance in Smets [11]).
With these two additional assumptions, we obtain

bel′H =

((
belH ↿U

′ ⊕
n

M

i=1

(hi ⇒ beli) ↿U
′
)
⊗mbel′ ↿U

′
)

⇃H .

This is a generalization of Smets’ gBt for normalized beliefs (which corresponds
to the special case withm= mD), and thus also of Bayes’ theorem for epistemic
probabilities. Ifbel′ has the formbelϕU (in the literature the gBt is usually re-
stricted to this case), the jbam is unique and the updated beliefbel′

H
is the one

that we would obtain by applying the gBt to then+1 hypothesesh0, . . . ,hn (with
bel0 = bel⊤U). But if bel′ has not the formbelϕU, we must choose a jbam; and as
before,mcan be sensible only if it is “naturally” based on the jbas of the combina-
tions of the new informationbel′ with the beliefs implied by the hypotheses or by
any disjunction of hypotheses. Since also in this more general case the conflicts
measure the disagreement between the respective hypotheses (or disjunctions of
hypotheses) and the new information, it is especially sensible to choose jbas min-
imizing the conflict. With such a choice we obtain in particular that if the beliefs
implied by some hypotheses are compatible with the new information, then the
values of the belief in these hypotheses and in their disjunctions do not decrease
(and they increase ifc(m) > 0). If instead we use Dempster’s rule (that is, we use
the gBt), we can get very bad results, since the conflict between the new infor-
mationbel′ and a hypothesish implying the beliefbel can be very high, even if
bel′ = bel (i.e. the prevision ofh is perfect). In fact, if a hypothesis is correct, can
we assume that the belief which is a theoretical consequenceof the hypothesis and
the belief which is a practical consequence of the correctness of the hypothesis are
independent?

6 Conclusion

In this paper a rule has been proposed to combine two belief functions issued
from sources of information whose independence is doubtful. This rule increases
the monotonicity of the reasoning, assuring in particular complete monotonicity if
this is admissible. The proposed combination rule is commutative and idempotent.
It is not associative, but it can be easily extended to a rule for the simultaneous
combination of any number of belief functions.

The proposed combination rule leads to sensible results in ageneralization of
Bayes’ theorem for epistemic probabilities and of Smets’ generalized Bayesian
theorem. This generalization allows the new information tobe any belief function:
in this situation the use of Dempster’s rule (that is, the independence assumption)
leads to questionable results.
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Abstract

We present the application of a recently introduced nonparametric predictive
inferential method to compare two groups of data, consisting of observed
event times and right-censoring times. Comparison is basedon imprecise
probabilities concerning one future observation per group.
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1 Introduction

We apply a recently introduced method for statistical inference, called ‘nonpara-
metric predictive inference’ (NPI) [1, 6], to the problem ofcomparing two groups
of data, or, if one prefers to use such terminology, two underlying populations,
where the data include right-censored observations. This generalizes the results
presented by Coolen [3], who did not allow censoring. Right-censoring typically
occurs in study of event times, e.g. survival times of patients in medical applica-
tions, or periods without failures of technical systems in reliability engineering,
where a right-censoring at a timet just implies that the event of interest has not
yet happened before or at timet. Throughout, we assume that no further infor-
mation is available about the random quantities corresponding to right-censored
observations, an assumption often called ‘noninformativecensoring’ [6, 11, 13].
We also assume that the two populations compared are independent, in the sense
that any information about the random quantities from one population does not
influence our inferences on random quantities from the otherpopulation.

The method of statistical inference used here is based on quite minimal mod-
elling assumptions, and is directly in terms of random quantities representing
future observations. We assume that either a well-specifiedevent happens, at a
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particular time, to each item for which, or individual for who, we have an obser-
vation, or that a time is reported at which such an event has not yet occurred. All
data are referred to as ‘observation (time)’, if it is a time at which the event of
interest actually occurred we call it ‘event (time)’, else ‘(right-)censoring (time)’.
Speaking in terms of ‘time’, we restrict attention to non-negative random quanti-
ties, so to random quantities and observations on the time-axis [0,∞). However,
the method presented is more widely applicable, as only a finite partition of (part
of) the real line is required.

In Section 2, the basics of nonparametric predictive inference are briefly sum-
marized. Section 3 presents the main result on predictive comparison of two
groups of lifetime data, which is illustrated, and briefly compared with an alterna-
tive nonparametric method, via two examples in Section 4. For ease of notation,
we assume that there are no ties of any kind in the data, so no two observations are
equal. In Section 5, we briefly discuss how the method can be adapted for dealing
with tied observations, and we add a few concluding remarks about the presented
method and results, including some attention to when this method might be used.

2 Nonparametric predictive inference

In this section, we summarize NPI for data including right-censored observations,
as recently presented by Coolen and Yan [6], to which we referfor the theoretical
justification and further detailed discussion of this method.

Let a single group of data consist ofn observations, of whichu are event times,
0< t1 < .. . < tu, andv= n−u right-censoring times, 0< c1 < .. . < cv. Let t0 = 0
andtu+1 = ∞, and let the right-censoring times in(ti ,ti+1) beci

1 < .. . < ci
l i
. We

assume that there are no ties among the data, the method is easily adapted for ties
[6]. Let ñt be the number of items with observation time greater than or equal to
t. We call this the number of items ‘at risk just prior to timet ’, at an observation
time the corresponding item is included in ˜nt .

Based on such data, Coolen and Yan [6] introduce, and justify, the assumption
‘right-censoringA(n)’ (rc-A(n)) for NPI, for the random quantityXn+1 representing
the lifetime of a future item, or the survival time of a futureindividual. Right-
censoringA(n) generalizes Hill’sA(n) [7], which underlies NPI if the data do not
include right-censored observations [1, 3]. Description of rc-A(n) requires notation
for partial specification of probability distributions, called ‘M-function’.

Definition 1 (M-function) [6]
A partial specification of a probability distribution for a real-valued random
quantity X can be provided via probability masses assigned to intervals, without
any further restriction on the spread of the probability mass within each interval.
A probability mass assigned, in such a way, to an interval(a,b), is denoted by
MX(a,b), and referred to as M-function value for X on(a,b).
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Clearly, all M-function values for X on all intervals shouldsum up to one,
and each M-function value should be in[0,1].

Definition 2 (rc-A(n)) [6]
The assumption ‘right-censoring A(n)’ (rc-A(n)) is that the probability distribution
for a nonnegative random quantity Xn+1, based on u event times and v right-
censoring times, as described above, is partially specifiedby (i = 0, . . . ,u; k =
1, . . . , l i )

MXn+1(ti , ti+1) =
1

n+1 ∏
{r:cr<ti}

ñcr +1
ñcr

,

MXn+1(c
i
k, ti+1) =

1
(n+1)ñci

k

∏
{r:cr<ci

k}

ñcr +1
ñcr

.

The product terms are defined as one if the product is taken over an empty set.
The M-function values forXn+1 on other intervals are zero. This implicitly as-
sumes non-informative censoring, as a post-data assumption related to exchange-
ability of all items known to be at risk at any timet, see Coolen and Yan [6], who
also justify rc-A(n). We illustrate theM-function values in rc-A(n) via an example,
followed by a brief explanation of the key ideas behind rc-A(n).

Example 1
Table 1 gives the data for groupA which are part of Example 2 in Section 4, where
the data are introduced in more detail. For this group, thereare 10 observed event
times and 6 right-censoring times. Table 1 also presents theM-function values,
with corresponding intervals, according to rc-A(n) for these data.

TheseM-function values sum up to one (subject to a minor rounding effect),
and illustrate the effects of right-censoring. Notice, forexample, that there is some
probability mass defined on each interval from a right-censoring time to the next
observed event time, and that a right-censored observationalso leads to larger
M-function values between two later observed event times.

This assumption rc-A(n) is generalizing Hill’s assumptionA(n) [7], the idea is
roughly as follows. Ifn+1 real-valued random quantities are exchangeable, and
we assume that ties occur with probability zero, then then+ 1-st of these ran-
dom quantities has equal probability 1/(n+1) to fall in each of the intervals that
form the partition created by the values of the othern random quantities,before
any of these random quantities are actually observed. Hill [7] proposed this same
property as aposteriorpredictive distribution, calling itA(n), and later he [8, 9]
discussed further properties of this assumption and its useas an inferential proce-
dure, and presented a prior process that leads toA(n) in the Bayesian framework
(under finite additivity). Generally speaking, use ofA(n) makes sense in case of
very vague prior information, or indeed if one explicitly wishes not to use any
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Table 1: Cervical cancer example (> t: right-censoring att)

data value
M(0,90) 0.05882

90 M(90,142) 0.05882
142 M(142,150) 0.05882
150 M(150,269) 0.05882
269 M(269,291) 0.05882
291 M(291,680) 0.05882

>468 M(468,680) 0.00535
680 M(680,837) 0.06417
837 M(837,1037) 0.06417

>890 M(890,1037) 0.00802
1037 M(1037,1297) 0.07219

>1090 M(1090,1297) 0.01203
>1113 M(1113,1297) 0.01684
>1153 M(1153,1297) 0.02527

1297 M(1297,1429) 0.12634
1429 M(1429,∞) 0.12634

>1577 M(1577,∞) 0.12634

such prior information. Our generalization adopts the sameidea for the situation
of right-censored data, using the extra assumption that a right-censored item, at
the moment the censoring takes place, had an exchangeable residual time till event
with all those items for which the event had not yet taken place, and which had
not been censored previously. This exchangeability at timeof censoring is indeed
a proper form of ‘noninformative censoring’, and the probabilities as specified by
rc-A(n), viaM-function values, for a single future observation are then derived via
conditioning on possible values for the right-censored items. Further details of the
derivation and justification of rc-A(n) are given by Yan [16] and Coolen and Yan
[6].

Berliner and Hill [2] also presented the use ofA(n) for right-censored data,
but instead of adding an assumption to deal with the exact censoring information,
they replaced each censored observation by just survival past the largest observed
event time smaller than the censoring time, in which case no assumptions need to
be added toA(n). This implies that at observed event times, our method coincides
with the Berliner-Hill method, but these two methods differin between event
times if there are censoring times. In addition, Berliner and Hill assumed that the
probability mass per interval is uniformly distributed (except for the last interval
if there is no finite right-end point), whereas we use imprecise probabilities, as we
discuss next.
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It should be mentioned that, of course, imprecise probabilities have been used
before for situations where not all data are complete, in thesense that not each
event of interest has actually been observed. For example, Manski [12] considers
the logical bounds on conditional probabilities based on censored samples alone.
This would relate to our approach if we had not added any further assumption
about the right-censored data, the novelty of rc-A(n) is the extra exchangeability-
related assumption about the residual time till event for each censored observa-
tion, which has the effect of keeping imprecision relatively small, which is partic-
ularly useful if there are relatively many censored observations in the data set.

The partial specification of the probability distribution of Xn+1, viaM-function
values as specified by rc-A(n), enables NPI if the problems considered can be
formulated in terms of a future observationXn+1. However, for many problems
of interest, theM-function values only imply bounds for predictive probabilities,
where optimal bounds are imprecise probabilities [15].

As a consequence of theM-function values defined in rc-A(n), the events
{Xn+1 ∈ (ti , ti+1)}, for i = 0, . . . ,u, have precise probabilities [6]

P(Xn+1 ∈ (ti , ti+1)) = MXn+1(ti , ti+1)+
l i

∑
k=1

MXn+1(c
i
k, ti+1).

3 Comparing two groups of lifetime data

For the comparison of two groups of lifetime data we use the notation as intro-
duced above, but consistently add an indexa or b, corresponding to the groups
which we callA andB. For example, for groupA we havena observations, con-
sisting of the event times 0< ta,1 < .. . < ta,ua and right-censoring times 0< ca,1 <
.. . < ca,va, and the right-censoring times in the interval(ta,i ,ta,i+1) are denoted by
ci

a,1 < .. . < ci
a,la,i

, et cetera. Throughout we assume that there are no ties at all
among the observations (see Section 5), and that information on one group does
not have any effect on probabilities of random quantities corresponding to the
other group, so thatXa,na+1 andXb,nb+1 are independent and that data from group
A does not influence our probabilities forXb,nb+1, and vice versa. We summarize
this by stating that the groups are independent.

We require some additional notation, effectively countingthe number of ob-
served event times from groupB to the left of observations from groupA:

sb(ta,i) = #{tb, j |tb, j < ta,i , j = 1, . . . ,ub},
sb(c

i
a,k) = #{tb, j |tb, j < ci

a,k, j = 1, . . . ,ub},

for i = 1, . . . ,ua andk = 1, . . . , la,i . Similarly, we need notation for the number of
right-censoring times from groupB in the interval(tb,sb(ta,i),ta,i):

sc
b(ta,i) = #{cb, j |cb, j ∈ (tb,sb(ta,i),ta,i), j = 1, . . . ,ub},
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for i = 1, . . . ,ua +1.
The main results of this paper, namely the lower and upper probabilities for

eventsXa,na+1 > Xb,nb+1, based on the assumptions rc-A(na) and rc-A(nb), are pre-
sented as a theorem below. The proof of the theorem is simplified via a lemma,
which we present first, and which justifies the use of a varietyof the theorem of
total probability with conditioning on nested intervals, with probability distribu-
tions partially specified viaM-function values.

Lemma 1 For s≥ 2, let Jl = ( j l , r), with j1 < j2 < .. . < js < r, so we have nested
intervals J1 ⊃ J2 ⊃ . . .⊃ Js with the same right end-point r (which may be infinity).
We consider two independent real-valued random quantities, say X and Y. Let the
probability distribution for X be partically specified via M-function values, with
all probability mass P(X ∈ J1) described by the s M-function values MX(Jl ), so
∑s

l=1MX(Jl ) = P(X ∈ J1). Then, without additional assumptions, we have

s

∑
l=1

P(Y < j l )MX(Jl ) ≤ P(Y < X, X ∈ J1) ≤ P(Y < r)P(X ∈ J1),

and these bounds are optimal, so they are the maximum lower and minimum upper
bounds that generally hold.

Proof. For any numbers of nested intervals, the proof follows the same princi-
ple, so for ease of notation we present it fors= 3. We use the theorem of total
probability to condition further on the partition{J3,J2 \ J3,J1 \ J2} of J1 for the
random quantityX. The probability distribution ofX on J1 is partially specified
viaM-function values forX defined onJ1,J2,J3. LetMl

X(J) denote the (unknown)
part of theM-function valueMX(Jl ) that is actually inJ ⊂ Jl , so we have

P(X ∈ J3) = M3
X(J3)+M2

X(J3)+M1
X(J3),

P(X ∈ J2\ J3) = M2
X(J2\ J3)+M1

X(J2\ J3),

P(X ∈ J1\ J2) = M1
X(J1\ J2),

MX(J1) = M1
X(J1\ J2)+M1

X(J2\ J3)+M1
X(J3),

MX(J2) = M2
X(J2\ J3)+M2

X(J3),

MX(J3) = M3
X(J3).

TheseM-function values are not further specified, but we can now usethe theorem
of total probability, and then derive bounds by solving the constrained optimiza-
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tion problems. The lower bound follows from (withJ4 = /0 for ease of notation)

P(Y < X, X ∈ J1) =
3

∑
l=1

P(Y < X, X ∈ Jl \ Jl+1)

=
3

∑
l=1

P(Y < X |X ∈ Jl \ Jl+1)P(X ∈ Jl \ Jl+1)

= P(Y < X |X ∈ J1\ J2)M
1
X(J1\ J2)+

P(Y < X |X ∈ J2\ J3)[M
2
X(J2\ J3)+M1

X(J2 \ J3)]+

P(Y < X |X ∈ J3)[M
3
X(J3)+M2

X(J3)+M1
X(J3)].

With the constraints on theseM-function values as given above, the lower bound
is achieved by effectively putting the probability masses for X at the infimums of
the intervals on which they are defined, so setting

M1
X(J2\ J3) = M1

X(J3) = M2
X(J3) = 0,

and taking the lower bounds for the conditional probabilities forY < X, given
X ∈ I , for the relevantI above, by replacingX ∈ I by X = inf(I), leading to the
termsY < j l in the lower bound. The upper bound can be derived simultaneously,
but is rather trivial as these nested intervals have the sameright end-point. The
fact that these bounds are optimal, without additional assumptions, follows easily
from this construction. ✷

Bounds for the probability ofXa,na+1 > Xb,nb+1, based on rc-A(na) and rc-A(nb),
are presented in the following theorem. As these bounds are optimal, without any
additional assumptions, they are lower and upper probabilities [15], which we
denote byP(Xa,na+1 > Xb,nb+1) andP(Xa,na+1 > Xb,nb+1), respectively.

Theorem 1 Assume that data are available from two independent groups,A and
B, following the notation presented above. Based on the assumptions rc-A(na) and
rc-A(nb), predictive comparison of these two groups can be based on the following
lower and upper probabilities for Xa,na+1 > Xb,nb+1,
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P(Xa,na+1 > Xnb+1)

=
ua

∑
i=0

{[
sb(ta,i)−1

∑
j=0

P(Xb,nb+1 ∈ (tb, j ,tb, j+1))

]
MXa,na+1(ta,i ,ta,i+1)

+
la,i

∑
k=1






sb(c
i
a,k)

∑
j=0

P(Xb,nb+1 ∈ (tb, j ,tb, j+1))


MXa,na+1(c

i
a,k,ta,i+1)





 ,

P(Xa,na+1 > Xb,nb+1)

=
ua

∑
i=0

{[
sb(ta,i+1)−1

∑
j=0

P(Xb,nb+1 ∈ (tb, j ,tb, j+1))

+P(Xb,nb+1 ∈ (tb,sb(ta,i+1)−1,tb,sb(ta,i+1)))

+

sc
b(ta,i+1)

∑
l=1

MXb,nb+1(c
sc
b(ta,i+1),tb,sb(ta,i+1)+1)

]
P(Xa,na+1 ∈ (ta,i ,ta,i+1))

}
.

Proof. These lower and upper probabilities are derived by first writing

P(Xa,na+1 > Xb,nb+1) =
ua

∑
i=0

P(Xb,nb+1 < Xa,na+1, Xa,na+1 ∈ (ta,i ,ta,i+1)),

and then applying the above lemma for each of the terms withinthis sum, and
using the intervals on which theM-function values forXa,na+1 are defined accord-
ing to rc-A(na). Then, bounds for the resulting probabilities (compare thelemma
above) forXb,nb+1 are determined, based on the correspondingM-function values
according to rc-A(nb), where a lower bound is derived by including only theM-
function values on intervals that are fully included in the interval in the event of in-
terest, and the upper bound is derived by including allM-function values on inter-
vals that have non-empty intersection with the interval in the event of interest. Fur-
ther details are relatively straightforward (see Yan [16] for a complete proof).✷

These lower and upper probabilities are not available in a nice closed form.
However, calculation is relatively easy as the individual terms are all product
forms following from the definition of rc-A(n). If the data do not include any
right-censorings, these lower and upper probabilities areidentical to those pre-
sented by Coolen [3]. Although these formulae become fairlycomplex, the un-
derlying idea for these optimal bounds is straightforward.The lower probability
for Xa,na+1 > Xb,nb+1, based on the rc-A(n) assumptions per group, puts the prob-
ability masses as specified by theM-function values forXa,na+1 at the infimums
of the intervals on which correspondingM-function values are specified, and for
Xb,nb+1 at the supremums of the intervals, so at this bound the probability masses
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are effectively least supportive for this event, given the partial specifications via
M-function values. Of course, the upper probability just relates to these probabil-
ity masses being put at the other end-points per interval.

We have presented the lower and upper probabilities forXa,na+1 > Xb,nb+1.
Similar results are available for the complementary eventXb,nb+1 > Xa,na+1, which
can be derived by interchanging the indices for the groups above. However, it is
not necessary to calculate lower and upper probabilities for both these events, be-
cause the well-known conjugacy property for imprecise probabilities [15],P(E)=
1−P(Ec), holds, whereEc is the complementary event ofE. Informally, this
holds because our bounds are optimal, and correspond to the same assessments
based on the rc-A(n) assumptions per group. Alternatively, one could only com-
pute either the lower or upper probabilities for both these events, requiring only a
single algorithm, and using this relation to derive the other imprecise probabilities
of interest.

Implicit in our results is that the probability ofXa,na+1 = Xb,nb+1 is zero, which
is reasonable for our method as long as there are no ties amongthe event times
of different groups (it would become a problem if a particular event time had
been observed twice or more in each group, we discuss ties briefly in Section 5),
and which is a consequence of our method of comparison, whereeffectively we
always put probability masses at end-points of different intervals. It should be
remarked, however, that a positive upper probability forXa,na+1 = Xb,nb+1 could
also be justified on the basis of these rc-A(n) assumptions, but doing so consis-
tently would have made the analysis presented here more awkward, with little
relevance for most practical situations.

4 Examples

We illustrate our nonparametric predictive method for comparison of two groups
of lifetime data via two examples. We also compare our methodwith Mantel’s
two-sample test for censored data (see Section 11.7 of Hollander and Wolfe [10]
for details), an established nonparametric method for suchcomparison, and dis-
cuss the important difference between our predictive approach and Mantel’s hy-
pothesis test.
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Example 2
The data for this example are given in Table 2, and were also used by Parmar and
Machin [14] to illustrate nonparametric methods for survival data. It is a subset
of data obtained from 183 patients entered into a randomisedPhase III trial con-
ducted by the Medical Research Council Working Party on Advanced Carcinoma
of the Cervix.

Table 2:Cervical cancer survival data (> t: right-censoring att).

Control (A) New (B)
90 272

142 362
150 373
269 >383
291 >519

>468 >563
680 >650
837 827

>890 >919
1037 >978

>1090 >1100
>1113 1307
>1153 >1360

1297 >1476
1429

>1577

The data are on survival of 30 patients with cervical cancer,recruited to a
randomised trial aimed at analysing the effect of addition of a radiosensitiser to
radiotherapy (‘newtreatment’,B), via comparison to the use of radiotherapy alone
(‘control treatment’,A). Of these 30 patients,na = 16 received the control treat-
mentA, andnb = 14 received the new treatmentB. The data are in days since start
of the study, the event of interest is death of the patient caused by this cancer. Fur-
ther variables recorded for patients in the original study are not taken into account
(see Parmar and Machin [14] for further references to the original study), we only
use this subset of all the data to illustrate our new method for comparison of two
such groups of data.

Using the method presented in Section 3, we compare these twogroups of
data predictively, by focussing on future observationsXa,17, assuming rc-A(16),
and Xb,15, assuming rc-A(14). The corresponding lower and upper probabilities
are

P(Xa,17 > Xb,15) = 0.226 andP(Xa,17 > Xb,15) = 0.473,
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which, by the conjugacy property for imprecise probability, imply

P(Xb,15 > Xa,17) = 0.527 andP(Xb,15 > Xa,17) = 0.774.

These imprecise probabilities indicate that a preference for the new treatment
B over the control treatmentA would be reasonable, if no further information
(e.g. on side-effects) is taken into account, and if one aimsat surviving longer. In
particular from an individual’s perspective, this seems tobe a natural inference if
choice between two treatments is possible.

Although we do not discuss it explicitly here, such a choice could also take
further aspects into account via our general rc-A(n)-based inferential method. For
example, a patient may prefer the treatment with maximum lower probability of
surviving a particular length of time, it is fairly straightforward to calculate such
lower probabilities per treatment in our approach [6].

From a classical nonparametric point of view, inference on the difference be-
tween survival chances for the two treatments could, for example, be based on
application of Mantel’s two-sample test for censored data,which is a rank-based
test of a null-hypothesis of two equal survival functions, using asymptotic nor-
mality of the relevant test statistic. Applying this test for these cervical cancer
survival data leads to a one-sidedp-value of 0.1020, which may not be regarded
as strong enough evidence against the null-hypothesis.

Example 3
The data for this example are given in Table 3, and were also used by Hollander
and Wolfe [10] to illustrate Mantel’s test. These data are from a clinical trial on
Hodgkin’s disease, a cancer of the lymph system. Two treatments were consid-
ered, a radiation treatment of the affected node (TreatmentA; 25 patients), and
a radiation treatment of the affected node plus all nodes in the trunk of the body
(Treatment B; 24 patients). The data represent the relapse-free survival times in
days. If a relapse had not occurred before the end of the study, then the observation
for that patient is right-censored.

Our method, as presented in Section 3, applied to these data,leads to predic-
tive imprecise probabilities

P(Xb,25 > Xa,26) = 0.557 andP(Xb,25 > Xa,26) = 0.893.

These values indicate that the data suggest pretty stronglythatTb,25 > Ta,26, hence
it seems to be in a patient’s best interest to opt for Treatment B. Applying Man-
tel’s test to these data leads to an approximate one-sidedp-value of 0.0006, which
suggests very strongly that the survival functions corresponding to these two treat-
ments are not equal.
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Table 3:Hodgkin’s disease survival data (> t: right-censoring att).

Treatment A Treatment B
86 822 173 >1726

107 836 498 >1763
141 >1309 615 >1807
296 1375 950 >1879
312 >1378 >1190 >1889
330 >1446 >1242 >1897
346 >1540 1408 >1968
364 >1645 >1493 >1972
401 >1818 >1572 >2022
419 >1910 >1576 >2070
505 >1953 >1585 >2177
570 >2052 >1684
688 >1699

Clearly, testing equality of survival functions is quite a different inference than
our predictive comparison, and it is not unreasonable to consider the outcome
of both when trying to get more insight into the different survival chances per
treatment. In Example 2, our method suggests that the new treatment would be
better for a future patient than the control treatment, although Mantel’s test does
not strongly reject the hypothesis that both survival functions could be equal. In
Example 3, the conclusions from both methods seem to agree more.

In general, it could also happen that Mantel’s test would reject the null hy-
pothesis, while we would end up with lower and upper probabilities both close
to 0.5, so care should be taken on interpretation of the results of our method and
Mantel’s test. In situations where the real problem of interest is naturally in terms
of comparison of next observations, we believe that our new method should be
preferred.

The imprecision in our upper and lower probabilities in Examples 2 and 3 is
not unreasonably large, in particular when considering therelatively large number
of right-censored observations. This is explicitly due to our assumption rc-A(n),
without this exchangeability-related assumption for the residual times till event
for the right-censored items, logical bounds on the relevant conditional probabil-
ities would be much wider.

5 Concluding remarks

We suggest that our new method for comparison of two groups ofsurvival data is
particularly useful in situations where such comparison takes place from a single
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individual’s perspective, e.g. when a person has a choice between the two treat-
ments. If one has more relevant information, e.g. covariates or prior knowledge,
some established statistical methods will be more appropriate. Our method can
then still serve as a sort of base method, which can provide insight into the effect
of further information or model assumptions, used with those alternative meth-
ods, by comparing the ultimate inferences. Extending our approach to possible
inclusion of covariates is an interesting and relevant topic for future research.

Generalization of this approach to more than two groups of data is feasible,
in a way similar to Coolen and van der Laan [5], who consideredthis problem
without censored observations. It is also possible to extend attention to multiple
future observations per group, but this would lead to rathercomplex computations
due to dependence of such future observations for the same group [4, 7].

Throughout, we have assumed that there are no ties in the data. If there are ties,
these can relatively easily be taken into account by breaking the ties, so assuming
that tied values are only nearly identical, applying our method, and then letting the
differences decrease to zero. For ties between the groups, one should break them
into all possible orderings among the groups, calculate lower (upper) probabilities
for each such ordering, and then take the minimum (maximum) of all these lower
(upper) probabilities as the actual lower (upper) probability to be used for the
comparison.
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Systems with Uncertain Gain∗
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Abstract

We generalise the optimisation technique of dynamic programming for discrete-
time systems with an uncertain gain function. We assume thatuncertainty
about the gain function is described by an imprecise probability model, which
generalises the well-known Bayesian, or precise, models. We compare vari-
ous optimality criteria that can be associated with such a model, and which
coincide in the precise case: maximality, robust optimality and maximinity.
We show that (only) for the first two an optimal feedback can beconstructed
by solving a Bellman-like equation.

Keywords

optimal control, dynamic programming, uncertainty, imprecise probabilities

1 Introduction to the Problem

The main objective in optimal control is to find out how a system can be influ-
enced, or controlled, in such a way that its behaviour satisfies certain require-
ments, while at the same time maximising a given gain function. A very effective
method for solving optimal control problems for discrete-time systems is the re-
cursivedynamic programmingmethod, introduced by Richard Bellman [1].

To explain the ideas behind this method, we refer to Figures 1and 2. In Fig-
ure 1 we depict a situation where a system can go from statea to statec through
stateb in three ways: following the pathsαβ, αγ andαδ. We denote the associated
gains byJαβ, Jαγ andJαδ respectively. Assume that pathαγ is optimal:Jαγ > Jαβ
andJαγ > Jαδ. Then it follows that pathγ is the optimal way to go fromb to c. To

∗This paper presents research results of project G.0139.01 of the Fund for Scientific Research,
Flanders (Belgium), and of the Belgian Programme on Interuniversity Poles of Attraction initiated by
the Belgian state, Prime Minister’s Office for Science, Technology and Culture.
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Figure 1: Principle of Optimality
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Figure 2: Dynamic Programming

see this, observe thatJαν = Jα +Jν for ν ∈ {β,γ,δ} (gains are assumed to be addi-
tive) and derive from the inequalities above thatJγ > Jβ andJγ > Jδ. This simple
observation, which Bellman called theprinciple of optimality, forms the basis for
the recursive technique of dynamic programming for solvingan optimal control
problem. To see how this is done in principle, consider the situation depicted in
Figure 2. Suppose we want to find the optimal way to go from state a to state
e. After one time step, we can reach the statesb, c andd from statea, and the
optimal paths from these states to the final statee are known to beα, γ andη, re-
spectively. To find the optimal path froma to e, we only need to compare the costs
Jλ + Jα, Jµ + Jγ andJν + Jη of the respective candidate optimal pathsλα , µγ and
νη, since the principle of optimality tells us that the pathsλβ, νδ andνε cannot
be optimal: if they were, then so would be the pathsβ, δ andε. This, written down
in a more formal language, is what is essentially known asBellman’s equation. It
allows us to solve an optimal control problem very efficiently through a recursive
procedure, by calculating optimal paths backwards from thefinal state.

In applications, it may happen that the gain function, whichassociates a gain
with every control action and the resulting behaviour of thesystem, is not well
known. This problem is most often treated by modelling the uncertainty about the
gain by means of a probability measure, and by maximising theexpected gainun-
der this probability measure. Due to the linearity of the expectation operator, this
approach does not change the nature of the optimisation problem in any essential
way, and the usual dynamic programming method can thereforestill be applied.

It has however been argued by various scholars (see [11, Chapter 5] for a de-
tailed discussion with many references) that uncertainty cannot always be mod-
elled adequately by (precise) probability measures, because, roughly speaking,
there may not be enough information to identify a single probability measure. In
those cases, it is more appropriate to model the available information through an
impreciseprobability model, e.g., by a lower prevision, or by a set of probability
measures. For applications of this approach, see for instance [4, 10].

Two questions now arise naturally. First, how should we formulate the optimal
control problem: what does it mean for a control to be optimalwith respect to an
uncertain gain function, where the uncertainty is represented through an impre-



164 ISIPTA ’03

cise probability model? In Section 2 we identify three different optimality criteria,
each with a different interpretation (although they coincide for precise probability
models), and we study the relations between them. Secondly,is it still possible to
solve the corresponding optimal control problems using theideas underlying Bell-
man’s dynamic programming method? We show in Section 3 that this is the case
for only two of the three optimality criteria we study: only for these a generalised
principle of optimality holds, and the optimal controls aresolutions of suitably
generalised Bellman-like equations. To arrive at this, we study the properties that
an abstract notion of optimality should satisfy for the Bellman approach to work.

We recognise that other authors (see for instance [8]) have extended the dy-
namic programming algorithm to systems with imprecise gainand/or imprecise
dynamics. However in doing so, none of them seems to have questioned in what
sense their generalised dynamic programming method leads to optimal paths. In
this article we approach the problem from the opposite, and in our opinion, more
logical side: one shouldfirst define a notion optimality and investigate whether
the dynamic programming argument holds for this notion of optimality, instead
of blindly “generalising” Bellman’s algorithm. In the remainder of this section,
we introduce the basic terminology and notation that will allow us to give a pre-
cise formulation of the problems under study. We have omitted proofs of technical
results that do not contribute to a better understanding of the main ideas.

1.1 Preliminaries

1.1.1 The System

For a andb in N, the set of natural numbersc that satisfya ≤ c ≤ b is denoted
by [a,b]. Let xk+1 = f (xk,uk,k) describe a discrete-time dynamical system with
k∈ N, xk ∈ X anduk ∈U. The setX is the state space (e.g.,R

n, n∈ N\{0}), and
the setU is the control space (e.g.,R

m, m∈N\{0}). The mapf : X ×U×N→X
describes the evolution of the state through time: given thestatexk ∈ X and the
control uk ∈ U at time k ∈ N, it returns the next statexk+1 of the system. For
practical reasons, we impose a final timeN beyond which we are not interested in
the dynamics of system. Moreover, it may happen that not all states and controls
are allowed at all times: we demand thatxk should belong to a set ofadmissible
statesXk at every instantk∈ [0,N], and thatuk should belong to a set ofadmissible
controlsUk at every instantk∈ [0,N−1], whereXk ⊆ X andUk ⊆U are given.
The setXN may be thought of as the set we want the state to end up in at timeN.

1.1.2 Paths

A path is a triple(x,k,u·), wherex ∈ X is a state,k ∈ [0,N] a time instant, and
u· : [k,N−1] → U a sequence of controls. A path fixes a unique state trajectory
x· : [k,N] → X , which is defined recursively throughxk = x andxi+1 = f (xi ,ui , i)
for every i ∈ [k,N−1]. It is said to beadmissibleif xℓ ∈ Xℓ for everyℓ ∈ [k,N]
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anduℓ ∈Uℓ for everyℓ ∈ [k,N−1]. We denote the unique map from/0 to U by
u/0. If k = N, the controlu· does nothing: it is equal tou/0.

The set of admissible paths starting in the statex ∈ Xk at timek ∈ [0,N] is
denoted byU(x,k), i.e.,U(x,k) = {(x,k,u·) : (x,k,u·) admissible path}. For ex-
ample,U(x,N) = {(x,N,u/0)} wheneverx∈ XN andU(x,N) = /0 otherwise.

If we consider a path with final timeM different from N, then we write
(x,k,u·)M (assumek ≤ M ≤ N). Observe that(x,k,u·)k can be identified with
(x,k,u/0)k; it is the unique path (of length zero) starting and ending attime k in
x. Let 0≤ k ≤ ℓ ≤ m. Two paths(x,k,u·)ℓ and(y, ℓ,v·)m can be concatenated if
y = xℓ. The concatenation is denoted by(x,k,u·, ℓ,v·)m or (x,k,u·)ℓ ⊕ (y, ℓ,v·)m,
and represents the path that starts in statex at timek, and results from applying
controlui for timesi ∈ [k, ℓ−1] and controlvi for timesi ∈ [ℓ,m−1]. In particular,

(x,k,u·)ℓ = (x,k,u·)k⊕ (x,k,u·)ℓ = (x,k,u·)ℓ ⊕ (xℓ, ℓ,u·)ℓ.

The set of admissible paths starting in statex∈ Xk at timek ∈ [0,N] and ending
at time ℓ ∈ [k,N] is denoted byU(x,k)ℓ. In particular we have thatU(x,k)k =
{(x,k,u/0)k} if x∈ Xk, andU(x,k)k = /0 otherwise. Moreover, for any(x,k,u·)ℓ ∈
U(x,k)ℓ and anyV ⊆U(xℓ, ℓ), we use the notation(x,k,u·)ℓ⊕V for the set

{(x,k,u·)ℓ⊕ (xℓ, ℓ,v·) : (xℓ, ℓ,v·) ∈ V }.

1.1.3 The Gain Function

Applying the control actionu∈U to the system in statex∈X at timek∈ [0,N−1]
yields a real-valued gaing(x,u,k,ω). Moreover, reaching the final statex∈ X at
timeN also yields a gainh(x,ω). The parameterω∈ Ω represents the (unknown)
state of the world, used to model uncertainty of the gains. Ifwe knew that the
real state of the world wasωo, we would know the gains to beg(x,u,k,ωo) and
h(x,ωo). As it is, the real state of the world is uncertain, and so are the gains,
which could be considered as random variables. It is important to note that the
parameterω only influences the gains; it has no effect on the system dynamics,
which are assumed to be known perfectly well.

Assuming gain additivity, we can also associate a gain with apath(x,k,u·):

J(x,k,u·,ω) = ∑N−1
i=k g(xi ,ui , i,ω)+h(xN,ω),

for anyω∈ Ω. If M < N, we also use the notation

J(x,k,u·,ω)M = ∑M−1
i=k g(xi ,ui , i,ω).

It will be convenient to associate a zero gain with an empty control action: for
k∈ [0,N] we letJ(x,k,u·,ω)k = 0.

The main objective of optimal control can now be formulated as follows: given
that the system is in the initial statex ∈ X at timek ∈ [0,N], find a control se-
quenceu· : [k,N−1] → U resulting in an admissible path(x,k,u·) such that the
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corresponding gainJ(x,k,u·,ω) is maximal. Moreover, we would like this control
sequenceu· to be such that its valueuk at the time instantk is a function ofx and
k only, since in that case the control can be realised through state feedback.

If ω is known, then the problem reduces to the classical problem of dynamic
programming, first studied and solved by Bellman [1]. We assume here that the
available information about the true state of the world is modelled through aco-
herent lower prevision Pdefined on the setL(Ω) of gambles, or bounded real-
valued maps, onΩ. A special case of this obtains whenP is a linear prevision
P. Linear previsions are the precise probability models; they can be interpreted as
expectation operators associated with (finitely additive)probability measures, and
they areprevisionsor fair pricesin the sense of de Finetti [6]. We assume that the
reader is familiar with lower previsions and coherence (see[11] for more details).

For a given path(x,k,u·), the corresponding gainJ(x,k,u·,ω) can be seen as a
real-valued map onΩ, which is denoted byJ(x,k,u·) and called thegain gamble
associated with(x,k,u·).1 In the same way we define the gain gamblesg(xk,uk,k),
h(xN) and J(x,k,u·)M. There is gain additivity:J(x,k,u·, ℓ,v·)m = J(x,k,u·)ℓ +
J(xℓ, ℓ,v·)m for k ≤ ℓ ≤ m≤ N, andJ(x,k,u·)k = 0. We denote byJ (x,k) the set
of gain gambles for admissible paths from initial statex∈ Xk at timek∈ [0,N]:

J (x,k) = {J(x,k,u·) : (x,k,u·) ∈U(x,k)} .

For fixedk∈ [0,N−1] andx∈ Xk, the gainJ(x,k,u·,ω) can also be interpreted as
a map fromU(x,k) toL(Ω); this map is denoted byJ(x,k).

2 Optimality Criteria

2.1 P-Maximality

The lower previsionP(X) of a gambleX has a behavioural interpretation as a
subject’s supremum acceptable price for buying the gambleX: it is the highest
value ofµ such that the subject accepts the gambleX − x (i.e., accepts to buyX
for a pricex) for all x < µ. The conjugate upper previsionP(X) = −P(−X) of X
is then the subject’s infimum acceptable price for sellingX. This way of looking
at a lower previsionP defined on the setL(Ω) of all gambles allows us to define
a strict partial order>P onL(Ω) whose interpretation is that of strict preference.

Definition 1 For any gambles X and Y inL(Ω) we say that Xstrictly dominates
Y, or X is strictly preferred toY (with respect to P), and write X>P Y, if

P(X−Y) > 0 or (X ≥Y and X6= Y).

Indeed, ifX ≥ Y andX 6= Y, then the subject should be willing to exchange
Y for X, since this transaction can only improve his gain. On the other hand,

1To simplify the discussion, we assume this map is bounded.
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P(X −Y) > 0 expresses that the subject is willing to pay a strictly positive price
to exchangeY for X, which again means that he strictly prefersX to Y.

It is clear that we can also use the lower previsionP to express a strict pref-
erence between any twopaths (x,k,u·) and (x,k,v·), based on their gains: if
J(x,k,u·) >P J(x,k,v·) this means that the uncertain gainJ(x,k,u·) is strictly pre-
ferred to the uncertain gainJ(x,k,v·). We then say that the path(x,k,u·) is strictly
preferred to(x,k,v·), and we use the notation(x,k,u·) >P (x,k,v·).

>P is anti-reflexive and transitive, and therefore a strict partial order onL(Ω),
and in particular also onJ (x,k) and onU(x,k). But it is generally not linear: any
two paths need not be comparable with respect to this order, and it does not always
make sense to look for greatest elements, i.e., for paths that strictly dominate all
the others. Rather, we should look for maximal, or undominated, elements: paths
that are not dominated by any other path. Observe that a maximal gambleX in
a setK with respect to>P is a maximal element ofK with respect to≥ (i.e., it
is point-wise undominated) such thatP(X −Y) ≥ 0 for all Y ∈ K . In caseP is
a linear previsionP, maximal gambles with respect to>P are just the point-wise
undominated gambles whose prevision is maximal; they maximise expected gain.

Definition 2 Let k∈ [0,N], x ∈ Xk andV ⊆ U(x,k). A path(x,k,u∗· ) in V is
called P-maximal, or >P-optimal, in V if no path inV is strictly preferred to
(x,k,u∗· ), i.e., (x,k,u·)6>P(x,k,u∗· ) for all (x,k,u·) ∈ V . We denote the set of the
P-maximal paths inV by opt>P

(V ). The operatoropt>P
is called theoptimality

operator induced by>P, associated withU(x,k).

The P-maximal paths inU(x,k) are just those admissible paths starting at
time k in statex for which the associated gain gamble is a maximal element of
J (x,k) with respect to the strict partial order>P. If we denote the set of these>P-
maximal gain gambles inJ (x,k) by opt>P

(J (x,k)), then for all(x,k,u·)∈U(x,k):

(x,k,u·) ∈ opt>P
(U(x,k)) ⇐⇒ J(x,k,u·) ∈ opt>P

(J (x,k)) .

P-maximal paths do not always exist: not every partially ordered set has maximal
elements. A fairly general sufficient condition for the existence ofP-maximal el-
ements inJ (x,k) (and hence inU(x,k)) is thatJ (x,k) should be compact2 (and
of course non-empty). This follows from a general result mentioned in [11, Sec-
tion 3.9.2]. In fact, Theorem 1 is a stronger result, whose Corollary 1 turns out to
be very important in proving that the dynamic programming approach works for
P-maximality (see Section 3.2). Its proof is based on Zorn’s lemma.

Theorem 1 For every element X of a compact subsetK of L(Ω) that is not a
maximal element ofK with respect to>P there is some maximal element Y ofK
with respect to>P such that Y>P X.

2In this paper, we always assume thatL(Ω) is provided with the supremum-norm topology.



168 ISIPTA ’03

Corollary 1 Let k∈ [0,N] and let x∈ Xk. If J (x,k) is compact then for every
admissible, non-P-maximal path(x,k,u·) in U(x,k) there is a P-maximal path
(x,k,u∗· ) in U(x,k) that is strictly preferred to it.

2.2 P-Maximinity

We now turn to another optimality criterion that can be associated with a lower
previsionP. We can useP to define another strict order onL(Ω):

Definition 3 For any gambles X and Y inL(Ω) we write X⊐P Y if

P(X) > P(Y) or (X ≥Y and X6= Y).

⊐P induces a strict partial order onU(x,k), since it is anti-reflexive and tran-
sitive onL(Ω). A maximal elementX of a subsetK of L(Ω) with respect to⊐P

is easily seen to be a point-wise undominated element ofK that maximises the
lower prevision:P(X) ≥ P(Y) for all Y ∈ K .

We can consider as optimal inU(x,k) those admissible paths(x,k,u·) for
which the associated gain gambleJ(x,k,u·) is a maximal element ofJ (x,k) with
respect to⊐P; they are the paths(x,k,u·) that maximise the ‘lower expected gain’
P(J(x,k,u·)) and whose gain gamblesJ(x,k,u·) are point-wise undominated.

Definition 4 Let k∈ [0,N], x ∈ Xk andV ⊆ U(x,k). A path(x,k,u∗· ) in V is
called P-maximin, or ⊐P-optimal, in V if no path inV is strictly preferred to
(x,k,u∗· ), i.e.,(x,k,u·) 6⊐P (x,k,u∗· ) for all (x,k,u·) ∈ V . We denote the set of the
P-maximin paths inV byopt⊐P

(V ). The operatoropt⊐P
is called theoptimality

operator induced by⊐P, associated withU(x,k).

Proposition 1 P-maximinity implies P-maximality. For a linear prevision P, P-
maximinity is equivalent to P-maximality.

The existence of maximal elements with respect to⊐P in an arbitrary set of
gamblesK is obviously not guaranteed. But ifK is compact, then we may easily
infer from the continuity of any coherent lower previsionP, that the counterparts
of Theorem 1 and Corollary 1 hold for⊐P.

2.3 M -Maximality

There is a tendency, especially among robust Bayesians, to consider an imprecise
probability model as a compact convex set of linear previsionsM ⊆ P (Ω), where
P (Ω) is the set of all linear previsions onL(Ω).M is assumed to contain the true,
but unknown, linear previsionPT that models the available information [2, 7].

A gambleX is then certain to be strictly preferred to a gambleY under the
true linear previsionPT if and only if it is strictly preferred under all candidate
modelsP∈M . This leads to a ‘robustified’ strict partial order>M onL(Ω).
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Definition 5 X >M Y if X >P Y for all P∈M .

SinceM is assumed to be compact and convex, it is not difficult to show
that the strict partial orders>M and>P are one and the same, where the coher-
ent lower previsionP is the so-called lower envelope ofM , defined byP(X) =
inf
{

P(X) : P∈M
}

for all X ∈ L(Ω).3 Conversely, given a coherent lower previ-
sionP, the strict partial orders>M (P) and>P are identical, where

M (P) = {P∈ P (Ω) : (∀X ∈ L(Ω))(P(X) ≥ P(X))}

is the set of linear previsions that dominateP. These strict partial orders therefore
have the same maximal elements, and lead to the same notion ofoptimality.

But there is in the literature yet another notion of optimality that can be associ-
ated with a compact convex set of linear previsionsM : a gambleX is considered
optimal in a set of gamblesK if it is a maximal element ofK with respect to
the strict partial order>P for some P∈ M . This notion of optimality is called
‘E-admissibility’ by Levi [9, Section 4.8]. It does not generally coincide with the
ones associated with the strict partial orders>M and>P, unless the setK is con-
vex [11, Section 3.9]. We are therefore led to consider a third notion of optimality:

Definition 6 Let x∈ X , k∈ [0,N] andV ⊆U(x,k). A path(x,k,u∗· ) ∈ V is said
to beM -maximalin V if it is P-maximal inV for some P inM , or in other words
if it is ≥-maximal inV and maximises P(J(x,k,u·)) overV for some P∈M . The
set of allM -maximal elements ofV is denoted byoptM (V ).

Interestingly, for any set of pathsV ⊆U(x,k):

optM (V ) =
[

P∈M
opt>P

(V ) . (1)

3 Dynamic Programming

3.1 A General Notion of Optimality

We have discussed three different ways of associating optimal paths with a lower
previsionP, all of which occur in the literature. We now propose to find out
whether, for these different types of optimality, we can usethe ideas behind the
dynamic programming method to solve the corresponding optimal control prob-
lems. To do this, we take a closer look at Bellman’s analysis as described in Sec-
tion 1, and we investigate which properties a generic notionof optimality must
satisfy for his method to work. Let us therefore assume that there is some prop-
erty, called∗-optimality, which a path in a given set of pathsP either has or does
not have. If a path inP has this property, we say that it is∗-optimal inP . We

3SinceM is compact, this infimum is actually achieved.
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Figure 3: A More General Type of Dynamic Programming

shall denote the set of the∗-optimal elements ofP by opt∗ (P ). By definition,
opt∗ (P ) ⊆ P . Further on, we shall apply our findings to the various instances of
∗-optimality described above.

Consider Figure 3, where we want to find the∗-optimal paths from statea
to statee. Suppose that after one time step, we can reach the statesb, c andd
from statea. The∗-optimal paths from these states to the final statee are known
to beα, γ, andδ andη, respectively. For the dynamic programming approach to
work, we need to be able to infer from this a generalised form of the Bellman
equation, stating essentially that the∗-optimal paths froma to e, a priori given by
opt∗ ({λα ,λβ,µγ,νδ,νε,νη}), are actually also given by opt∗ ({λα ,µγ,νδ,νη}),
i.e., the∗-optimal paths in the set of concatenations ofλ, µ andν with the respec-
tive ∗-optimal pathsα, γ, andδ andη. It is therefore necessary to exclude that the
concatenationsλβ andνε with the non-∗-optimal pathsβ andν can be∗-optimal.
This amounts to requiring that the operator opt∗ should satisfy some appropriate
generalisation of Bellman’sprinciple of optimalitythat will allow us to conclude
thatλβ andνε cannot be∗-optimal because thenβ andε would be∗-optimal as
well. Definition 8 below provides a precise general formulation.

But, perhaps surprisingly for someone familiar with the traditional form of
dynamic programming, opt∗ should satisfy anadditionalproperty: the omission
of the non-∗-optimal pathsλβ andνε from the set of candidate∗-optimal paths
should not have any effect on the actual∗-optimal paths: we need that

opt∗ ({λα ,λβ,µγ,νδ,νε,νη}) = opt∗ ({λα ,µγ,νδ,νη}) .

This is obviously true for the simple type of optimality thatwe have looked at
in Section 1, but it need not be true for the more abstract types that we want to
consider here. Equality will be guaranteed if opt∗ is insensitive to the omission of
non-∗-optimal elements from{λα ,λβ,µγ,νδ,νε,νη}, in the following sense.

Definition 7 Consider a set S6= /0 and anoptimality operator opt∗ defined on the
set℘ (S) of subsets of S such thatopt∗ (T)⊆ T for all T ⊆ S. Elements ofopt∗ (T)
are called∗-optimal in T. opt∗ is called insensitive to the omission of non-∗-
optimal elements fromS ifopt∗ (S)= opt∗ (T) for all T such thatopt∗ (S)⊆T ⊆S.
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The following proposition gives an interesting sufficient condition for this in-
sensitivity in case optimality is associated with a (familyof) strict partial order(s):
it suffices that every non-optimal path is strictly dominated by an optimal path.

Proposition 2 Let S be a non-empty set provided with a family of strict partial
orders> j , j ∈ J. Define for T⊆S,opt> j

(T) =
{

a∈ T : (∀b∈ T)(b 6> j a)
}

as the
set of maximal elements of T with respect to> j , and letoptJ (T)=

S

j∈J opt> j
(T).

Thenopt> j
, j ∈ J andoptJ are optimality operators. If for some j∈ J,

(∀a∈ S\opt> j
(S))(∃b∈ opt> j

(S))(b > j a), (2)

thenopt> j
is insensitive to omission of non-> j-optimal elements from S. If(2)

holds for all j∈ J, thenoptJ is insensitive to omission of non-J-optimal elements
from S.

Proof. Consider j in J, and assume that (2) holds for thisj. Let opt> j
(S) ⊆

T ⊆ S, then we must prove that opt> j
(S) = opt> j

(T). First of all, if a∈ opt> j
(S)

then b 6> j a for all b in S, anda fortiori for all b in T, so thata ∈ opt> j
(T).

Consequently, opt> j
(S) ⊆ opt> j

(T). Conversely, leta ∈ opt> j
(T) and assume

ex absurdothat a 6∈ opt> j
(S). It then follows from (2) that there is somec in

opt> j
(S) and therefore inT such thatc > j a, which contradictsa∈ opt> j

(T).
Next, assume that (2) holds for allj ∈ J. Let optJ (S) ⊆ T ⊆ S, then we must

prove that optJ (S) = optJ (T). Consider anyj ∈ J, then opt> j
(S) ⊆ optJ (S) ⊆

T ⊆ S, so we may infer from the first part of the proof that opt> j
(S) = opt> j

(T).
By taking the union over allj ∈ J, we find that indeed optJ (S) = optJ (T). ✷

We are now ready for a precise formulation of the dynamic programming
approach for solving optimal control problems associated with general types of
optimality. We assume that we have some type of optimality, called∗-optimality,
that allows us to associate with the set of admissible pathsU(x,k) starting at time
k in initial statex, an optimality operator opt∗ defined on the set℘ (U(x,k)) of
subsets ofU(x,k). For each such subsetV , opt∗ (V ) is then the set of admissible
paths that are∗-optimal inV . The principle of optimality states that the optimality
operators associated with the variousU(x,k) should be related in a special way.

Definition 8 (Principle of Optimality) ∗-optimality satisfies theprinciple of op-
timality if it holds for all k∈ [0,N], x∈ Xk, ℓ ∈ [k,N] and(x,k,u·) in U(x,k) that
if (x,k,u·) is ∗-optimal inU(x,k), then(xℓ, ℓ,u·) is ∗-optimal inU(xℓ, ℓ).

This may also be expressed as:

opt∗ (U(x,k)) ⊆
[

(x,k,u·)ℓ∈U(x,k)ℓ

(x,k,u·)ℓ⊕opt∗ (U(xℓ, ℓ)) .

The Bellman equation now states that applying the optimality operator to the right
hand side suffices to achieve equality. (Usually this is stated withℓ = k+1.)
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Theorem 2 (Bellman Equation) Let k∈ [0,N] and x∈ Xk. Assume that∗-opti-
mality satisfies the principle of optimality, and that the optimality operatoropt∗
for U(x,k) is insensitive to the omission of non-∗-optimal elements fromU(x,k).
Then for allℓ ∈ [k,N]:

opt∗ (U(x,k)) = opt∗
[

(x,k,u)ℓ∈U(x,k)ℓ

(x,k,u)ℓ ⊕opt∗ (U(xℓ, ℓ)) ,

that is, a path is∗-optimal if and only if it is a∗-optimal concatenation of an
admissible path(x,k,u·)ℓ and a∗-optimal path ofU(xℓ, ℓ).

Proof. Fix k in [0,N], ℓ ∈ [k,N] andx∈ Xk. Define

V1 =
[

(x,k,u)ℓ∈U(x,k)ℓ

(x,k,u)ℓ ⊕opt∗ (U(xℓ, ℓ)) , and,

V2 =
[

(x,k,u)ℓ∈U(x,k)ℓ

(x,k,u)ℓ ⊕ (U(xℓ, ℓ)\opt∗ (U(xℓ, ℓ))).

Obviously, U(x,k) = V1 ∪ V2 and V1 ∩ V2 = /0. We have to prove that
opt∗ (U(x,k)) = opt∗ (V1). By the principle of optimality, no path inV2 is ∗-
optimal inU(x,k), soV2∩opt∗ (U(x,k)) = /0. This implies that opt∗ (U(x,k)) ⊆
V1 ⊆U(x,k), and since opt∗ is assumed to be insensitive to the omission of non-
∗-optimal elements fromU(x,k), it follows that opt∗ (U(x,k)) = opt∗ (V1). ✷

3.2 P-Maximality

Let us now apply these general results to the specific types ofoptimality intro-
duced before. We first consider the optimality operator opt>P

that selects from a
set of gambles (or paths)Sthose gambles (or paths) that are the maximal elements
of Swith respect to the strict partial order>P. The following lemma roughly states
that the preference amongst paths with respect to>P is preserved under concate-
nation and truncation. It yields a sufficient condition for the principle of optimality
with respect toP-maximality to hold. Moreover, the lemma, and the principleof
optimality, do not necessarily hold for preference with respect toP-maximinity.

Lemma 1 Let k∈ [0,N] andℓ ∈ [k,N]. Consider the paths(x,k,u·)ℓ in U(x,k)ℓ
and (xℓ, ℓ,v·), (xℓ, ℓ,w·) in U(xℓ, ℓ). Then(xℓ, ℓ,v·) >P (xℓ, ℓ,w·) if and only if
(x,k,u·)ℓ ⊕ (xℓ, ℓ,v·) >P (x,k,u·)ℓ⊕ (xℓ, ℓ,w·).

Proof. Let X, Y andZ be gambles onΩ. The statement is proven if we can show
thatY >P Z impliesX +Y >P X +Z. Assume thatY >P Z. If P(Y−Z) > 0, then
P((X +Y)− (X +Z)) = P(Y−Z) > 0. If Y ≥ Z, thenX +Y ≥ X +Z, and finally,
if Y 6= Z, thenX +Y 6= X +Z. It follows thatX +Y >P X +Z. ✷
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Proposition 3 (Principle of Optimality) Let k∈ [0,N], x ∈ Xk and (x,k,u∗· ) ∈
U(x,k). If (x,k,u∗· ) is P-maximal inU(x,k) then(xℓ, ℓ,u∗· ) is P-maximal inU(xℓ, ℓ)
for all ℓ ∈ [k,N].

Proof. If (xℓ, ℓ,u∗· ) is not P-maximal, there is a path(xℓ, ℓ,u·) such that
(xℓ, ℓ,u·) >P (xℓ, ℓ,u∗· ). By Lemma 1 we find that

(x,k,u∗· )ℓ⊕ (xℓ, ℓ,u·) >P (x,k,u∗· )ℓ ⊕ (xℓ, ℓ,u
∗
· ) = (x,k,u∗· ).

This means that(x,k,u∗· )ℓ ⊕ (xℓ, ℓ,u·) is preferred to(x,k,u∗· ), and therefore
(x,k,u∗· ) cannot beP-maximal, a contradiction. ✷

As a direct consequence of Corollary 1 and Proposition 2, we see that ifJ (x,k)
is compact, then the optimality operator opt>P

associated withU(x,k) is insen-
sitive to the omission of non->P-optimal elements. Together with Proposition 3
and Theorem 2, this allows us to infer a Bellman equation forP-maximality.

Corollary 2 Let k∈ [0,N] and x∈ Xk. If J (x,k) is compact, then for allℓ∈ [k,N]

opt>P
(U(x,k)) = opt>P

[

(x,k,u)ℓ∈U(x,k)ℓ

(x,k,u)ℓ ⊕opt>P
(U(xℓ, ℓ)) , (3)

that is, a path is P-maximal if and only if it is a P-maximal concatenation of an
admissible path(x,k,u·)ℓ and a P-maximal path ofU(xℓ, ℓ).

Corollary 2 results in a procedure to calculate allP-maximal paths. Indeed,
opt>P

(U(x,N)) = {u/0} for everyx∈XN, and opt>P
(U(x,k)) can be calculated re-

cursively through Eq. (3). It also provides a method for constructing aP-maximal
feedback: for everyx ∈ Xk, choose any(x,k,u∗· (x,k)) ∈ opt>P

(U(x,k)). Then
φ(x,k) = u∗k(x,k) realises aP-maximal feedback.

3.3 M -Maximality

We now turn to the optimality operator optM , satisfying (1). By Proposition 2
and (1), it follows that optM is insensitive to the omission of non-M -maximal
elements ofU(x,k) wheneverJ (x,k) is compact. By Proposition 3, optM satisfies
the principle of optimality (indeed, if a path isM -maximal, then it must beP-
maximal for someP ∈ M , and by the proposition any truncation of it is also
P-maximal, hence alsoM -maximal). This means that the Bellman equation also
holds forM -maximality under similar conditions as forP-maximality. As already
mentioned in Section 2.3, both types of optimality coincideif J (x,k) is convex.

3.4 P-Maximinity

Finally, we come to the type of optimality associated with the strict partial order
⊐P. It follows from Proposition 2 and the discussion at the end of Section 2.2
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Figure 4: A Counterexample

that if J (x,k) is compact, the optimality operator opt⊐P
for U(x,k) is insensi-

tive to the omission of non-⊐P-optimal paths fromU(x,k). But, as the following
counterexample shows, we cannot guarantee that the principle of optimality holds
for ⊐P-optimality, and therefore dynamic programming may not work here—not
even with a vacuous uncertainty model. Essentially, this isbecause the partial or-
der⊐P is not a vector ordering onL(Ω)—it is not compatible with gain additivity:
contrary to expected gain, lower expected gains are not additive.

Example 1 Consider the dynamical system depicted in Figure 4. LetΩ = {♯,♭},
let P be the vacuous lower prevision onΩ, and denote the gamble♯ 7→ x, ♭ 7→ y
by 〈x,y〉. Assume that J(α) = 〈2,0〉, J(β) = 〈0,−1〉 and J(γ) = 〈−2,0〉 (there is
zero gain associated with the final state). Thenαβ 6⊐P αγ: indeed,〈2,−1〉 does
not dominate〈0,0〉 point-wise, andinf 〈2,−1〉 6> inf 〈0,0〉 or equivalently〈0,0〉
maximises the worst expected gain. Hence, we find thatαγ is P-maximin. But
β ⊐P γ: indeed,inf 〈0,−1〉 > inf 〈0,−2〉 which means thatγ is not P-maximin.
Thus the “principle of P-maximin optimality” does not hold here.

3.5 Yet Another Type of Optimality

We end this discussion with another type of optimality associated with a strict par-
tial order, introduced by Harmanec in [8, Definition 3.4]. Inour setting (precisely
known system dynamics), its definition basically reduces to

X >⋆
P Y if P(X) > P(Y) or (X ≥Y andX 6= Y).

It can be shown easily that ifJ (x,k) is compact, the optimality operator induced
by >⋆

P for U(x,k) is insensitive to the omission of non->⋆
P-optimal paths from

U(x,k). But, as the following counterexample shows, we cannot guarantee that
the principle of optimality holds for>⋆

P-optimality, and therefore the dynamic
programming approach may not work here—not even with a vacuous uncertainty
model. Again, this is because the partial order⊐P is not compatible with gain ad-
ditivity. It also indicates that the solution of the Bellman-type equation advocated
in [8] will not necessarily lead to optimal paths, in the sense we described above.

Example 2 Consider the dynamical system depicted in Figure 4. LetΩ = {♯,♭},
let P be the vacuous lower prevision onΩ, and denote the gamble♯ 7→ x, ♭ 7→ y
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by 〈x,y〉. Assume that J(α) = 〈2,0〉, J(β) = 〈0,0〉 and J(γ) = 〈−1,−1〉 (there is
zero gain associated with the final state). Thenαβ 6>⋆

P αγ: indeed,〈2,0〉 does not
dominate〈1,−1〉 point-wise, and,inf 〈2,0〉 6> sup〈1,−1〉. Hence, we find thatαγ
is >⋆

P-maximal. Butβ >⋆
P γ: indeed,〈0,0〉 dominates〈−1,−1〉 point-wise, which

means thatγ is not>⋆
P-maximal. Thus the “principle of>⋆

P-maximal optimality”
does not hold for this example.

4 Conclusion

The main conclusion of our work is that the method of dynamic programming can
be extended to systems with imprecise gain. Our general study of what conditions
a generalised notion of optimality should satisfy for the Bellman approach to work
is of some interest in itself too. In particular, besides an obvious extension of
the well-known principle of optimality, another conditionemerges that relates to
the nature of the optimality operatorsper se: the optimality of a path should be
invariant under the omission of non-optimal paths from the set of paths under
consideration. If optimality is induced by a strict partialordering of paths, then
this second condition is satisfied whenever the existence ofdominating optimal
paths for non-optimal ones is guaranteed.

Another important observation is that, in contradistinction to P-maximality
andM -maximality, the dynamic programming method cannot be usedto solve
optimisation problems corresponding toP-maximinity: for this notion the princi-
ple of optimality does not hold in general.

Throughout the paper we assumed the system dynamics to be deterministic,
that is, independent ofω. This greatly simplifies the discussion, still encompasses
a large number of interesting applications, and does not suffer from the compu-
tational issues often encountered when dealing with non-deterministic dynamical
systems—simply because in general the number of possible (random) paths tends
to grow exponentially with the size of the state spaceX . However, we should note
that dropping this assumption still leads to a Bellman-typeequation, connecting
operators of optimality associated withrandomstatesx: Ω → X . A discussion of
these matters has been omitted from the present paper due to limitations of space.
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Computing Lower Expectations with
Kuznetsov’s Independence Condition∗
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Abstract

Kuznetsov’s condition says that variablesX andY are independent when any
product of bounded functionsf (X) andg(Y) behaves in a certain way: the
interval of expected valuesE[ f (X)g(Y)] must be equal to the interval product
E[ f (X)]×E[g(Y)]. The main result of this paper shows how to compute lower
expectations using Kuznetsov’s condition. We also generalize Kuznetsov’s
condition to conditional expectation intervals, and studythe relationship be-
tween Kuznetsov’s conditional condition and the semi-graphoid properties.

Keywords

sets of probability distributions, lower expectations, probability intervals, expectation
intervals, independence concepts

1 Introduction

Kuznetsov’s condition says that two variablesX andY are independent if, for any
two bounded functionsf (X) andg(Y), we have

E[ f (X)g(Y)] = E[ f (X)]×E[g(Y)] , (1)

whereE[·] denotes an interval of expected values and the product is understood as
interval multiplication [8].

Kuznetsov’s condition is geared towards models that represent uncertainty
through sets of probability measures and expectation intervals. In those models,
Kuznetsov’s condition is seen to be more general than the standard definition of
stochastic independence. The condition can be viewed as a definition of inde-
pendence, and also as a constraint to be used when building models that involve
imprecise beliefs. The relationship between Kuznetsov’s condition and other con-
cepts of independence was analyzed in a previous paper [5]; several results from
that publication are used in this paper.

∗This work has been supported in part by CNPq through grant 300183/98-4, and in part by HP
Labs through “Convênio Aprendizado de Redes Bayesianas”.
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This paper shows how to compute minima and maxima of expectedvalues
using Kuznetsov’s condition. The main result is a characterization of the largest
credal set that complies with Kuznetsov’s condition — the “Kuznetsov’s exten-
sion” of marginal sets. We discuss the computation of lower expectations from
Kuznetsov’s extensions, and investigate the connection between Kuznetsov’s ex-
tensions and other extensions used in the literature. Section 4 contains these de-
velopments.

We then generalize Kuznetsov’s condition to conditional beliefs (Section 5).
To clarify the behavior of the resulting condition, we investigate its compliance
to the semi-graphoid properties. We show that Kuznetsov’s conditional condition
satisfies symmetry, redundancy, decomposition and weak union, but fails the con-
traction property.

Kuznetsov’s condition is an interesting tool for modeling independence with
imprecise beliefs. This paper provides the basic machineryto manipulate the con-
dition in practice. Section 6 presents our conclusions.

2 Credal sets, lower expectations, extensions

In this section we review the basic concepts necessary for later developments.
Consider two random variablesX andY. In this paper all variables have finitely
many values. The probability density forX is denoted byp(X), andEp[ f (X)]
denotes the expectation of functionf (X) with respect top(X). A non-empty set
of probability measures is called acredal set[9]; a credal set consisting of den-
sities p(X) is denoted byK(X). A credal setK(X,Y) consisting of joint den-
sities p(X,Y) is called ajoint credal set. The lower andupperexpectations of
function f (X) are respectivelyE[ f (X)] = minp(X)∈K(X) Ep[ f (X)] andE[ f (X)] =
maxp(X)∈K(X) Ep[ f (X)]. The lower probabilityand theupper probabilityof event
A are defined similarly. A credal set produces an expectation interval for any
bounded functionh(X): E[h(X)] =

[
E[h(X)] ,E[h(X)]

]
.

There are several concepts of independence that can be applied to credal sets
[2, 7]; here we focus onepistemic independenceandstrong independence. Vari-
ableY is epistemically irrelevantto X if K(X|y) andK(X) have the same con-
vex hull for all possible values ofY (equivalently,E[ f (X)|y] = E[ f (X)] for any
bounded functionf (X) and all possible values ofY). VariablesX andY areepis-
temically independentif X is irrelevant toY andY is irrelevant toX. Strong in-
dependence focuses instead on decomposition of probability measures [1, 2, 4]:
VariablesX andY arestrongly independentwhen every extreme point ofK(X,Y)
satisfies standard stochastic independence ofX andY.

Given marginal credal setsK(X) andK(Y), there may be several credal sets
K(X,Y) for which X andY are independent. Each one of these sets is called an
extensionof K(X) andK(Y). Given marginal setsK(X) andK(Y), theirepistemic
extension(called theindependent natural extensionby Walley) is the largest joint
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credal set that satisfies epistemic independence with marginalsK(X) andK(Y)
[13]. Their strong extensionis the largest joint credal set that satisfies strong in-
dependence with marginalsK(X) andK(Y) [2, 4]. The termnatural extension
is used to indicate the largest possible extension given whatever constraints on
probability and independence are adopted [13].

A credal setK(X,Y) is finitely generatedwhen it is a polytope in the space of
probability measures — the convex hull of a finite number of probability distri-
butions. Such a set is defined by a finite collection of linear inequalities such as
∑X,Y h(X,Y)p(X,Y) ≥ 0. In the remainder of this paper,f indicates a function of
X, g indicates a function ofY andh indicates a function ofX andY. Similarly,
p indicates a density forX, q indicates a density forY; other densities, such as
p(X,Y), are indicated explicitly. We can view functions and probability densities
as vectors, so we can write( f g) · (pq) ≥ 0 instead of∑X,Y f (X)g(Y)p(X)q(Y) ≥
0, using the dot product to produce summation.

Note that any hyperplaneh · p(X,Y) = 0 goes through the origin. The func-
tion/vectorh is the normal vector of the hyperplane. IfE[h] = 0, thenh defines a
supporting hyperplanefor the credal set. IfE[h] = 0, then−h is a supporting hy-
perplane. Afaceof a polytope is the intersection of the polytope with a supporting
hyperplane; afacetis a maximal face distinct of the polytope [11].

To simplify notation, we use the same letter (f , for instance) for a function,
a vector (containing the values of a function), a normal vector (orthogonal to an
hyperplane), an hyperplane (with the normal vector), or a facet (contained in the
hyperplane with the normal vector), depending on the circumstances.

Any function/vectorh can be written ash′ +E[h] or as−h′′ +E[h], whereh′

andh′′ are supporting hyperplanes that are parallel toh. Consider any supporting
hyperplaneh′ that goes through a vertexV. Take the facets intersecting atV, and
the normal vectors to these facets. Then it must be possible to write h′ as a linear
of these normal vectors.

3 Kuznetsov’s condition and Kuznetsov’s extension

Kuznetsov’s condition is a condition for independence operating on expectations
of independent variables [8]. The condition can be expressed either in terms of
expectation intervals (Expression (1)), or as

E[ f (X)g(Y)] = min

(
E[ f (X)]E[g(Y)] ,E[ f (X)]E[g(Y)] ,
E[ f (X)]E[g(Y)] ,E[ f (X)]E[g(Y)]

)
. (2)

To obtain (2) from (1), we recall that the interval product[a,b]× [c,d] is equal to

[min(ac,ad,bc,bd),max(ac,ad,bc,bd)] .

The following result is used later:
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Theorem 1 For any bounded functions f(X) and g(Y), any extension that satis-
fies Kuznetsov’s condition must contain densities that attain E[ f ]E[g], E[ f ]E[g],
E[ f ]E[g], andE[ f ]E[g].

Proof. Suppose we have a credal set that satisfies Kuznetsov’s condition. Con-
sider a functionh1 = ( f −E[ f ]+α)(g−E[g]+β), whereα,β > 0; thenE[h1] =
(E[ f −E[ f ]]+α)(E[g−E[g]]+β) = αβ for anyα, β. But for this to happen, we
must have a densityp1(X,Y) such thatEp1[ f ] = E[ f ] andEp1[g] = E[g] at the
same time. The proof can be completed by taking functionsh2 = ( f −E[ f ] +
α)(g−E[g] + β), h3 = −( f −E[ f ] + α)(g−E[g] + β) andh4 = −( f −E[ f ] +
α)(g−E[g]+β).

We can use Kuznetsov’s condition to construct credal sets. Suppose we have
K(X) andK(Y), and we obtain the information thatX andY satisfy Kuznetsov’s
condition, without further information onK(X,Y). What can we say about the
joint credal setK(X,Y)? A reasonable strategy is to focus on the largest joint
credal set that satisfies Kuznetsov’s condition and has the marginalsK(X) and
K(Y). This set is referred to asKuznetsov’s extensionof K(X) andK(Y). It should
be noted that a Kuznetsov’s extension always exists [5].

Kuznetsov’s extensions are smaller than epistemic extensions when all events
have positive probability, as in this case Kuznetsov’s independence implies epis-
temic independence — and even when all lower probabilities are larger than zero
Kuznetsov’s extensions can be strictly smaller than epistemic extensions [5]. A
strong extension always satisfies Kuznetsov’s condition and is contained in the
corresponding Kuznetsov’s extension (however, the Kuznetsov’s extension can
be strictly larger than the strong extension; also, it is possible that a credal set
satisfies strong independence but does not satisfy Kuznetsov’s condition) [5].

4 Characterizing Kuznetsov’s extensions

Suppose we have two binary variablesX andY, and we construct the strong ex-
tension ofK(X) andK(Y). In this case, it is known that the strong extension and
the Kuznetsov’s extension ofK(X) andK(Y) are identical [5]. A more general
result can actually be proved:

Theorem 2 Consider a binary variable X with credal set K(X), and a variable
Y with N values and credal set K(Y) with M vertices; the strong extension and
Kuznetsov’s extension of K(X) and K(Y) are identical.

Proof. The strong extension is composed of vertices of the formpi(X)q j(Y),
wherepi indicates a vertex ofK(X) andq j indicates a vertex ofK(Y). If K(X)
contains a single point, the result is immediate; suppose that K(X) has two ver-
ticesp1 andp2 (so there is a functionf1(X) such thatf1 · p1 = 0, and a function
f2(X) such thatf2 · p2 = 0). The strong extension can have at most 2M vertices,



Cozman: Kuznetsov’s Extensions 181

all of them with 2N components (thus the strong extension lives in(2N−1) di-
mensional space). Any facet of the strong extension is contained in an hyperplane
that is defined by selecting(2N−1) vertices of the strong extension plus the ori-
gin. Take a facet and divide its vertices (other than the origin) in two sets:
(i) the setC1 containing points of the formp1q j ,
(ii) the setC2 containing points of the formp2qk,
whereq j , qk are vertices ofK(Y). Suppose thatC1 contains more points thanC2.
Then we have at mostN−1 points inC2; we can always find an hyperplane de-
fined by a functiong(Y) that goes through all these points. Thus we can construct
a function f1(X)g(Y) such that

∑
X,Y

f1(X)g(Y)p1(X)q j(Y) =

(
∑
X

f1(X)p1(X)

)(
∑
Y

g(Y)q j(Y)

)
= 0

for every point inC1 and every point inC2. So the facet is represented by a de-
composable functionf1g. The same construction can be followed ifC2 has more
elements thanC1, in which case we will arrive at a decomposable function of the
form f2g′ for someg′(Y). Thus, any facet of the strong extension is defined by a
decomposable hyperplane and consequently is a valid constraint for Kuznetsov’s
extension. The strong extension must then contain Kuznetsov’s extension, and so
both are equal.

The facets generated in the proof of Theorem 2 are of the formf (X)g(Y). A
little reflection shows that this functiong(Y) must define a supporting hyperplane
of K(Y): If g were not a supporting hyperplane ofK(Y), there should be a point
qc such that∑Y gqc ≥ 0 and a pointqd such that∑Y gqd ≤ 0. Butg·qc ≥ 0 would
imply ( f g) ·(p1qc)≥ 0 andg·qd ≤ 0 would imply( f g) ·(p1qd)≤ 0, contradicting
the fact thatf g is a supporting hyperplane for the strong extension. Consequently,
the facets of the strong extension in Theorem 2 are defined by decomposable
functions that factorize into facets ofK(X) andK(Y).

Consider now a more general situation where we have categorical variablesX
andY and finitely generated marginal credal setsK(X) andK(Y). Suppose that,
instead of trying to compute Kuznetsov’s extensions, someone simply constructed
the following inequalities:

∑
X,Y

f̃i(X)p(X,Y) ≥ 0,

∑
X,Y

g̃ j(Y)p(X,Y) ≥ 0, (3)

∑
X,Y

( f̃i(X)g̃ j(Y))p(X,Y) ≥ 0,

which can be written as

f̃i · p(X,Y) ≥ 0, g̃ j · p(X,Y) ≥ 0, ( f̃i g̃ j) · p(X,Y) ≥ 0, (4)



182 ISIPTA ’03

for all combinations ofi and j, where f̃i is a facet ofK(X) and g̃ j is a facet
of K(Y). Note that any set of densities that satisfies these inequalities will also
satisfy( f ′g′) · p(X,Y) ≥ 0, wheref ′ andg′ are supporting hyperplanes ofK(X)
andK(Y) respectively.

The next theorem is the main result: it shows how to explicitly construct
Kuznetsov’s extensions. The proof essentially consists ofshowing that any in-
equality required by Kuznetsov’s condition is already implied by inequalities (4).

Theorem 3 Consider a variable X with finitely generated credal set K(X), de-
fined by facets̃fi , and a variable Y with finitely generated credal set K(Y), defined
by facetsg̃ j . The Kuznetsov’s extension is entirely defined by the facetsf̃i , g̃ j , and
( f̃i g̃ j), for all combinations of i and j.

Proof. Denote byKk(X,Y) the credal set constructed in the theorem. Every ver-
tex of the strong extension is of the formp(X)q(Y) and consequently satisfies
( f̃i g̃ j) · (pq) ≥ 0. We conclude that the strong extension is contained inKk(X,Y),
thus the expectation intervals generated by the strong extension are contained
in the expectation intervals generated byKk(X,Y). Furthermore, for every de-
composable functionf (X)g(Y), there is a density inKk(X,Y) that attains the
value prescribed by Kuznetsov’s condition, as the strong extension is contained in
Kk(X,Y).
Now take two arbitrary bounded functionsf (X) andg(Y). There are seven differ-
ent situations to consider:

1. E[ f ] ≥ 0, E[g] ≥ 0: Kuznetsov’s condition requires thatE[ f g] = E[ f ]E[g].
Write f as f ′ + E[ f ] ( f ′ is a supporting hyperplane ofK(X)) and write
g as g′ + E[g] (g′ is a supporting hyperplane ofK(Y)). Then we have:
f g · p(X,Y) = ( f ′ + E[ f ])(g′ + E[g]) · p(X,Y) = f ′g′ · p(X,Y) + E[ f ]g′ ·
p(X,Y) + E[g] f ′ · p(X,Y) + E[ f ]E[g], an expression that is equal to or
larger thanE[ f ]E[g] given thatp(X,Y) satisfies inequalities (4). This im-
plies thatEp[ f g] ≥ E[ f ]E[g] for every p(X,Y) and we obtainE[ f g] =
E[ f ]E[g] (because the inclusion of the strong extension inKk(X,Y) guar-
antees that the equality obtains).

2. E[ f ] ≤ 0, E[g] ≤ 0: Kuznetsov’s condition requiresE[ f g] = E[ f ]E[g]. To
show thatEp[ f g] ≥ E[ f ]E[g] for everyp(X,Y), write f as− f ′ +E[ f ] and
g as−g′ + E[g] (where f ′ andg′ are appropriate supporting hyperplanes),
and then:f g· p(X,Y) = (− f ′ +E[ f ])(−g′+E[g]) · p(X,Y), a quantity that
is equal to or larger thanE[ f ]E[g] given inequalities (4).

3. E[ f ]≥ 0,E[g]≤ 0: Kuznetsov’s condition requiresE[ f g] = E[ f ]E[g]. Write
f = f ′ + E[ f ], f = − f ′′ + E[ f ], andg = −g′ + E[g] (where f ′, f ′′ andg′

are appropriate supporting hyperplanes; note thatf is written in two differ-
ent ways) and thenf g· p(X,Y) = f (g′ +E[g]) · p(X,Y) = (( f ′ +E[ f ])g′ +
(− f ′′ +E[ f ])E[g]) · p(X,Y), which that is equal to or larger thanE[ f ]E[g].
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4. E[ f ] ≤ 0, E[ f ] ≥ 0, E[g] ≤ 0: Kuznetsov’s condition requiresE[ f g] =
E[ f ]E[g]. Write f = − f ′ + E[ f ], g = g′ + E[g], andg = −g′′ + E[g], and
then f g · p(X,Y) = (− f ′(−g′′ + E[g])+ E[ f ] (g′ + E[g])) · p(X,Y), which
is equal to or larger thanE[ f ]E[g].

5. E[ f ]≤ 0,E[g]≥ 0: Kuznetsov’s condition requiresE[ f g] = E[ f ]E[g]. Write
f = f ′ +E[ f ], g = g′ +E[g], andg = −g′′ +E[g], and thenf g · p(X,Y) =
( f ′(g′ + E[g]) + E[ f ] (−g′′ + E[g])) · p(X,Y), which is equal to or larger
thanE[ f ]E[g].

6. E[ f ] ≤ 0, E[g] ≤ 0, E[g] ≥ 0: Kuznetsov’s condition requires thatE[ f g] =
E[ f ]E[g]. Write f = f ′ + E[ f ], f = − f ′′ + E[ f ], andg = −g′ + E[g], and
f g · p(X,Y) = (−g′(− f ′′ + E[ f ]) + E[g] ( f ′ + E[ f ])) · p(X,Y) = ( f ′′g′ +
E[g] f ′−E[ f ]g′) · p(X,Y)+E[ f ]E[g], equal to or larger thanE[ f ]E[g].

7. E[ f ] ≤ 0, E[ f ] ≥ 0, E[g] ≤ 0, E[g] ≥ 0: Kuznetsov’s condition requires
E[ f g] = min(E[ f ]E[g] ,E[ f ]E[g]). Divide Kk(X,Y) into two sets. Define
K1(X,Y) to contain the distributions inKk(X,Y) such thatf · p(X,Y) ≥ 0,
andK2(X,Y) to contain the distributions inKk(X,Y) such thatf · p(X,Y)≤
0. The value ofE[ f g] with respect toKk(X,Y) is the minimum ofE[ f g] with
respect toK1(X,Y) andK2(X,Y). Following the previous cases, we obtain
E[ f ]E[g] asE[ f g] with respect toK1(X,Y), andE[ f ]E[g] asE[ f g] with
respect toK2(X,Y). We finally obtainE[ f g] = min(E[ f ]E[g] ,E[ f ]E[g]).

ThusKk(X,Y) satisfies Kuznetsov’s condition, and Kuznetsov’s extension must
containKk(X,Y) — however Kuznetsov’s extension cannot be larger than the set
Kk(X,Y), as every inequality (4) is directly required by Kuznetsov’s condition.

Once we know how to construct Kuznetsov’s extensions, we cancompute
E[h(X,Y)] for a non-decomposable functionh(X,Y):

E[h(X,Y)] = min(h(X,Y) · p(X,Y)) , (5)

subject top(X,Y) ≥ 0, ∑X,Y p(X,Y) = 1, and inequalities (4).
The linear program (5) provides the solution to the question, Which (decom-

posable) constraints to use when computing a lower expectation for Kuznetsov’s
extension? Theorem 3 proves that inequalities (4) contain all the relevant con-
straints. Kuznetsov himself seems to have obtained different results, using his con-
dition and additional factorization conditions to define extensions — a framework
that led him to prescribe linear programs with infinitely many constraints [8].

Finally, note that we can also use linear programming if we need to compute
a conditional lower expectation such asE[h|A] for some eventA whereP(A) > 0.
The computation ofE[h|A] requires the solution of a fractional linear program
that can be performed using the Charnes-Cooper transformation and linear pro-
gramming [3], using inequalities (4) as the starting point.
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5 Kuznetsov’s conditional condition and the semi-
graphoid properties

Kuznetsov’s condition does not deal with the concept of conditional indepen-
dence, but it can certainly be extended to do so. Say that two variablesX andY
are independent conditional onZ if, for bounded functionsf (X) andg(Y),

E[ f g|z] = E[ f |z]×E[g|z],

for any value ofZ (we assume that conditioning events have positive lower prob-
ability).

How appropriate is Kuznetsov’s conditional condition as a concept of con-
ditional independence? One way to study concepts of independence is to ver-
ify the semi-graphoidproperties satisfied by the concept [6, 10, 12]. A relation
(X⊥⊥Y |Z) is called asemi-graphoidwhen it satisfies the following axioms:
Symmetry: (X⊥⊥Y |Z) ⇒ (Y⊥⊥X |Z)
Redundancy:(X⊥⊥Y |X)
Decomposition:(X⊥⊥(W,Y) |Z) ⇒ (X⊥⊥Y |Z)
Weak union: (X⊥⊥(W,Y) |Z) ⇒ (X⊥⊥Y |(W,Z))
Contraction: (X⊥⊥Y |Z) & (X⊥⊥W |(Y,Z)) ⇒ (X⊥⊥(W,Y) |Z).

Denote by(X⊥⊥K Y |Z) the fact thatX andY satisfy Kuznetsov’s condition
conditional onZ. The notationE[ f ] is used to indicate eitherE[ f ] or E[ f ], what-
ever value is required by Kuznetsov’s condition. We have:

Theorem 4 Kuznetsov’s conditional condition satisfies symmetry, redundancy,
weak union and decomposition when applied to credal sets where no event has
zero lower probability.

Proof. Symmetry is immediate, and redundancy follows fromE[ f (X)g(Y)|x0] =
f (x0)E[g(Y)|x0] = E[ f (X)|x0]×E[g(Y)|x0] for any f (X), g(Y), and anyx0. De-
composition follows from the fact that any function ofY is also a function ofY and
W, so we haveE[ f (X)g(Y)|z] = E[ f (X)|z]×E[g(Y)|z] when(X⊥⊥K (W,Y) |Z).
To simplify the proof of the weak union property, the conditioning variableZ
is suppressed. What must be shown is thatE[ f g|w] = E[ f ]E[g|w] follows from
E[ f h] = E[ f ]E[h], whereh is any function ofW andY (note thatE[ f ] = E[ f |w] by
hypothesis, as events have positive lower probability). Theorem 1 can be easily
modified to prove that any credal set satisfying Kuznetsov’scondition must con-
tain densities that attainE[ f ]E[g|w], E[ f ]E[g|w], E[ f ]E[g|w] and E[ f ]E[g|w];
thus, there is always a densityp in a set that satisfies Kuznetsov’s condition
such thatEp[ f g|w] = E[ f g|w], whereE[ f g|w] follows Kuznetsov’s condition.
Take Kuznetsov’s extension ofK(X) andK(W,Y), denoted byKk(W,X,Y). This
extension must be equal to or larger than any set satisfyingX ⊥⊥K (W,Y). If
we determine thatE[ f g|w] ≥ E[ f ]E[g|w] for Kk(W,X,Y), then automatically we
obtain E[ f g|w] = E[ f ]E[g|w] for any set satisfying(X ⊥⊥K (W,Y)), and weak
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union follows. The Kuznetsov’s extensionKk(W,X,Y) satisfies any inequality
h(W,X,Y) · p(W,X,Y) ≥ 0, and so it satisfies( f (X)g(Y)Iw(W)) · p(W,X,Y) ≥ 0
for any f (X), g(Y) andw. If we consider the conditional distributionsp(X,Y|w)
obtained fromKk(W,X,Y), they must satisfy( f (X)g(Y)) · p(X,Y|w) ≥ 0 as this
last inequality is obtained by normalizing the previous one. If we were to con-
struct the Kuznetsov’s extension ofK(X) andK(Y|w), whereK(Y|w) is obtained
from K(W,X) by conditioning, then this Kuznetsov’s extension would also sat-
isfy any inequality( f (X)g(Y)) · p(X,Y|w) ≥ 0. So, every inequality constraining
the Kuznetsov’s extension ofK(X) andK(Y|w) is also a constraint for the con-
ditional set obtained fromKk(W,X,Y). Thus the former set is equal to or larger
than the latter set. Now notice that, for the Kuznetsov’s extension ofK(X) and
K(Y|w), E[ f g|w] = E[ f ]E[g|w], and so we must haveE[ f g|w] ≥ E[ f ]E[g|w] for
Kk(W,X,Y).

Kuznetsov’s condition does not imply the contraction property, as the next
example shows.

Example 1 Consider binary variables W, X, and Y, and a credal set K(W,X,Y)
with eight vertices such that each vertex decomposes as p(W|Y) p(X) p(Y). Val-
ues of p(w0|y0), p(w0|y1), p(x0) and p(y0) are:

Vertex
[p(w0|y0) , p(w0|y1) ,
p(x0) , p(y0)]

Vertex
[p(w0|y0) , p(w0|y1) ,
p(x0) , p(y0)]

1 [0.7,0.4,0.3,0.2] 5 [0.7,0.4,0.3,0.3]
2 [0.7,0.5,0.2,0.2] 6 [0.7,0.5,0.3,0.3]
3 [0.8,0.4,0.2,0.2] 7 [0.8,0.4,0.3,0.3]
4 [0.8,0.5,0.2,0.2] 8 [0.8,0.5,0.2,0.3]

It can be verified that the set of marginal densities K(X,Y) contains every com-
bination of p(x0) and p(y0), so K(X,Y) is the Kuznetsov’s extension for X and Y
(Theorem 2). Likewise, K(W,X|y0) is the Kuznetsov’s extension of W and X condi-
tional on y0, and K(W,X|y1) is the Kuznetsov’s extension of W and X conditional
on y1. Thus the credal set K(W,X,Y) satisfies(X⊥⊥K Y) and(X⊥⊥K W |Y), but
it is not true that X⊥⊥K (W,Y). Take the function f(X) = [1,2] and the func-
tion h(W,Y) = [2,1,1,2]. Then E[ f h] = 2.652 for K(W,X,Y), but E[ f ]E[h] =
1.7×1.54= 2.61— violating Kuznetsov’s condition.

Despite the failure of contraction for generic credal sets,there is an important
situation where contraction holds with Kuznetsov’s condition.

Theorem 5 Kuznetsov’s conditional condition satisfies the contraction property
when applied to credal sets where no events have zero lower probability, and such
that the sets K(X), K(Y), and K(W|Y) are separately specified.

Proof.As the relevant sets are separately specified, minimizationcan occur sepa-
rately within each set, soE[ f (X)h(W,Y)] = minEp[Ep[ f h|Y]] = minEp[E[ f h|Y]].
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As we have(X⊥⊥K W |Y), E[ f (X)h(W,Y)] = minEp
[
E[ f |Y]E[h|Y]

]
, and because

X⊥⊥K Y, E[ f (X)h(W,Y)] = minE[ f ]Ep
[
E[h|Y]

]
= E[ f ]E[h].

6 Conclusion

A Kuznetsov’s extension can be viewed as a set that “wraps” a strong extension
using decomposable hyperplanes. In fact, there is an interesting duality between
these two extensions; while the former is constructed with decomposable hyper-
planes, the latter is constructed with decomposable measures.

Kuznetsov’s extensions can have complex structures, except when binary vari-
ables are present. The fact that the conditional version of Kuznetsov’s condition
fails the contraction property is troubling. This failure suggests that it may be
hard to simplify multivariate models using only judgementsof conditional inde-
pendence (according to Kuznetsov’s condition), as these judgements are coupled
with the contraction property in traditional multivariateprobabilistic models [10].

The challenges for the future are to determine when Kuznetsov’s extensions
(and derived concepts) are applicable in practice and how tomanipulate them
efficiently.
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Abstract

In this paper we adopt the geometric approach to the theory ofevidence to
study the geometric counterparts of the plausibility functions, or upper prob-
abilities. The computation of the coordinate change between the two natural
reference frames in the belief space allows us to introduce the dual notion
of basic plausibility assignment and understand its relation with the classical
basic probability assignment. The convex shape of the plausibility spaceΠ is
recovered in analogy to what was done for the belief space, and the pointwise
geometric relation between a belief function and the corresponding plausi-
bility vector is discussed. The orthogonal projection of anarbitrary belief
function s onto the probabilistic subspace is computed and compared with
other significant entities, such as the relative plausibility and mean probabil-
ity vectors.

Keywords

theory of evidence, belief space, basic plausibility assignment, plausibility space,
orthogonal projection

1 Introduction

Uncertainty measures are assuming a mayor role in fields likeartificial intelli-
gence and computer vision, where problems requiring formalized reasoning are
common. However, during the last decades a number of different descriptions of
uncertain state of knowledge have been proposed, as alternatives or extensions of
the classical probability theory. The theory of evidence isone of the most popular
formalisms, thanks perhaps to its nature of quite natural extension of the classical
Bayesian methodology.

In a series of recent works ([7], [6]) we have proposed a geometric interpre-
tation of the theory of evidence based on the notion ofbelief space, the set of all

∗This work has been supported by the Autonomous Navigation and Computer Vision Lab, Depart-
ment of Information Engineering, led by professor R. Frezza.
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the b.f.s defined on a fixed domain. It is well known that upper and lower proba-
bilities, belief functions, possibility measures, fuzzy sets can be all thought of as
fuzzy measures. Hence, it would be highly desirable to find a common environ-
ment where to discuss and compare all these uncertainty descriptions in an unified
fashion.

In this perspective, this paper proposes a geometric picture of the connections
between upper and lower probabilities in the belief space framework. After re-
calling the basic notions of the theory of evidence, we will briefly introduce the
geometric approach to the ToE. After computing the change ofcoordinates be-
tween the orthogonal and oblique reference frames in the belief space, the notion
of basic plausibility assignment will be defined and its analytic relation with the
basic probability assignment unveiled (Section 3). This will allow us to describe
the space of all the plausibility vectors as a simplex, called plausibility space, and
give a natural interpretation of its vertices in terms of degrees of belief.

Next (Section 4) we will try and understand the pointwise geometry of upper
probabilities by noticing that the line connecting a belieffunctionsand the corre-
sponding plausibility functionP∗

s is orthogonalto the Bayesian subspaceP . This
will allow us to compute theorthogonal projection s⊥P of sontoP and prove that
it is a probability distribution. We will also find the position of the mean proba-
bility vector s+P∗

s
2 and the condition under whichP∗

s is the reflection ofs through
the probabilistic subspace.

Finally, we will express the credal set of the probabilitiesconsistent withs as
a simplex, noticing that its center of mass is the geometric counterpart of the so
calledpignistic transformation, and discuss the geometry of these points inthe
perspective of the probabilistic approximation problem. To improve the readabil-
ity of the paper the proofs of the major results have been moved to an appendix.

1.1 Previous work

The geometric approach to the theory of evidence and generalized probabilities is
due to the author, even if close references can be the works ofHa and Haddawy
[9] and Wanget al. [17]. Anyway, some interesting papers have been recently
published on the geometry of lower probabilities and plausibilities of singletons.
P. Black, in particular, has dedicated its doctoral thesis to the study of belief func-
tions [2]. An abstract of his results on the geometry of belief functions and other
monotone capacities can be found in [3], where he uses shapesof geometric loci
to give a direct visualization of the distinct classes of monotone capacities. In
particular a number of results about lengths of edges of convex sets representing
monotone capacities are given, together with theirsizemeant as the sum of those
lengths.

A number of papers, on the other side, have been published on the approxi-
mation of belief functions (see [1] for a review), mainly in order to find efficient
implementations of the rule of combination aiming to reducethe number of focal
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elements (see for instance the works of Tessem [16] and Lowranceet al. [11]).

2 Geometric approach to the Theory of Evidence

The theory of evidence[13] has been introduced in the late Seventies by Glenn
Shafer as a way of representing epistemic knowledge, starting from a sequence
of seminal works of Arthur Dempster [8]. In this formalism the best representa-
tion of chance is abelief function(b.f.) rather than a Bayesian mass distribution.
Following Shafer [13] let us call the finite set of possible outcomes for a decision
problemframe of discernmentor simply frame. In the following we will denote
by Ac the complement of an arbitrary setA, by A\B

.
= A∩Bc the difference of

two setsA andB, and by|A| the cardinality (number of elements) ofA.
A basic probability assignment(b.p.a.) over a frameΘ is a functionm : 2Θ →

[0,1] on its power set 2Θ = {A⊂ Θ} such that

m( /0) = 0, ∑
A⊂Θ

m(A) = 1, m(A) ≥ 0 ∀A⊂ Θ.

The subsets ofΘ associated with non-zero values ofm are calledfocal elements
and their unionC core.
Thebelief function s: 2Θ → [0,1] associated with a basic probability assignment
m is defined ass(A) = ∑B⊂Am(B), while m can be uniquely recovered froms by
means of theMoebius formula

m(A) = ∑
B⊂A

(−1)|A\B|s(B). (1)

In particular, aBayesianbelief functions is a belief function such thatms(A) = 0
for all A s.t.|A|> 1. Hence, finite probabilities are nothing more than specialb.f.s.

Belief functions representing distinct bodies of evidencecan be combined by
means of theDempster’s rule of combination[8]. The orthogonal sum s1 ⊕ s2

of two belief functions is a new belief function whose focal elements are all the
possible intersections between the combining focal elements and whose b.p.a. is
given by

m(C) =
∑i, j :Ai∩B j=C m1(Ai)m2(B j)

1−∑i, j :Ai∩B j= /0m1(Ai)m2(B j)
. (2)

where{Ai} and{B j} are the focal elements ofs1,s2 respectively.
When all the intersections between focal elements of the twofunctions are empty,
the denominator of Equation (2) goes to zero and we say thats1 ands2 arenot
combinable.

A dual representation of the evidence encoded by a belief functions is called
upper probability1, and expresses the amount of evidencenot againsta proposi-

1The name comes from the fact that belief values and upper probability values are respectively
lower and upper bounds for the probabilities of the events.
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tion A
P∗(A)

.
= 1−s(Ac) = 1− ∑

B⊂Ac
m(B) = ∑

B∩A6= /0
m(B) ≥ s(A). (3)

Now, consider a frame of discernmentΘ and introduce in the Euclidean space
R
|2Θ|−1 an orthonormal reference frame{XA}A⊂Θ,A6= /0 such that each coordinate

functionxA measures the belief value associated with the i-th subset ofΘ.

Definition 1 Thebelief spaceassociated withΘ is the set of pointsSΘ of R
|2Θ|−1

corresponding to a belief function.

We usually assume the domainΘ fixed, and denote the belief space byS . Let us
call A-th basis belief function

PA
.
= s∈ S s.t. ms(A) = 1, ms(B) = 0 B 6= A

the unique belief function assigning all the mass to a singlesubsetA of Θ. It can
be proved that (see [7], [6]), callingEs the list of focal elements ofs,

Theorem 1 The set of all the belief functions with focal elements in a given col-
lection X is closed and convex inS : {s : Es ⊂ X} = Cl({PA : A∈ X}).

The shape ofS follows immediately from Theorem 1.

Corollary 1 The belief spaceS coincides with the convex closure of all the basis
belief functions,S = Cl(PA, A⊂ Θ, A 6= /0).

Moreover, any belief functions∈ S can be written as a convex sum as follows:

s= ∑
A⊂Θ, A6= /0

ms(A) ·PA. (4)

Clearly, since a probability is a belief function assigningnon zero masses
to singletons only, Theorem 1 implies that the setP of all the Bayesian belief
functions is a subset of the border ofS , preciselyP = Cl(P{θi}, i = 1, ..., |Θ|).

3 Geometry of Plausibility Functions

Analogously to what done for the vectors ofR
N (N

.
= |2Θ|−1) representing belief

functions, we would like to understand the geometric properties of the plausibility
vectors[P∗

s (A),A⊂ Θ]′. A plausibility vector can indeed be expressed as

P∗
s = ∑

A⊂Θ
P∗

s (A) ·XA (5)

where{XA,A⊂ Θ} is the orthogonal reference frame of the belief space.
The basis belief functionsPA form a set of independent vectors inR

N, so that the
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collections{XA} and{PA} form two distinct coordinate frames in the belief space.
To understand the place a plausibility vector takes in the belief reference frame
{PA} we then need to compute the coordinate change between these frames. We
first notice that basis b.f.s can be expressed asPA = ∑E⊃AXE.

Proposition 1 The coordinate change between the two coordinate frames{XA}
and{PA} is given by

XA = ∑
B⊃A

PB · (−1)|B\A|. (6)

3.1 Basic Plausibility Assignment

Let us now replace expression (6) in Equation (5), obtainingfor P∗
s

2

∑
A⊂Θ

P∗
s (A) ·XA = ∑

A⊂Θ
P∗

s (A) · ∑
B⊃A

PB · (−1)|B\A| = ∑
B⊂Θ

PB · ∑
A⊂B

(−1)|B−A|P∗
s (A)

and after introducing the quantity

µ(A)
.
= ∑

B⊂A

(−1)|A−B|P∗
s (B) (7)

we can write
P∗

s = ∑
A⊂Θ

µ(A) ·PA. (8)

We call the functionµ : 2Θ → R defined by expression (7)basic plausibility as-
signment. It is easy to recognize the Moebius equation for plausibilities, which
impliesP∗

s (A) = ∑B⊂Aµ(B). A few calculations allow us to understand the rela-
tion between basic probabilities and plausibilities.

Theorem 2

µ(A) =

{
(−1)|A|+1∑E⊃Am(E) A 6= /0
0 A = /0.

(9)

It is easy to see that basic plausibility assignmentsmeet the normalization con-
straint. In fact

∑
A⊂Θ

µ(A) = − ∑
A⊂Θ,A6= /0

(−1)|A| ∑
E⊃A

m(E) = − ∑
E⊂Θ

m(E) · ∑
A⊂E,A6= /0

(−1)|A| = 1

since−∑A⊂E,A6= /0(−1)|A| = −(0− (−1)0) = 1 for the expression of Newton’s
binomial∑n

k=0

(n
k

)
pkqn−k = (p+ q)n, where in this casek = |A|, p = −1, q = 1.

However,µ(A) is not always positive, so we can just infer that any plausibility
vector lies on the affine subspace generated by the basis belief functions{PA}.

2Note thatP∗
s ( /0) = 0 so the expression is correct even ifX/0 does not exist.
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3.2 Plausibility Space

Analogously to what done for belief functions, let us callplausibility spacethe
regionΠ of R

N whose points correspond to admissible plausibility functions. It
is not difficult to prove that

Theorem 3 Π is a simplex

Π = Cl(ΠA,A⊂ Θ,A 6= /0), ΠA = − ∑
B⊂A

(−1)|B|PB. (10)

Proof. We just need to re-assemble expression (8) as a convex combination of
points, getting (through Equation (9))

P∗
s = ∑

A⊂Θ
µ(A) ·PA = ∑

A⊂Θ,A6= /0
(−1)|A|+1 · ∑

E⊃A

m(E) ·PA =

= ∑
A⊂Θ,A6= /0

∑
E⊃A

(−1)|A|+1m(E) ·PA = ∑
E⊂Θ,E 6= /0

m(E) · ∑
A⊂E,A6= /0

(−1)|A|+1PA

= ∑E 6= /0m(E)ΠE, that is a convex combination since basic probability assign-
ments have unitary sum. ✷

It is easy to notice thatΠ{θ} = −(−1)|{θ}| ·P{θ} = P{θ}∀θ ∈ Θ, so thatP ⊂
S ∩Π. The inverse relation between basis belief functions and basis plausibilities
has the same form of Equation (10):

Theorem 4
PA = − ∑

B⊂A

(−1)|B| ·ΠB. (11)

Proof. The proof follows the sketch of Proposition 1. Replacing expression (11)
in Equation (10) yields forΠA

− ∑
B⊂A

(−1)|B|PB = ∑
B⊂A

(−1)|B| · ∑
E⊂B

(−1)|E|ΠE = ∑
E⊂A

(−1)|E|ΠE · ∑
E⊂B⊂A

(−1)|B|

but then, analogously to what previously done (see the Appendix),

∑
E⊂B⊂A

(−1)|B| =

{
(−1)|A| E = A
0 E 6= A

and the thesis easily follows. ✷

The vertices of the plausibility space have a natural interpretation.

Theorem 5 The vertexΠA of the plausibility space is the plausibility vector as-
sociated with the basis belief function PA, ΠA = P∗

PA
.
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Figure 1: Geometric relations between upper and lower probabilities in the be-
lief space for a binary frameΘ = {x,y}. The belief spaceS and the plausibility
spaceΠ are both simplices with vertices{PΘ = (0,0),Px = (1,0),Py = (0,1)} and
{ΠΘ = (1,1),Πx = Px,Πy = Py} respectively. In the picture a belief functionsand
the corresponding plausibility functionP∗

s are indicated, showing that they are in
symmetric positions with respect to the common subspaceP . The location of the
relative plausibility of singletons̃P∗

s is also shown, as intersection of the proba-
bilistic subspace with the line joiningP∗

s andPΘ = (0,0). A dual line joinings
andΠΘ also appears.

Figure 1 shows the relation between belief and plausibilityspace for a the bi-
nary frameΘ = {x,y}. Without reporting the calculations, we may notice another
few interesting facts. The two simplices are perfectly symmetric with respect to
the probabilistic subspace. Furthermore, upper and lower probability vectors de-
termine a line that is orthogonal toP , and they also lie on symmetric positions
with respect to the Bayesian region. Notice that the relative plausibility vectorP̃∗

s
(normalized version ofP∗

s ) does not coincide at all with the orthogonal projection
of s (or P∗

s ) ontoP . In the following we will try and understand what of those
features retain their validity in the general case.

4 Upper and lower probability vectors

It is in fact natural to wonder what is the pointwise relationbetween vectors rep-
resenting upper and lower probability functions generatedby the same evidence.



Cuzzolin: Geometry of Upper Probabilities 195

Luckily enough, orthogonality turns out to be an actual property of those uncer-
tainty descriptions.

4.1 Orthogonal projection

Let us first denote withPx the basis belief function forA = {x}. Being P =
Cl(Px,x ∈ Θ) an affine subspace, it can be written as the translated version of
a vector space asP = Px +span(Py−Px,∀y∈ Θ,y 6= x), where then−1 vectors
Py−Px form a basis of this vector space. They show a peculiar symmetry

Py−Px(A) =





1 A⊃ {y},A 6⊃ {x}
0 A⊃ {x},{y} or A 6⊃ {x},{y}
−1 A 6⊃ {y},A⊃ {x}.

that can be usefully exploited for our goals. In particular,we can appreciate that

(Py−Px)(A)= 1⇒A⊃{y},A 6⊃ {x}⇒Ac⊃{x},Ac 6⊃ {y}⇒ (Py−Px)(A
c)=−1

and vice-versa, while(Py−Px)(A) = 0⇒ A⊃ {y},A⊃ {x} or A 6⊃ {y},A 6⊃ {x}
so that in the first caseAc 6⊃ {x},{y}, in the second oneAc ⊃ {x},{y} but in both
situations(Py−Px)(Ac) = 0. Summarizing we can write

(Py−Px)(Ac) = −(Py−Px)(A) ∀A⊂ Θ

which directly implies that

Theorem 6 The line connecting P∗s and s is orthogonal to the probabilistic sub-
space, i.e.

s−P∗
s⊥P .

It is then clear that the orthogonal projection ofsontoP is simply the intersection
of this line with the probabilistic subspace,

s⊥P =~sP∗s ∩P .

We just have to find the value ofα such thats+α(P∗
s −s) ∈ P .

Theorem 7 The coordinates of the orthogonal projection of s ontoP with respect
to the basis{PA} can be expressed in terms of the basic probability assignment m
of s as follows:

ms⊥P ({x}) = m({x})+ ∑
A⊇{x}

m(A) · ∑|A|>1m(A)

∑|A|>1m(A)|A| . (12)

Equation (12) ensures thatms⊥P ({x}) is always positive for eachx∈ Θ, so that
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Corollary 2 The orthogonal projection s⊥P of any arbitrary belief function s onto
the probabilistic subspaceP is a Bayesian belief function.

This fact is not just a trivial consequence of its definition,since the probability
simplex is a small region ofspan(P ) in general. A symmetric version of the for-

mula can be obtained after realizing that
∑|A|=1 m(A)

∑|A|=1 m(A)|A| = 1, so that we can write

ms⊥P ({x}) = s({x}) · ∑|A|=1m(A)

∑|A|=1m(A)|A| +[P∗
s −s]({x}) · ∑|A|>1m(A)

∑|A|>1m(A)|A| . (13)

It is natural to wonder whether the upper probability vectoris actually the
reflection of the lower probability vector through the probabilistic subspace as in

the binary case, i.e. ifs⊥P =
s+P∗

s

2
. In [5] we will show that

Proposition 2 Orthogonal projection and mean probability coincide iff

∑
|A|>1

m(A)|A| = 2 ∑
|A|>1

m(A).

This apparently arid result is strictly related to the duality isuue concerning the
geometric counterparts of upper and lower probabilities. Is this duality associated
with some kind of symmetry through the probabilistic subspace? Further analysis
[5] seem to hint that the situation is a bit more complex.

4.2 Simplex of Consistent Probabilities

It is well known, on the other side, that belief functions canbe formally interpreted
in terms of classes of unknown probabilities. Given the nature of basic probability
assignments, it is natural to conjecture that the set of probabilitiesP(s) consistent
with a given belief functionshas also the shape of a simplex. Is there any relation
between the orthogonal projection ofsontoP and this simplex?

Following Shafer [13] we can think ofm(A) as a probability free to move
insideA. If we assign the mass of each focal elementAi to one of its elements
ai, intuitively we should get an extremum of the region of consistent probabili-
ties. More formally, to each focal elementA corresponds a massm(A) distributed
among its elements,m(A) ·Cl(Pa, a∈ A), so thatP(s) can be expressed as

P(s) = ∑
A⊂Θ

m(A) ·Cl(Pa, a∈ A).

Then, given an arbitrary belief functions with focal elementsA1, ...,Am, we can
define for each choice ofm representatives{a1, ...,am}, ai ∈ Ai ∀i,

Pa1...am
.
=

m

∑
i=1

m(Ai) ·Pai . (14)

It can be proved that [5] (as suggested by our intuition)
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Proposition 3

P(s) = Cl(Pa1...am,{a1, ...,am} ∈ A1× ...×Am).

Accordingly, the center of mass̄P(s) of P(s) gets the form

1

∏i |Ai |
· ∑
{a1,...,am}∈A1×...×Am

Pa1...am =
1

∏i |Ai |
· ∑
{a1,...,am}∈A1×...×Am

m

∑
i=1

m(Ai)Pai =

1

∏i |Ai | ∑
a∈Cs

Pa ∑
A j⊃{a}

m(A j)
∏i |Ai |
|A j |

= ∑
a∈Cs

Pa ∑
A j⊃{a}

m(A j)

|A j |
= ∑

x∈Θ
Px ∑

A⊃{x}

m(A)

|A|
(15)

since no focal elements include points outside the core. Equation (15) possesses
several interesting interpretations.

4.2.1 Center of mass and pignistic transformation

In his populartransferable belief model[15] Philippe Smets has proposed an ap-
proach to the theory of evidence in which beliefs are represented at credal level
(as convex sets of probabilities or belief functions), while decisions are made by
resorting to a probabilistic approximation of belief function calledpignistic trans-
formation(see for instance [4]). Smets justifies his transformation by means of a
so-called “rationality” requirement, which mathematically translates into a linear-
ity constraint (see Theorem 3 of [14]).

It is pretty surprising to see that the pignistic transformationPign[s] of a belief
functions is exactly expressed by Equation (15)

Pign[s](x) = ∑
A⊃{x}

m(A)

|A| ,

making clear that the geometric counterpart of the pignistic transformation coin-
cides with the center of mass of the simplexP(s) of consistent probabilities. The
full implications of this fact are still unclear, and deserve further investigations.

4.2.2 Consistency and Epsilon Contamination

The geometric analysis of the convex region of the consistent probabilities can
be also related to a popular technique in robust statistics,the Epsilon Contam-
ination Model. For a fixed 0< ε < 1 and a probability distributionP∗, the as-
sociatedε-contamination model is a convex class of distributions of the form
{(1− ε)P∗+ εQ} whereQ is arbitrary.
Teddy Seidenfeld has proved that (for discrete domains) anyε-contamination
model is equivalent to a belief function, whose corresponding consistent prob-
abilities form the largest convex set induced by the collection of coherent lower
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probabilities the model specifies for the elements of the domain (see [12], The-
orem 2.10). It is worth noticing that in this special caseP∗ has the meaning of
barycenter of the convex set, providing then another interesting interpretation of
Equation (15).

5 Comments

What we have learned about the pointwise geometry of upper and lower proba-
bilities can then be eventually depicted as in Figure 2. Eachbelief functions is
associated with a simplex of consistent probabilities (theshaded triangle)P(s)
in the probabilistic subspaceP (the larger triangle), whose center of massP̄(s)
(representing the pignistic transformation ofs) is in general different from the or-
thogonal projection ofs ontoP . The linesP∗s is orthogonal toP but s andP∗

s are
not on symmetric positions in general.

s

*

sP

P

)(sP

{ }1xP
{ }2xP

{ }nxP

Ps^

)(sP

}{ AX

Figure 2: Geometric relation between upper and lower probability vectors.

The binary case turns out to be rather peculiar, since, recalling the definition



Cuzzolin: Geometry of Upper Probabilities 199

of basic plausibility assignment (Section 3.1),

P̄(s) = ∑x∈Θ2
Px ∑A⊃x

m(A)
|A| = Px · (m(x)+ m(Θ)

2 )+Py · (m(y)+ m(Θ)
2 ),

s+P∗
s

2 = Px · m(x)+m(x)+m(Θ)
2 +Py · m(y)+m(y)+m(Θ)

2 +

+PΘ · m(Θ)−m(Θ)
2 = Px · (m(x)+ m(Θ)

2 )+Py · (m(y)+ m(Θ)
2 ),

s⊥P = Px · [m(x)+ (1−m(y)−m(x)) · m(Θ)
2m(Θ) ]+Py · [m(y)+ 1−m(x)−m(y)

2 ]

= Px · (m(x)+ m(Θ)
2 )+Py · (m(y)+ m(Θ)

2 )

and these three quantities coincide.
In our vision this knowledge could represent a step towards amore compre-

hensive understanding of the various uncertainty measuresthat can be introduced
on finite domains: classical probabilities, upper and lowerprobabilities, belief
functions, possibility measures, fuzzy sets. A number of papers have been re-
cently published, for instance, on the connection between fuzzy measures and
belief functions ([10] among the others). The belief space framework could pro-
vide a unifying environment where those connections may emerge more clearly
and lead to a better comprehension of the field.
In this paper, in particular, we have seen how the dual concept of plausibility func-
tion or upper probability transfer into a dual convex geometry. The analogous of
basis belief functions and probability assignments have been developed and their
geometric interpretation exposed. We concentrated our efforts on understanding
the pointwise relation between lower and upper probabilityvectors, proving their
orthogonality with respect to the probabilistic subspace.
We also analyzed the comparative geometry of relative plausibility, orthogonal
projection and center of mass of the set of consistent probabilities. This can be
seen as a preliminary work in the perspective of a geometric solution to the proba-
bilistic approximation problem. Coherently, we are also working on the geometry
of finite fuzzy sets and possibility measures, to investigate more closely the idea
of duality between probabilistic and possibilistic measures and discuss possible
alternative consonant approximations of belief functions.

From a purely technical viewpoint, it is not clear yet what isthe exact posi-
tion in the belief space of a generic plausibility vector, and its geometric relation
with other significant points like the relative plausibility of singletonsP̃∗

s . In the
next future [5] we will show how this quantity turns out to be the best Bayesian
approximation of a belief function in the framework of Dempster’s combination
rule, and “perfectly” represents (in a very precise way) theoriginal belief func-
tion in probabilistic subspace. It will be interesting to compare these findings with
the results of a recent working paper Cobb and Shenoy [4], where they describe
some properties of the relative plausibility of singletonsand discuss its nature of
probability function that is equivalent to the original belief function.

The study of consistent probabilities could play as well an important role in
the search for an alternative to Dempster’s rule of combination, for their descrip-
tion in terms of convex sets opens the way to the application of our commutativity



200 ISIPTA ’03

results [6]. Understanding their behavior in an inference process could give us a
hint of the properties a combination rule should possess to guarantee coherency
in terms of the corresponding credal sets.

Appendix: Mathematical Proofs

Proof. (Proposition 1)If the thesis is true we have, by replacingXA with expres-
sion (6),

PA = ∑
E⊃A

XE = ∑
E⊃A

∑
B⊃E

PB · (−1)|B−E| = ∑
B⊃A

PB · ∑
B⊃E⊃A

(−1)|B−E|.

Let us consider the factor∑A⊂E⊂B(−1)|B−E|. WhenA = B thenE = A = B and
the coefficient becomes 1. On the other side, whenB 6= A we have

∑
A⊂E⊂B

(−1)|B−E| = ∑
F⊂B\A

(−1)|B\A\F| = 0

for Newton’s binomial. HencePA = PA. ✷

Proof. (Theorem 2)The definition (3) of upper probability yields

µ(A) = ∑
B⊂A

(−1)|A−B|P∗
s (B) = ∑

B⊂A

(−1)|A−B|(1−s(Bc)) =

= ∑
B⊂A

(−1)|A−B|− ∑
B⊂A

(−1)|A−B|s(Bc)
(16)

where for Newton’s binomial∑B⊂A(−1)|A\B| = 0 if A 6= /0, (−1)|A| otherwise. If
B⊂ A thenBc ⊃ Ac, so that the second addendum becomes

− ∑
B⊂A,B6= /0

(−1)|A−B| ∑
E⊂Bc

m(E) = − ∑
E⊂Θ

m(E) · ∑
B:B⊂A,Bc⊃E

(−1)|A−B| =

= − ∑
E⊂Θ

m(E) · ∑
B⊂A∩Ec

(−1)|A−B| (17)

for Bc ⊃ E,B⊂ A is equivalent toB⊂ Ec,B⊂ A≡ B⊂ (A∩Ec).
Let us now analyze the function ofE

f (E)
.
= ∑

B⊂A∩Ec
(−1)|A−B|.

If A∩Ec = /0 thenB = /0 and the sum is(−1)|A|. If A∩Ec 6= /0, instead, we can
write F

.
= Ec∩A and obtain (sinceB⊂ F ⊂ A and|A−B|= |A−F|+ |F −B|)

f (E) = ∑
B⊂F

(−1)|A−B| = ∑
B⊂F

(−1)|A−F|+|F−B| = (−1)|A−F| · ∑
B⊂F

(−1)|F−B| = 0
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given that∑B⊂F(−1)|F−B| = 0 for Newton’s binomial again. Eventually

f (E) =

{
0 Ec∩A 6= /0
(−1)|A| Ec∩A = /0.

We can then rewrite expression (17) as follows

− ∑
E⊂Θ

m(E) f (E) = − ∑
E:Ec∩A6= /0

m(E) ·0− ∑
E:Ec∩A= /0

m(E) · (−1)|A| =

= (−1)|A|+1 ∑
E:Ec∩A= /0

m(E) = (−1)|A|+1 ∑
E⊃A

m(E)

and replacing it in Equation (16) yields Equation (9), afterdistinguishing the two
casesA = /0, A 6= /0. ✷

Proof. (Theorem 5) Expression (10) is equivalent toΠA(X) =

− ∑
B⊂A,B6= /0

(−1)|B|PB(X) ∀X ⊂ Θ. But sincePB(X) = 1 if X ⊃ B and 0 oth-

erwise we have that

ΠA(X) = − ∑
B⊂A,B⊂X,B6= /0

(−1)|B| = − ∑
B⊂A∩X,B6= /0

(−1)|B|.

Now, if A∩X = /0 there is no addenda in the above sum, that goes to zero. Other-
wise, for Newton’s binomial, we haveΠA(X) =−{[1+(−1)]|A∩X|− (−1)0}= 1.
But then the definition of upper probability yields exactly

P∗
PA

(X) = ∑
B∩X 6= /0

mPA(B) =

{
1 A∩X 6= /0
0 A∩X = /0.

✷

Proof. (Theorem 6) Clearly P∗
s − s = ∑A⊂Θ XA · [P∗

s (A)− s(A)], where[P∗
s −

s](Ac) = P∗
s (Ac)−s(Ac) = 1−s(A)−s(Ac) = 1−s(Ac)−s(A) = P∗

s (A)−s(A) =
[P∗

s −s](A). Hence,

〈P∗
s −s,Py−Px〉 = ∑A⊂Θ[P∗

s −s](A) · [Py−Px](A) =

= ∑|A|≤⌊|Θ/2|⌋[P
∗
s −s](A) · [(Py−Px)(A)− (Py−Px)(Ac)] = 0

since(Py−Px)(A) = −(Py−Px)(Ac). ✷

Proof. (Theorem 7)The desired condition implies that, for any subsetA⊂ Θ,
s(A)+ α · [P∗

s (A)− s(A)] = s(A)+ α · [1− s(Ac)− s(A)] ∈ P . In particular, when
A = {x} is a singleton,

s({x})+α · [1−s({x}c)−s({x})] ∈ P . (18)
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This point belongs toP iff the normalization criterion for singletons is met, i.e.

∑
x∈Θ

s({x})+α · ∑
x∈Θ

(1−s({x}c)−s({x}))= 1⇒ α =
1−∑x∈Θ s({x})

∑x∈Θ(1−s({x}c)−s({x}))

and after replacing this value ofα into Equation (18) we get

s⊥P ({x}) = s({x})+
1−∑y∈Θ s({y})

∑y∈Θ(1−s({y}c)−s({y})) · (1−s({x}c)−s({x})) =

=
s({x}) · [∑y∈Θ(1−s({y}c)−s({y}))− (1−∑y∈Θ s({y}))]

∑y∈Θ(1−s({y}c)−s({y})) +

+
(1−s({x}c)) · (1−∑y∈Θ s({y}))

∑y∈Θ(1−s({y}c)−s({y})) =

=
s({x}) · [∑y∈Θ(1−s({y}c))−1]+ (1−s({x}c)) · (1−∑y∈Θ s({y}))

∑y∈Θ(1−s({y}c)−s({y}))

that using the definition of plausibility function can be rewritten as

s⊥P ({x}) =
s({x}) · (∑y6=x P∗

s ({y})−1)+P∗
s({x}) · (1−∑y6=x s({y}))

∑y∈Θ[P∗
s ({y})−s({y})] . (19)

Equation (19) determines the coordinate of the orthogonal projection of a belief
functionsontoP . The expression for the basic probability assignment associated
with this projection (Equation (12)) can be found after a fewpassages, extensively
reported in [5]. ✷
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Örebro University, Sweden

L. EKENBERG
Stockholm University and Mid Sweden University, Sweden

J. JOHANSSON
Mid Sweden University, Sweden

A. LARSSON
Mid Sweden University, Sweden

Abstract

The nature of much information available to decision makersis vague and
imprecise, be it information for human managers in organisations or for pro-
cess agents in a distributed computer environment. Severalmodels for han-
dling vague and imprecise information in decision situations have been sug-
gested. In particular, various interval methods have prevailed, i.e. methods
based on interval estimates of probabilities and, in some cases, interval util-
ity estimates. Even if these approaches in general are well founded, little has
been done to take into consideration the evaluation perspective and, in partic-
ular, computational aspects and implementation issues. The purpose of this
paper is to demonstrate a tool for handling imprecise information in decision
situations. The tool is an implementation of our earlier research focussing
on finding fast algorithms for solving bilinear systems of equations together
with a graphical user interface supporting the interpretation of evaluations of
imprecise data.

Keywords

decision analysis, interval probabilities, utility theory, decision tools

1 Introduction

The idea of using computers to support decision making has been around almost
as long as computers have been available for humans in usableform. The past
decades have witnessed a tremendous development in the graphical user inter-
face, which facilitates the use of more advanced computational techniques to

204
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a wider group of users. As a consequence, several decision analytic tools have
emerged during the last decade. Decision software based on classical decision
theory, such as Standard & Poor’s DPL (www.dpl.adainc.com), Palisades’ Pre-
cisionTree (www.palisade.com), and TreeAge’s DATA (www.treeage.com), have
successfully been commercialised and are used by various professional decision
analysts and decision makers to aid them in their work.

However, most classical decision models and software basedon them con-
sist of some straightforward set of rules applied to precisenumerical estimates of
probabilities and values. Matrix, tree, and influence diagram models have prolif-
erated, but since they mostly handle precise numeric figures, sensitivity analysis
is often not easy to carry out in more than a few dimensions at atime. The require-
ment to provide numerically precise information in such models has often been
considered unrealistic in real-life decision situations,and a number of models
with representations allowing imprecise statements have been suggested. Some of
them use standard probability theory while others contain some specialised for-
malism. Most of them focus more on representation and probabilistic inference,
and less on evaluation [15], [21], [22], [23], [24].

The purpose of this paper is to present a new decision tool currently being
developed, calledDecideIT. It allows the decision maker to be as deliberately
imprecise as he feels is natural and provides him with the means of expressing
varying degrees of imprecision in the input sentences, facilitating both the use of
decision trees and influence diagrams as decision models. The application takes
advantage of a set of algorithms defined as the DELTA method [4], [5], [8], [9],
combined with a user-friendly interface which provides an intuitive graphical rep-
resentation of evaluation results.

Pre-release versions ofDecideIT have been used in a number of various ar-
eas and situations, such as contract formulations [1], investment decisions [7],
and insurance policies and flood management [10].DecideIT is currently in a
beta-stage of the development phase and will be distributedby Doctor Decide
(www.doctordecide.com). Academic licenses will be available for a symbolic fee.

2 The DELTA Method

The main concern of the DELTA method is evaluation of decision problems, with
probability and utility intervals to express numerically imprecise information. The
method originates from research on handling decision problems involving a finite
number of alternatives and consequences [16].

Interval sentences are of the form: “The probability ofci j lies between the
numbersak andbk” and are translated intopi j ∈ [ak,bk]. Comparative sentences
are of the form: “The probability ofci j is greater than the probability ofckl”.
Such a sentence is translated into an inequalitypi j ≥ pkl. The conjunction of
constraints of the types above together with∑ j pi j = 1 for each alternativeAi
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involved is calledthe probability base(P). Thevalue base(V) consists of similar
translations of vague and numerically imprecise value estimates.

A collection of interval constraints concerning the same set of variables is
called aconstraint set. For such a set of constraints to be meaningful, there must
exist some vector of variable assignments that simultaneously satisfies each in-
equality, i.e., the system must beconsistent. Theorthogonal hullis a concept that
in each dimension signals which parts are incompatible withthe constraint set,
thus it consists of consistent value assignments for each variable.

Definition 1: Given a consistent constraint setX in {xi}i∈I , I = {1, . . . ,n}, and a
function f , X max( f (x)) =de f sup(a|{ f (x) > a}∪X is consistent).
Similarly, X min( f (x)) =de f inf(a|{ f (x) < a}∪X is consistent).

Definition 2: Given a consistent constraint setX in {xi}i∈I , I = {1, . . . ,n}, the set
of pairs{〈Xmin(xi),

X max(xi)〉} is theorthogonal hullof the set and is denoted
〈Xmin(xi),

X max(xi)〉n.

The orthogonal hull greatly simplifies the computational effort and can be pictured
as the result of wrapping the smallest orthogonal hyper-cube around the constraint
set. For the probability baseP, such a wrapping of a consistent system yields
feasibleinterval probabilities, in the sense that none of the lower and upper bounds
of the probability assignments are inconsistent [24].

2.1 Strength of Alternatives

An information framecontains the probability and value bases. In an information
frame, an alternativeAi is represented by its consequence setCi = {ci1, . . . ,cihi}.

Definition 3: Given an information frame〈{C1, . . . ,Cn},P,V〉 the strength, δi j ,
denotes the expressionE(Ci)−E(Cj), i.e.,∑k pik ·vik −∑k p jk ·v jk, over all con-
sequences in the consequence setsCi andCj .

To analyse the strength of the alternatives,PVmax(δi j ) is calculated. This means
that we choose the feasible solutions to the constraints inP andV that are most
favourable toE(Ci) and demeaning toE(Cj). This means that if there are no de-
pendencies1 between the alternatives,PVmax(δi j )=PVmax(E(Ci))−PVmin(E(Cj))
andPVmin(δi j )=PVmin(E(Ci))−PVmax(E(Cj)). The concept of strength expresses
the maximum differences between the alternatives under consideration. It is how-
ever used in a comparative way so that formally the maximum and minimum is
calculated. In this way, we get a measure about the proportions of the information
frame, where the respective alternatives are dominant. When applying the hull

1cf. [4] for details when there are various dependencies between the alternatives.
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cut operation (see section 2.2), we also receive a measure ofthe stability of these
differences.

This is, however, not enough. Sometimes, the decision makerwants to put
more emphasis on the maximal difference (displaying a difference-pronebehaviour).
At other times, the minimal difference is of more importance. This is captured in
the medium difference.

Definition 4: Given an information frame〈{C1, . . . ,Cn},P,V〉, let α ∈ [0,1] be
a real number. Theα-medium differenceof δi j in the frame isPV[α]mid(δi j ) =
α ·PVmax(δi j )+ (1−α) ·PVmin(δi j ).

Theα can be considered a precedence parameter that indicates if one boundary
should be given more weight than the other. It is, consequently, a measure of
difference in strength between the consequence sets. This view duality is a key to
understanding the selection process. This is further discussed in [6].

For the pairwise evaluation of our alternatives, [4] suggests the two algorithms
PBOptandVBOpt. The first algorithm (probability bilinear optimisation) can han-
dle any statement except comparisons between value variables from differentCi ’s,
and is described as follows.

Definition 5: Given an information frame〈{C1, . . . ,Cn},P,V〉, let Ci be the set
{ci1, . . . ,cihi}. ThenVEmax

i is pi1 · ai1 + . . . + pihi · aihi , whereain, 1 ≤ n ≤ hi, is
sup(b|{b = vin}∪{ai(n−1) = vi(n−1)}∪ . . .∪{ai1 = vi1} is consistent withV).

Further,VEmin
i is pi1 · ai1 + . . . + pihi · aihi , whereain,1 ≤ n ≤ hi , is inf(b|{b ≥

vin}∪{ai(n−1) = vi(n−1)}∪ . . .∪{ai1 = vi1} is consistent withV).
LetCj be the set{c j1, . . . ,c jh j }. ThenVδi j is VEmax

i −VEmin
j .

The idea behind this is to transform a bilinear expression into a linear expres-
sion with the property of having the same extremal value under specific condi-
tions. Under conditions satisfied by a majority of information frames, maxδi j =
maxV δi j and minδi j = minV δi j . When comparisons between value variables from
differentCi ’s are important, theVBOpt algorithm should be considered instead.
VBOpt is a twin algorithm toPBOpt, working essentially in the same way, but for
other preconditions [4].

2.2 Cutting the Orthogonal Hull

A problem with evaluating interval statements is that the results could be overlap-
ping, i.e., an alternative might not be dominating2 for all instances of the feasible
values in the probability and value bases. A suggested solution to this is to further
investigate in which regions of the bases the respective alternatives are dominat-
ing. For this purpose, thehull cut is introduced in the framework. The hull cut

2Alternative i dominates alternativej iff PVmin(δi j ) > 0.



208 ISIPTA ’03

can be seen as generalised sensitivity analyses to be carried out to determine the
stability of the relation between the consequence sets under consideration. The
hull cut avoids the complexity in combinatorial analyses, but it is still possible to
study the stability of a result by gaining a better understanding of how important
the interval boundary points are.

If dominance is evaluated on a sequence of ever-smaller sub-bases, a good
appreciation of the strength’s dependency on boundary values can be obtained.
This is taken into account by cutting off the dominated regions indirectly using
the hull cut operation. This is denoted cutting the bases, and the amount of cutting
is indicated as a percentagep, which can range from 0 % to 100 %. For a 100 %
cut, the bases are transformed into single points, and the evaluation becomes the
calculation of the ordinary expected value.

Definition 6: X is a base with the variablesx1, . . . ,xn, π∈ [0,1] is a variable
referred to as thecut level. 〈ai ,bi〉n is the orthogonal hull, andk = (k1, . . . ,kn)
is a consistent point inX. A π-cut of X is to add the interval statements{xi ∈
[ai + π· (ki − ai),bi −π· (bi − ki)] : i = 1, . . . ,n} to the baseX. k is called the
contraction point.

If no consistent contraction point is given explicitly by the decision maker,De-
cideIT suggests one by minimising the distance to the orthogonalhull midpoints.
The choice of the calculated contraction point is motivatedby being the centroid
in the (non-explicit) second-order belief distributions over the intervals [12]. In-
tuitively, the hull cuts inDecideIT are based on values closer to the centre of
the interval being more reliable, i.e., there is an underlying assumption that the
second-order distributions have a mass concentrated to thecentre. Since the be-
lief in peripheral values is somewhat less, the interpretation of the cut is to zoom
in on more believable values that are more centrally located. The centroid of a
distribution is exactly this point where this geometrical property of the distribu-
tion can be regarded as concentrated. Furthermore, it has very attractive properties
from computational as well as intuitive view-points [12].

By co-varying the cutting of an arbitrary set of intervals, it is possible to gain
much better insight into the influence of the structure of theinformation frame
on the solutions. Contrary to volume estimates, hull cuts are not measures of the
sizes of the solution sets but rather of the strength of statements when the origi-
nal solution sets are modified in controlled ways. Both the set of intervals under
investigation and the scale of individual hull cuts can be controlled.

2.3 Risk Constraints and Security Levels

It is reasonable to extend the framework based on the principle of maximising the
expected utility with other decision rules. A number of rules have been suggested,
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see, e.g., [14], [18] and [20], but these are mostly applicable to decisions under
strict uncertainty.

A more general approach is to introduce risk constraints that provide thresh-
olds beyond which a strategy is undesirable. However, when the information is
numerically imprecise, the meaning of such thresholds is not obvious. In [11] it is
suggested that the interval limits together with stabilityanalyses should be consid-
ered in such cases. InDecideIT, such thresholds are referred to assecurity levels,
and the exclusion of undesirable consequence sets takes thefollowing form,

S(Ci , r,s) = ( ∑
vi j ≤r

pi j ≤ s)

wherer denotes the lowest acceptable value ands the highest acceptable proba-
bility of ending up with a lower value thanr. This means that the sum of the prob-
abilities, where the consequences violate the security level r, must not exceeds.
When dealing with interval statements it is not obvious whatr ands represents,
but one approach is to study the worst and best case by using lower and upper
bounds. The contraction points can be used to study the normal case. The con-
cept of security levels is of general use when implementing risk constraints, as
suggested in [8].

3 The Tool

The decision tools currently available on the market (e.g.,DPL, PrecisionTree,
DATA etc.) have set a useful de facto standard for how users may interact with the
software, and construct models of their decision problems.Therefore,DecideIT
has about the same look-and-feel as these tools.
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Figure 1: Screenshot ofDecideIT holding an influence diagram that has been converted
to a decision tree.

Currently, three types of nodes may be used in the application: decision nodes,
chance nodes, and consequence nodes. Work is carried out on deterministic nodes
for influence diagrams.

3.1 Decision Trees

A decision tree is graphically illustrated on the screen, showing explicitly the
probabilities and values for all nodes. Interaction with the model is performed
through the GUI. Editing probabilities, values, and other properties of a certain
node is performed through a node property frame.

Figure 2: Entering imprecise probabilities, using a probability template for the outcome
leading toE6. For the outcomeC12, we explicitly set the contraction point to 0.55.
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3.2 Influence Diagrams

Influence diagrams are, when evaluated, transformed into a corresponding sym-
metric decision tree using a conversion algorithm that creates a total ordering of
all connected nodes in the diagram, barren nodes discarded.This conversion algo-
rithm traverses along the directed arcs, and orders the nodes according to a set of
rules. In some cases, when only the topology of the graph is not enough to order
the nodes, a node placed to the left is converted before a nodeto the right. It is
also possible to convert an influence diagram into an instance of a decision tree,
and continue the modelling work on this tree.

Editing the properties of a node in an influence diagram is analogous to the
same procedure for a decision tree. There is, however, some differences between
the node property frames of the two models. In an influence diagram, the user
gets an overview of the conditional expansion order when editing properties of a
conditionally dependent chance node.

Figure 3: Entering conditional probabilities for a conditionally dependent chance node
in an influence diagram.

Reversal of arcs is possible between two chance nodes in an influence diagram,
who shares a common information state and have no other directed path between
them. Thus, according to Shachter, the two chance nodes mustinherit each other’s
conditional predecessors before reversal of an arc betweenthem [19]. Bayes’ the-
orem is invoked, and to determine the lower bound we maximisethe denominator
and minimise the numerator, and vice versa for the upper bound. This means that
as of today reversal of arcs inDecideIT simply employ theintuitive conceptof
conditional probability, and a re-flip of the arc will not restore the values for in-
terval probabilities as they do in the precise case. One solution is to implement
the Fertig and Breese algorithm [13], but since we do not wishto lose the up-
per bounds this solution seems less interesting. There doesnot exist one superior
algorithm for this problem taking both lower and upper bounds in account [2],
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[3].
Because of this drawback, development ofDecideIT will focus on employing

the canonical conceptof conditional probabilities [24], but this is a matter of
further research regarding the computational aspects. Theuser ofDecideIT may
however choose not to let the software automatically suggest any new conditional
probabilities when flipping an arc.

3.3 Probability and Value Statements

In a chance node in a tree or influence diagram, it is possible to set comparative
statements between the probabilities of different outcomes. These statements are
then added to the constraint sets. Value statements are set in an analogous fashion.

Figure 4: Setting a comparative probability statement, that the probability of the out-
come leading toC5 is at least 0.05 higher than the probability of ending up withC3.

Note that by using this feature, it is possible to handle qualitative probabilities and
utilities in a common framework together with the interval approach. Such state-
ments let both decision trees and influence diagrams handle both quantitative and
qualitative information, as a step towards evaluation of more qualitative models
defined in [17].

3.4 Presentation of Evaluation Results

Results are presented as a graph. Along the x-axis we have thecut in per cent
ranging from 0% to 100%, and along the y-axis the possible differences of the
expected values between a pair of alternatives. It is also possible to compare one
alternative against an average of a set of alternatives. In Figure 5, the upper line is
max(δ13), the middle isPV[0.5]mid(δ13), and the lower is min(δ13). The shrink-
ing area depicts the expected value under different degreesof cutting. As can be
seen, the higher cut level that is used, the more equal the alternatives seem to be,
according to the principle of maximising the expected utility. For a 100% cut,
where the results from the algorithms coincide with the ordinary expected value,
the result implies thatA3 is the better alternative. However, taking impreciseness
in account, it may not be that simple.
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Figure 5: Pairwise comparison of two alternatives, using the DELTA method. After
about 75% cut, we see thatPV[0.5]mid(δ13) < 0.

3.5 Security Levels

In Figure 6, we investigate at which cut level a given security level will hold in the
worst case3. An all-green (light grey) alternative can then from this perspective
be considered as completely safe.

Figure 6: A security analysis with a security level of -100 asthe lowest acceptable value
and 0.02 as the highest acceptable probability.

A3 does not violate the security levels for any cut level and seems to be the de-
sired course of action for a risk avoidant decision maker. This is represented by
green (brighter) in the figure above. After a 70% cut level,A2 does not violate
the given security level. If the decision maker is eager for choosingA1 or A3, the
security analysis imply thatA1 is more risky thanA3, leaving the decision maker
to seriously consider choosingA3 overA1.

3It is possible to investigate best and normal cases as well.
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3.6 Preference Ordering Among Consequences

In complex decision situations with large sets of consequences, it might be time-
consuming to identify the preference ordering of consequences, andDecideIT
offers a graphical overview of such a relation on a set of consequences. The or-
dering is easily determined by checking whethervi j − vkl > 0 is consistent with
the value base. If not,vi j is beforevkl in the partial ordering. Thereafter, obvious
transitive relationships are removed.

Figure 7: Preference order among consequences, whereC1 is the most preferred conse-
quence.

3.7 Critical Values

Even though the concept of hull cut is a general form of sensitivity analysis, a
model may be further investigated through identifying the most critical elements
of a decision problem. By varying each event’s probability and utility values
within their intervals, it is possible to identify the elements with highest impact
on the expected value. This feature lets a decision maker identify where to put his
efforts in the information gathering procedure in order to make more safe deci-
sions.
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Figure 8: Identifying the critical elements of a decision problem, illustrated as a tornado
diagram.

For probability variation, the eventE6 has the highest impact on the expected
value. By varying the probabilities for this uncertain event, the expected value
may differ 397.9 value units. For value variation, the impreciseness in the value
of consequenceC6 affects the expected value the most.

4 Concluding Remarks

Based on our earlier research on fast algorithms for solvingbilinear problems, we
have presented a tool integrating various procedures for handling vague and nu-
merically imprecise probabilities and utilities. The toolhas been tested in several
real-life applications, and provides means for evaluatingdecision situations using
alternative evaluation principles beside the conventional pointwise maximisation
of the expected utility. The latter has turned out to be too limited in many situ-
ations. Thus, we also suggest that the alternatives should be further investigated
with respect to their relative strengths and also to the number of values consistent
with the given domain. Furthermore, the alternatives can also be evaluated rela-
tive to a set of security parameters considering how risky they are. To refine the
evaluations, we have also shown how hull cut procedures can be introduced in the
model. These indicate the effects of choosing different degrees of reliability of the
input data. In this way, it is possible to investigate critical variables and the sta-
bility of the evaluations. The result of such an analysis often point out reasonable
strategies, but also what aspects are crucial to consider for a reliable and stable
result.
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Convenient Interactive Computing for
Coherent Imprecise Prevision Assessments

JAMES DICKEY
University of Minnesota, USA

Abstract

A generalization of deFinetti’s Fundamental Theorem of Probability facili-
tates coherent assessment, by iterated natural extension,of imprecise proba-
bilities or expectations, conditional and unconditional.Point values are gen-
eralized to assessed bounds, accepted under weak coherence, that is, allow-
ing the input of redundant loose bounds. The method is realized in a conve-
nient interactive computer program, which is demonstratedhere, and made
available as open source code. This work suggests that a consulting expert’s
fees should not be paid unless his/her assessed probabilities cohere.

Keywords

assessment, imprecise probabilities, previsions, coherence, natural extension, interactive
computing

1 Introduction

We consider previsions of random quantities, loosely, expectations of random
variables, a probability being the prevision of an event, or0-1 random quantity.
Prevision assessments can either be intended as estimates of frequencies, more
generally averages, or they can be intended as mere quantitative expressions of
human uncertainty. In either case, they should be coherent,that is, extendible to
at least one full probability distribution. For estimates of frequencies or averages
to be taken seriously, this says that their values must not beimpossible when in-
terpreted together as limiting frequencies or limiting averages in an experiment.
They can describe a conceivable, possibly infinite, population. For previsions in-
tended as expressions of uncertainty, coherence is a kind ofrationality, a direct
generalization of non-contradiction for statements of fact, a self-consistency in
the sense that, if taken as a person’s betting prices, the person could not be made
a sure-loser merely by combining a finite number of bets at such prices.

218
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2 Coherent Assessment by Iterated Natural Exten-
sion

It is becoming more widely known that deFinetti’s Fundamental Theorem of Prob-
ability [12, 13] provides a dynamic for interactive computational assessment of
coherent previsions. For a sequence of mathematically related random quantities
(including logically related events), if coherent prevision values are given for an
initial segment of the sequence, the available cohering values for the prevision of
the next quantity comprise an interval whose endpoints can be computed by lin-
ear programming (first noted by Boole [2], Hailperin [14], and Bruno and Gilio
[6] ). Walley [22] calls this interval the “natural extension” of the given coherent
previsions.

The linear-programming variables are interpretable as theprobabilities of the
“constituent” events, the events of the joint-range pointsof the random quantities.
Coherence restricts the prevision vector of the quantitiesto the convex hull of the
joint- range set, that is, the prevision point must be some weighted average of the
join-range points. The assessed previsions impose additional linear constraints.

In textbook-type problems, where a probability is determined by given proba-
bilities, the extension interval reduces to a single value.If the given values, them-
selves, are not coherent, the linear programming calculation will so indicate by
reporting that there are “no feasible solutions,” which implies an empty extension
interval. Coherent previsions are always capable of being extended coherently
with the value for any further random quantity assignable inan extend-assess cy-
cle. If supplementary calculations are made of the extension interval for a random
quantity of special interest, the interval will be seen to shrink to a subinterval
whenever a further coherent prevision is assessed.

The method generalizes to include conditional previsions,as inputs and/or
outputs. In addition, since prevision is a linear operator,a linear combination of
previsions can be assessed directly as the prevision of a linear combination of ran-
dom quantities. For example, if the assessor defines the difference of two events
as a random quantity, then the difference of their probabilities can be assessed
as a prevision, and so included in the analysis. The convenience of the method
suggests that any consulting expert should not be paid unless her/his probability
assessments cohere.

3 Coherence for Imprecise Assessments

An interval, or even a single bound, generalizes a point value, and experts may
only be willing to report such imprecise previsions. So how do the coherence
concept and the iterated extend-assess algorithm generalize to handle imprecise
previsions?

If mere bounds are input, instead of precise values, the output extension in-
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terval consists of all the available values for the further prevision for which there
exists at least one mutually coherent list of precise valuessatisfying the input
bounds. And, of course, for each such precise list, the corresponding cohering
values for the further random quantity would form a subinterval of the output
interval. This was defined as the problem of probability logic by Hailperin [15]
(following Boole [2]), included as “natural extension” by Walley [22], and pre-
sented in a generalization of deFinetti’s Fundamental Theorem by Lad, Dickey,
and Rahman [18, 19]. The latter two papers are the basis for the algorithm coded
in the present program. A prototype program written in Mathematica in 1991 has
had limited distribution.

So, what assessed further bounds should one say “cohere” with the output
extension interval?

Definition 1 (Weak Coherence) Assessed bounds that do not contradict theout-
put bounds will be said to cohere weakly with the given input bounds. An assessed
lower (upper) bound must not lie above (below) the output upper (lower) bound,
that is, the assessed interval must overlap the extension interval. Also, of course,
an assessed lower (upper) bound must not be higher (lower) than the correspond-
ing assessed upper (lower) bound. Weak coherence is directly equivalent to the
prevention of sure-loss combined bets.

Definition 2 (Strong Coherence) Assessed bounds that neither contradict, in the
weak-coherence sense, nor relax the output bounds will be said to cohere strongly
with the given input bounds. So, in addition, an assessed lower (upper) bound
must not lie below (above) the output lower (upper) bound, that is, the assessed
interval must be a subinterval of the extension interval.

P. Walley [22] uses the term “coherence” to refer to strong coherence, with
the interpretation that an assessed lower (upper) value is asserted as the highest
(lowest) agreeable relative purchase (selling) price for the random quantity scaled
in monetary units, an interpretation under which dynamic refinement of assessed
previsions would seem less than natural. Whereas, weakly coherent buying (sell-
ing) prices can be interpreted as conservative purchase offers (offers to sell) that
can be refined upward (downward). The weak version of coherence was termed
“g-coherence” by Biazzo and Gilio [3]. Weak coherence is relevant to our pro-
gram, for if a user chooses a bound that is a relaxation of the latest extension
interval, it has no effect on any subsequent computed interval. Being subject to
later refinement, it need not be the tightest bound, now.

In a trivial mathematical sense, the order in which assessments are made does
not matter. If an expert asserts the same coherent bounds in adifferent order, then
the same coherent joint bounds will result. (The tightest implied bounds prevail,
of course.) In a practical sense, however, ones psychological reaction to encoun-
tering different computed intervals for a different order can make a substantial
difference in ones assessed values or bounds.
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Relevant further references on coherence and coherence methods for impre-
cise unconditional and conditional previsions, as suggested by referees, include
[1], [7], [8], [9], [10], [11], [16].

4 Implementation

This is to introduce an interactive computer program for coherent assessment of
imprecise previsions by iterated coherent extension, in which the user communi-
cates with the program through a combined input-output textfile. The interaction
proceeds as a series of steps, each in the form of an extend-assess cycle:

1. Based on all the prevision bounds assessed so far, the program computes
natural extensions, the implied extension interval(s), for the previsions of
one or more user-selected quantities.

2. The user assesses a lower and/or upper bound (or a point value) for a pre-
vision, cohering with its computed extension interval.

4.1 Algorithm

To calculate the extension interval for the unspecified prevision of a quantity, say
pn = P(Xn), the program must determine the convex hull of the joint range set of
the considered quantities, and then impose the linear constraints of the assessed
prevision values and bounds. Denote byX (n×1) the vector ofn quantities,R(n×
N) the matrix ofN joint-range points, andC (N×1) the vector ofN “constituent”
events (joint point-value events). ThenC is a partition, andX = RC. The convex
hull of the set of columns ofR is the set of all convex combinations,

p = Rq, (1)

whereq ≥ 0 and1Tq = 1. Now, suppose our assessments impose the further con-
straints,

Ap ≤ b,

some of the inequalities of which may be equalities. The prevision variable to
be optimized ispn = rT

n q, from Eq. (1). This fully defines the relevant linear-
programming calculations.

The steps to achieve this construction and calculation are:

1. Define the product quantities needed for any conditional previsions consid-
ered.

2. Define subroutines to reject the potential columns ofR that do not satisfy
the logical and mathematical constraints onX.
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3. BorderR for any new random quantities, or start over to reconstructR from
scratch if any old quantities are omitted or redefined.

4. For each prevision to be optimized, form a linear-programming input file
and run the routine lp-solve. (Perform a change-of-variables if a conditional
prevision is to be optimized.)

4.2 Zero Probabilties

A coherent prevision conditional on an event of zero probability is not determined
by the usual unconditional previsions: ifP(A) = 0, thenP(XA) = 0 andP(X|A) =
0/0, which is indeterminate. Nor can such a conditional prevision have any co-
herent effect on unconditional prvisions: ifP(A) = 0, thenP(X) = P(X|A)P(A)+
P(X|nA)P(nA) = P(X|nA). So, although the program can accept, as input, previ-
sion assessments that are conditional on an event of probability zero, as presently
coded, it will not respond to a request to calculate extension bounds on such a
prevision. The practical reason for this is that the programsolves the fractional-
programming problem for a bound on conditional prevision bya change-of-variable
that divides byP(A). Improvements in this aspect of the program are contem-
plated.

4.3 Input/Output

The combined input/output file is organized as a sequence of records, or lines,
separated by carriage returns. The following two types of records represent utter-
ances about previsions.

1. Assessed lower and/or upper bound(s) (or point value) on the prevision of
a quantity. (Input.)

2. A computed extension interval for the prevision of a quantity. (Output.)

In each type of utterance about a prevision, the case of equallower and up-
per bounds, a single point value, is handled by special notation. (A pair of equal
bounds are optional on input.)

In order to keep track of what assessed bounds are assumed as the bases for
computed intervals, and to promote the stepwise coherence-preserving use of the
method, a step number is assigned to a new assessment the firsttime it is imposed
in the calculation of an extension interval. That step number is also assigned to
all extension intervals that are subsequently calculated before any further assess-
ments are introduced.

It should be noted that a computed interval will only guarantee coherence
of an assessment one new quantity at a time. If more than one quantity’s new
assessment is uttered in the same step, the linear programming routine could find
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that they are not coherent, even though each new assessment would be coherent
if added singly. The program will issue a warning, yet it willnot prevent the user
from introducing multiple new assessments in a single step.The user may happen
to know that coherence will be preserved, or may just wish to take a chance.

A third type of record provides the framework for prevision utterances:

3. A definition of a random quantity, stated with identifyingname, description,
range set, and relation(s) (if any) to preceding random quantities. An event
is a quantity with the range set{0, 1}.

The records that define random quantities are spaced out in the file in the order
they are introduced, and each is immediately followed by itscorresponding previ-
sion utterances, with step numbers. This format seems an important contribution,
lending great convenience to the use of the program. The program actually allows
the prevision utterances to be placed arbitrarily, but arranging them by quantity
seems helpful. What the program requires for quantities is that they be defined
and listed in a logical order that facilitates the computation of the joint range set.

4.4 Relations and the Joint Range

Hailperin [14, 15] seems not to have noticed that logical andother mathematical
relations among random quantities can substantially reduce the size of their joint
range set and, hence, diminish computing costs. It is not necessary, first, to define
a full product space and then discard all the points made impossible by the rela-
tions. The program brings in only the possible points duringthe formation of the
joint range set. Each definition of a quantity, imposing constraints relating it to
previously defined quantities, enables the program to construct only those points
that are possible as each quantity is introduced to the jointrange. Any reference
to a quantity that has not yet been introduced will raise an exception. Of course,
the user can wait until the very last quantity defined in the file to impose all the
relations, but this can be very inefficient, hence even nonfeasible.

Consider, for example, a partition,A1, . . . ,An . The relationA1 + . . .+An = 1,
meaning mutually exclusive and exhaustive (for 0− 1 quantities), can be more
efficiently imposed piecemeal, asA1 + . . .+Ak ≤ 1 at each definition ofAk , k =
1, . . . ,n−1, and then= 1 atk = n. However, a more convenient approach, also
efficient, is to define theAk’s as the value events of an artificial random quantityX
with the arbitrary range{1, . . . ,n} . After first definingX with that range, letAk :
X = k, for k = 1, . . . ,n. ThenA1, . . . ,An will automatically comprise a partition.

4.5 Availability

The program, a moderately large Perl script wrapper on a publicly available open-
source linear programming routine, lp-solve, currently runs under unix/linux. User
control is through a program command line and the vi editor. The menu for the
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MENU
FILE: ACTION:

n New a Assess
o Open au Undo Assessment
s Save e Extend
p Print eu Undo Extension
q Quit t Option

Figure 1: Program menu.

command line is shown in Fig. 1. To obtain the program via e-mail or ftp transfer,
contact the author at dickey@stat.umn.edu. A tutorial file is also available.

5 Example: A Medical Screening Test

We demonstrate the use of the program with a simplified example of medical
diagnosis. The assessed probability values here will help introduce the program,
but they are not necessarily appropriate to the real problem, nor is the problem
claimed to be a typical use of the program. Interaction with the program in the
example will be described by showing the progressive statesof the input/output
file.

Suppose a person from the general population receives a positive test result,
eventS, in a screening skin test for tuberculosis. What is the conditional probabil-
ity of the eventT that she/he has tuberculosis,P(T |S)? This is a classic Bayes’
Theorem problem, but the program does not see it as such, treating it more directly
as a problem of implied bounds on conditional probability.

Assuming, first, the bounds on the prior probability, 5×10−5 ≤ P(T)≤ 10−4,
and the test-performance probabilities,P(S|T) = 1, 1/20≤ P(S|nT) ≤ 1/10, we
will obtain the implied bounds on the marginal symptom probability, .05005≤
P(S)≤ .10001,and the posterior-probability bounds,.0004998≤P(T|S)≤ .001996.
This posterior probability, following a positive symptom,is small; but of course,
it lies between about ten and twenty times the prior probability.

We will then use the computed extension interval of the marginal probabil-
ity, 0.05005≤ P(S) ≤ 0.1001, as a coherent guide for a further, precise assess-
ment,P(S) = 0.07. It could be known, for example, that the relevant empiri-
cal frequency of positive test readings is equal to this value. The program then
outputs the corresponding step-2 extension intervals. Theinterval for the con-
ditional false-positive probability will shrink almost toa single point,.06991≤
P(S|nT)≤ .06995, and the posterior probability of having the disease will be con-
fined to the subinterval, 0.0007143≤ P(T |S) ≤ 0.001429. Again, this is small;
but it’s about 15 times the prior probability.
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* TITLE/DESCR: -> SCREENING TEST FOR TB<-
* Separate fields by “; ” (semicolon space(s)). Records (lines) by<Enter>.
* EVENT/QUANT DEFN FIELDS: xname; descr; rangeSet(or”fun”); relation(or
expr)
* PROB/EXPEC FIELDS: (Indent)P(xname); bdL; bdU; “a”(assess) or
“e”(extend)stepN

T; Patient has TB; (0, 1); none
P(T); 5.00e-05; 1.00e-04; a

nT; Doesn’t have TB; fun; not $T

S; Pos skin test; (0, 1); none
P(S|T); eq; 1; a
P(S|nT); 1/20; 1/10; a
P(S); ; ; e

Figure 2: Initial input file.

6 Using the Program

The initial input file is given in Fig. 2. Four automatic header lines, each starting
with a star “*”, consist of: title/description of the problem (as entered by user),
a line giving formats, and two lines defining the fields of the quantity-definition
lines and the fields of the prevision-utterance lines. (We drop these header lines
in the subsequent figures.) The user-input lines of the threetypes follow.

The three left-justified lines here define the events,T, nT (for notT), andS.
The ranges ofT andSare given as the Perl list “(0,1)”, followed by “none” (for
no relation). The eventnT is defined as the function (“fun”),not T, of the 0-1
event quantityT. (The dollar sign in the expression “not $T” signifies a variable
in Perl.) Alternatively,nT could be defined as an event subject to a relation, with
the fields, “(0,1); ($T or $nT) == 1”.

The remaining indented lines are prevision utterances. Thesecond and third
fields are for lower and upper bounds, respectively, or for a point value when “eq”
is entered in the second field followed in the third field by a single number. In the
fourth field of a prevision utterance, the user indicates whether an assessment is
being asserted (“a”) or an extension requested (“e”). Perpetual calculation, at each
step, of the current extension interval for a quantity is thedefault action triggered
by “e”. (To prevent the automatic later extensions, enter “e!”.) For a check on
the effectiveness of assessed bounds, “a” also, by default, triggers the perpetual
calculation of extension intervals. (Use “a!” to prevent it.) After an interval is
calculated, the current step number is automatically appended to the fourth field.

Fig. 3 shows the file updated to report the calculation of three extension inter-
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T; Patient has TB; (0, 1); none
P(T); 5.00e-05; 1.00e-04; a1
; [5e-05; 0.0001]; e1

nT; Doesn’t have TB; fun; not $T

S; Pos skin test; (0, 1); none
S T; S and T; fun; $S and $T
S nT; S and nT; fun; $S and $nT

P(S|T); eq; 1; a1
P(S|nT); 1/20; 1/10; a1
; [0.05; 0.1]; e1
P(S); [0.05005; 0.1001]; e1

Figure 3: First output

P(T|S); [0.0004998; 0.001996]; e1

Figure 4: Second output (fragment)

vals: forP(T); for P(S|nT), both as checks; and forP(S), the marginal probabil-
ity of a positive skin test result. Note the new events,(Sand T) and(Sand nT),
automatically defined by the program as needed to work with bounds on the condi-
tional probabilities,P(S|T)= P(Sand T)/P(T) andP(S|nT)= P(Sand nT)/P(nT).

After including a new request for the conditional (“posterior”) probability
P(T |S), we obtain the output as given in Fig. 4, differing only in this one line
from the output in Fig. 3. Note that, because no additional assessments were in-
put, the assigned step number remains at 1.

Finally, we use the computed extension interval of the marginal probability
0.05005≤ P(S) ≤ 0.1001, as a coherent guide for a further, precise assessment,
P(S) = 0.07. Then the program outputs the corresponding step-2 extension inter-
vals as given in Fig. 5.

7 Relevance of the Method

It seems to the author that these interactive methods could potentially be em-
ployed to advantage by real-time decision makers, such as physicians or military
commanders. In personal discussion, Glen Meeden has suggested simultaneous
cooperative use by a group of experts as an aid to achieving a jointly agreeable
coherent assessment.
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T; Patient has TB; (0, 1); none
P(T); 5.00e-05; 1.00e-04; a1
; [5e-05; 0.0001]; e1
; [5e-05; 0.0001]; e2
P(T|S); [0.0004998; 0.001996]; e1
; [0.0007143; 0.001429]; e2

nT; Doesn’t have TB; fun; not $T

S; Pos skin test; (0, 1); none
S T; S and T; fun; $S and $T
S nT; S and nT; fun; $S and $nT

P(S|T); eq; 1; a1
P(S|nT); 1/20; 1/10; a1
; [0.05; 0.1]; e1
; [0.06991; 0.06995]; e2
P(S); [0.05005; 0.1001]; e1
; eq; 0.07; a2
; EQ; [0.07]; e2

Figure 5: Third output

Because of the convenience of this coherent assessment algorithm and its in-
teractive implementation, and the flexibility afforded by imprecise assessments,
the method would seem destined for heavy use. However, the need for and advan-
tage of such a method hinges on the recognition of logical andother mathemat-
ical relations among the quantities whose previsions are subject to assessment.
It seems still an open question whether such relations are rare or common in
practice. Early Wittgenstein, in what has been called his Logical Independence
Thesis, might be interpreted as claiming that such relations tend not to be basic in
an analyses. Quoting from the Tractatus [23]:

The world divides into facts [Prop. 1.2]

Each can be the case or not the case, while the others remain the same
[Prop. 1.21]

(See also [Props. 2.061, 2.062].)

In the opinion of a referee, this is no longer an open question, “We simply have
applications where logical independence holds and other cases where the random
quantities are not logically independent.”
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8 Further Developments

1. Events or quantities having special properties are amenable to special cod-
ing:

(a) Exchangeable events. Logical independence is usually assumed. Di-
rect definition of variables representing the common invariant joint
probabilities seems preferable to imposing the equality constraints
for exchangeability on probability variables for a large number of
events:n + 1 variables with 1 constraint, versus 2n variables with
2n−n constraints.

(b) Interval events on a random quantity. These can usefullyaccommo-
date envelope and other statements regarding the c.d.f.

2. Various upper and lower probability systems (C.A.B. Smith, Dempster-
Shafer, etc.) can be incorporated as special program modes.Comparisons
can be made in such applications as the use of multiple messages with
specifiable reliabilities.

3. Reconciliation of incoherent previsions, by minimum distance under weighted
least squares, or other, metric. See, for example, Nau [20, 21].

4. A graphical user interface (Perl/Tk) is being put onto thecurrent function-
ality, for unix/linux and win32.

5. Charles Geyer has suggestied integration of the program into the emacs
editor environment with separate simultaneous displays for the menu and
input/output file.

6. Charles Geyer suggested that the program be recast as an adhoc computing
language, for possible inclusion in rweb, or other general system.

9 A Plea

The author would like to hear from conference participants and others interested
in using or improving the program. Advice is welcome on what to do or how to
do it better, and collaborative and coding help is especially welcome.
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Independence with Respect to Upper and
Lower Conditional Probabilities Assigned
by Hausdorff Outer and Inner Measures
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Abstract

Upper and lower conditional probabilities assigned by Hausdorff outer and
inner measures are given; they arenatural extensionsto the class of all sub-
sets ofΩ=[0,1] of finitely additive conditional probabilities, in the sense of
Dubins, assigned by a class of Hausdorff measures. Aweak disintegration
property is introduced when conditional probability is defined by a class of
Hausdorff dimensional measures. Moreover the definition ofs-independence
ands-irrelevanceare given to assure that logical indepedence is a necessary
condition of independence. The interpretation ofcommensurableevents in
the sense of de Finetti as sets with finite and positive Hausdorff measure and
with the same Hausdorff dimension is proposed.

Keywords

upper and lower conditional probabilities, Hausdorff measures, disintegration property,
independence

1 Introduction

The necessity to introduce a new tool to assess conditional probabilities is due to
some problems related to the axiomatic definition of regularconditional probabil-
ity (or regular conditional distribution) Q(A,ω) on aσ-field F given a subσ-field
G. A regular conditional probability can not exist [7]; moreover even if it exists,
if F is aσ-field countably generated andG is subσ-field of F not countably gen-
erated, than there exists no regular,proper conditional probability Q(A,ω) on F
givenG, that is Q(H,ω) =1 forω∈H∈G ([2], [3]). In a recent paper of Seidenfeld,
Schervish and Kadane [16]improper regular conditional distributionsare stud-
ied. The authors established that when regular conditionalprobability exists and
the subσ-field G is countably generated almost surely it is proper, but when the
subσ-field G is not countable generated the regular conditional probability can be
maximally improper, that is Q(H,ω) =0 for ω∈H∈G, almost surely. Alternative
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probabilistic approaches that always assure the existenceof a proper conditional
probability are those proposed by de Finetti [5, 6], Dubins [9] and Walley [17].
In [8] finitely additive conditional probabilities in the sense of Dubins are given
by a class of Hausdorff dimensional measures. Theirnatural extensionsare given
in Section 2 of this paper by outer and inner Hausdorff measures. In particular
the case where theσ-field of the conditioning events is not countable generatedis
analysed. In fact we considerG equal to theσ-field of countable or co-countable
sets, to the tailσ-field and equal to theσ-field of symmetric events. A problem
related to the theory of finitely additive conditional probability is that it does not
always satisfy the disintegration property. In section 3 weanalyse the meaning
of the disintegration property when conditional probability is assigned by a class
of Hausdorff dimensional measures. In particular aweak disintegration property
is introduced and it is proved that this property is verified by conditional proba-
bility assigned by a class of Hausdorff measures. There is another reason to in-
vestigate coherent conditional probabilities: it is that,some paradoxical situations
about stochastic independence, can be solved if a stronger definition of indepen-
dence, tested with respect to upper and lower conditional probabilities assigned
by outer and inner Hausdorff measure, is given. To this aim insection 4 we in-
troduce the definitions ofs-independenceands-irrelevancethat are based on the
fact that epistemic independence and irrelevance, introduce by Walley, must be
tested for events A and B such that the intersection A∩B and the events A and
B have the same Hausdorff dimension. With this further condition we prove that
s-independence implies logical independence. The resultsproposed in this paper
are based on the idea thatcommensurableevents in the sense of de Finetti [4],
are subsets ofΩ with the same Hausdorff dimension when conditional probabil-
ity is assigned by a class of Hausdorff measures. At the end ofthis paper we
put in evidence the possibility to use conditional probabilities, assigned by Haus-
dorff dimensional measures, to deal uncertainty in complexnatural phenomena
and to give hazard assessments. In fact in different fields ofscience (geology, bi-
ology, architecture) many data sets are fractal sets, i.e. are sets with non-integer
Hausdorff dimension. So conditional probabilities, assigned by a Hausdorff di-
mensional measures, can be used as tool to make inference given fractal sets of
data.

2 Upper and Lower Conditional Probabilities As-
signed by Hausdorff Outer and Inner Measures

In Walley [17] (Chap. 6) coherent conditional probabilities are considered as a
special case of coherent conditional previsions, that are characterized in the case
where conditioning events form a partitionB of Ω.The real numberP(X|B) are
specified for B inB and all gambles X in some domain H(B). Conditional pre-
visionsP(X|B), defined for B inB and all gambles X in H(B), are separately
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coherentwhen for every conditioning event B,P(·|B) is a coherent upper previ-
sion on the domain H(B) andP(B|B) = 1.

When the domain H(B) is a class of events, that can be regardedas a class
of 0-1 valued gambles,P(X|B) is a coherent upper conditional probability. In
particular whenP(·|B) is a countably additive probability defined on aσ-field, its
natural extensionsto the class of all subsets ofΩ, called coherent upper and lower
probabilities are the outer and inner measures generated byit (see Theorem 3.1.5
of [17]).

In the standard theory, conditional previsions P(X|G) are defined with respect
to aσ-field of eventsG, rather then a partitionB. The two approches are closely
related whenG is theσ-field made up of all unions of sets inB.

In this section coherent upper and lower conditional probabilities are given by
the inner and outer measures generated by the Hausdorff dimensional measures.
They arenatural extensionsto the class of all subsets ofΩ=[0,1] of finitely ad-
ditive conditional probabilities, in the sense of Dubins [9] assigned by a class of
Hausdorff measures.

Let F andG be two fields of subsets ofΩ, with G⊆F, P* is afinitely additive
conditional probability[9] on (F,G) if it is a real function defined onF×G0,
whereG0= G-{ /0} such that the following conditions hold:

I) given any H∈G0 and A1,...,An ∈F with A i∩A j = /0 for i 6=j, the function
P*(·|H) defined onF is such that

P∗ (A|H) ≥ 0,P∗ (
n

[

k=1

Ak|H) =
n

∑
k=1

P∗(Ak|H),P∗ (|H) = 1

II) P*(H |H)=1 if H∈F∩G0

III) given E∈F, H∈F, EH∈F with A∈G0 and EA∈G0 then
P*(EH|A)=P*(E|A)P*(H|EA).
From conditions I) and II) we have
II’) P*(A |H)=1 if A∈F, H∈G0and H⊂A.
These conditional probabilities are coherent in the sense of de Finetti, since

conditions I), II), III) are sufficient [14] for the coherence of P* onC=F×G0 when
F andG are fields of subsets ofΩ with G⊆ F or whenG is an additive subclass
of F; otherwise ifF andG are two arbitrary families of subsets ofΩ, such that
Ω ∈F the previous conditions are necessary for the coherence [11, 14], but not
sufficient.

Now we recall some definitions about Hausdorff dimensional outer measures
that we use as tool to give upper conditional probabilities (for more details about
Hausdorff measures see for example [10]).

Let (Ω,d) be the Euclidean metric space withΩ=[0,1]. The diameter of a
nonempty set U ofΩ is defined as|U|=sup{|x-y|: x,y∈U} and if a subset A ofΩ is
such that A⊂ S

i
Ui and 0< |Ui |< δ for eachi, the class{Ui} is called aδ-cover of
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A. Let s be a non-negative number. Forδ >0 we define hs(A)=inf
∞
∑
i=1

|Ui|s, where

the infimum is over all (countable)δ-covers{Ui}. The Hausdorff s-dimensional
outer measure of A, denoted by hs(A), is defined as hs(A)=lim

δ→0
hs

δ(A). This limit

exists, but may be infinite, since hs
δ(A) increases asδ decreases.

The Hausdorff dimension of a set A, dimH(A), is defined as the unique value,
such that hs(A)=∞ if 0≤ s<dimHA and hs(A)=0 if dimHA< s< ∞. We can ob-
serve that if 0< hs(A)< ∞ then dimH(A)=s, but the converse is not true. We
assume the Hausdorff dimension of the empty set equal to -1. So no event has
Hausdorff dimension equal to the empty set.
Remark: It is important to note the link between the Hausdorff dimension of
an event and the Hausdorff dimension of its complement. In fact, denoted by
dimH(A) the Hausdorff dimension of A we have [10] that

dimH(A∪B) = max{dimH(A),dimH(B)};

in particular if A=Bcwe obtain that 1=dimH(Ω)=max{dimH(B), dimH(Bc)}; so if
dimH(B) < dimH(Bc) then dim(Bc)=1.

Upper conditional probabilities are given by outer Hausdorff dimensional mea-
sures, firstly in the case where conditioning events have finite and positive Haus-
dorff outer measure.

Theorem 1 Let Ω=[0,1] and let F be theσ-field of all subsets of [0,1] and letG
be an additive subclass ofF of sets such that for every H inG we have 0<hs (H)<
∞, where s is the Hausdorff dimension of H and hs is the Hausdorff s-dimensional
outer measure. Then for each H inG the real function P(·|H) defined onF, such
that

P(A|H) =
hs(AH)

hs(H)

verifies the following properties:

a) 0≤ P(A|H)≤1;
b) P(A∪B|H)≤P(A|H)+ P(B|H) andP(A∪B|H) = P(A|H)+ P(B|H) whenever

A and B are positively separated, that is d(A,B)= inf{d(x,y): x∈A, y∈B}>0;
c) for each H∈G P(·|H) is a coherent upper probability.

Proof. For each H belonging toG we have, for the monotony of the Hausdorff
outer measures, that

0≤ P(A|H) =
hs(AH)
hs(H)

≤ hs(H)
hs(H)

= 1;

Moreover, since hs is an outer measure for everys then it is subadditive.
For everys the Hausdorff outer measure hs is a metric outer measurethat is
hs(A∪B)=hs(A)+hs(B) whenever A and B are positively separated.
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Property c) follows from Theorem 3.1.5. of [17]. ✷

In the general case, when conditioning events can have infinite or zero Haus-
dorff measure, conditional probability is defined by a 0-1 valued finitely additive
(but not countable additive) probability measure m; this assures condition III) of
a finitely conditional probability in the sense of Dubins, isverified.

Theorem 2 Let Ω=[0,1], let F be theσ-field of all subsets of [0,1] and letG
be an additive sub-class ofF. Let us denoted by hs the Hausdorff s-dimensional
outer measure, by s the Hausdorff dimension of H and by t Hausdorff dimension of
AH; let m be a 0-1 valued finitely additive (but not countable additive) probability
measure. Then the functionP defined onC=F×G0 such that

P(A|H) =

{
hs(AH)
hs(H) i f 0 < hs(H) < ∞

m(AH) i f hs(H) = 0,∞

is an upper conditional probability.

Proof. Firstly we prove that the restriction ofP to the Cartesian product of
B×G0, whereB is the Borelσ-field of [0,1] is a coherent conditional probability.
The restriction of the Hausdorff s-dimensional outer measure to theσ-field of the
borelian sets of [0,1] is a measure for everys so, by definition, we have, thatP
(·|H) verifies condition I) and II).

To prove condition III), that isP(EH|A)=P(E|A)P(H|EA), for E∈B, H∈B
EH∈B with A∈G0 and EA∈G0, we distinguish the following cases:

a) conditioning events A and EA have positive and finite Hausdorff measures,
then condition III) can be written as

hs(EAH)
hs(A)

=
hs(EA)
hs(A)

.
ht (EAH)
ht (EA)

(1)

Two cases are possible: i)s= t or ii) s> t.
If i) holds than (1) is obviously satisfied. If ii) holds than hs(EA)=0 and also,

by the monotony of hs, hs(EAH)=0; so equation (1) is satisfied.
b) conditioning events A and EA have both infinite or zero Hausdorff mea-

sures then condition III) becomes m(EAH)=m(EAH)m(EA) and it is always sat-
isfied because m is monotone;

c) conditioning event A has infinite Hausdorff measure and conditioning event
EA has positive and finite Hausdorff measure then from the definition of m it
follows that condition III) becomes 0=0 , and it is obviouslysatisfied.

Then from Theorem 3.1.5 of [16] we have that if 0<hs(H)< ∞ thenP is the
natural extension toC=F×G0 moreover if hs(H)=0 or∞ then m can be extended
to C=F×G0 since m is finitely additive, but not countable additive. ✷

The upper conditional probability defined in the previous Theorem 2 can
be used to assess conditional upper probabilities when the class of conditioning



236 ISIPTA ’03

events is not a countably generatedσ-field. In particular ifG is equal to theσ-field
of countable or co-countable sets, to the tailσ-field or to theσ-field of symmetric
events. In all these cases conditioning events have Lebesgue measure equal to one
or zero. So upper conditional probability can be defined as inTheorem 2.

Example 1 Let (Ω,F,P) be a probability space whereΩ=[0,1], F is theσ-field
of Borel ofΩ and P is the Lebesgue measure onF. Let G be the subσ-field of
F of sets that are either countable or co-countable. Since theprobability of the
events of theσ-field G is either 0 or 1, we have that the probability of A given
G is equal to P(A), with probability 1, if conditional probability is defined by the
Radon-Nikodym derivative. That is

P[A||G]ω = P(A)

except on a P zero subset of [0,1].
Given A=[a,b] with 0< a < b < 1 let P∗ be the real function defined on

C=F×G0 such that the restriction P∗r to E={(A,{ω}):ω∈ [0,1]} is equal, with
probability 1, to the Radon-Nikodym derivative P[A||G] ω. We have that P* is not
coherent onC, since it does not satisfy the property that P*(A,{ω}) is equal to 1
or 0 according to whetherω belongs to A or not.

A finitely additive conditional probability onC=F×G0 can be defined by

P(A|H) =





h1(AH)

h1(H)
H co-countable

h0(AH)
h0(H)

H finite

m(AH) H countable

where m is a 0-1 valued finitely additive (but not countably additive) proba-
bility measure.

The functionP is a coherent conditional probability since it verifies the axioms
of a finitely additive probability in the sense of Dubins as proved in Theorem 2.

The lower conditional probability P(A|H) can be define as in the previous
theorems if hs denotes the Hausdorff s-dimensional inner measure.

3 The Disintegration Property

In this section we analyse the meaning of the disintegrationproperty when con-
ditional probability is assigned by a class of Hausdorff dimensional measures. In
particular aweak disintegration propertyis introduced. If conditional probability
is defined by the Radon-Nikodym derivative P[A||G]ω, it verifies the disintegra-
tion property, that is the functional equation P(A∩H)=

R

H
P[A||G]ωdP with H∈G.

This property is not always satisfied in the theory of finitelyadditive probability
of Dubins. In fact with a finitely additive probability P it isnot assured that P(A)=
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R

Ω
P[A||G]ωdP for A in F. In the paper of Schervish, Seidenfeld and Kadane [15]

has been shown that each finitely but not countably additive probability P will fail
to be disintegrable on some denumerable partition ofΩ.

Let Ω=[0,1], letF be theσ-field of the Borel subsets of [0,1],G a subσ-field
of F and let P be equal to h1, that is the Lebesgue measure. We recall that since
the class of subsets ofΩ measurable with respect to hs, for every s, is the class
of Borel subsets of [0,1], than each hs is a measure (σ-additive) onF. We denote
by P* the restriction toF×G0, of the upper conditional probability assigned in
Theorem 2. For each H inG0P∗(A|H) is a function on H.

The starting point is that when the conditioning event H has Hausdorff dimen-
sion s less then 1, the equation P(A∩H)=

R

H
P*(A|H)dP is obviously verified since

dim(A∩H)≤dim(H)<1 then P(A∩H)=0=P(H) and
R

H
P*(A|H)dP=0. So it can be

interesting to investigate if an analogous equation holds with respect to the mea-
sure hs. We observe that, if hs(H)=∞ then the functions P*(A|H), defined in the
previous section, are not integrable since no constant different from zero is inte-
grable on H with respect to hs; so we introduce the following definition

Definition 1. Let Ω=[0,1], let F be theσ-field of the Borel subsets of [0,1]
and let P be equal to h1, that is the Lebesgue measure. LetG be a sub-σ−field of
F. Denoted by hs the Hausdorff s-dimensional measure where s is the Hausdorff
dimension of H. A coherent conditional probability P* verifies theweak disinte-
gration propertyif the following functional equation hs(A∩H)=

R

H
P*(A|H)dhs is

verified for every H inG0 with hs(H)< ∞.
Remark: If dim(A∩H)<dim(H)=s and hs(H)< ∞ then the equation

hs(A∩H) =
Z

H

P∗ (A|H)dhs

is satisfied since both members are equal to zero. So to verifythat a given coherent
conditional probability satisfied the weak disintegrationproperty we have to prove
that the equation is verified for every pair of event A, H with dim(AH)=dim(H).

Theorem 3 Let Ω=[0,1], let F be theσ-field of the Borel subsets of [0,1] and
let P be equal to h1, that is the Lebesgue measure. LetG be a sub-σ-field of F.
Having fixed A inF, let us denoted by hs the Hausdorff s-dimensional measure,
by s the Hausdorff dimension of H; let m be a 0-1 valued finitelyadditive (but not
countable additive) probability measure. The coherent conditional probability P*
defined onC=F×G0 such that

P∗(A|H) =

{
hs(AH)
hs(H)

i f 0 < hs(H) < ∞
m(AH) i f hs(H) = 0,∞

verifies the weak disintegration property.
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Proof. We have to prove that the equation

hs(A∩H) =

Z

H

P∗(A|H)dhs (2)

is verified for every H inG0 with hs(H)< ∞.
Firstly we suppose hs(H) positive and finite; for each A and H, the function

P*(A|H) is nonnegative and less or equal to 1, so it is integrable with respect to
hs; then we observe that the equation (2) is always satisfied since

Z

H

P∗(A|H)dhs =

Z

H

hs(A∩H)

hs(H)
dhs = hs(A∩H).

Moreover if hs(H) is equal to zero, then equation (2) vanishes to 0=0. ✷

4 Independence

In this section we introduce a new definition of independencefor events, calleds-
independence, based on the fact that the relative events and their intersection must
have the same Hausdorff dimension. This notion does not require any assumption
of positivity for the probability of the conditioning event. This is one of the differ-
ence with the concepts ofconfirmational irrelevanceandstrong confirmational
irrelevance,proposed by Levi [12].

We prove that s-independence between events implies their logical indepen-
dence when both events have Hausdorff dimension less than 1.Moreover also
when the events have Hausdorff dimension equal to 1 and positive and finite
Lebesgue outer measure then logical dependence is a necessary condition for
the s-independence. Firstly we analyse the concept ofepistemically independence
for events proposed by Walley [17] with respect to conditional upper and lower
probabilities defined by Hausdorff dimensional outer and inner mesures. The con-
cept of epistemic independence is based on the notion ofirrelevence; given two
events A and B, we say that B isirrelevantto A when P(A|B)=P(A|Bc)=P(A) and
P(A|B)=P(A|Bc)=P(A).

A and B areepistemic independentwhen B is irrelevant to A and A is irrel-
evant to B. As a consequence of this definition we can obtain the factorisation
property P(A∩B)=P(A)P(B) that constitutes the standard definition of indepen-
dence for events. LetΩ=[0,1] and letP and Pbe the upper and lower conditional
probabilities defined by the outer and inner Hausdorff measures. The uncondi-
tional upper and lower probabilities can be obtained from the conditional ones by
the equalitiesP(A)=P(A|Ω)= and P(A)=P(A|Ω).

When the events A and B or their complements have not upper probability
equal to zero, epistemic independence implieslogical independence, (i.e. each of
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four sets A∩B, A∩Bc, Ac∩B, Ac∩Bc are non-empty). Otherwise logically depen-
dent events can be epistemically independent.

Example 2 Let Ω=[0,1], let F be theσ-field of all subsets of [0,1] and letG be
the additive sub-class ofF of sets that are finite and co-finite. Let A and B two
finite subsets of [0,1] such that A∩B= /0. If conditional probability is defined as in
Theorem 2 we have that

P(A|B) = P(A|B) =
h0(AB)

h0(B)
= 0

P(A|Bc) = P(A|Bc) =
h1(ABc)

h1(Bc)
= 0

P(A) = P(A) = P(A|Ω) =
h 1(A)

h1(Ω)
= 0

So A and B are logical dependent but epistemically independent.

The previous example puts in evidence the necessity to introduce the follow-
ing definition.

Definition 2. Let Ω=[0,1], let F be theσ-field of all subsets of [0,1] and let
G=F. Denoted byP and Pbe the upper and lower conditional probabilities defined
by the outer and inner Hausdorff measures and given A and B inG0, then they
ares-independentif the following conditions hold:

1) dimH(AB)=dimH(B)=dimH(A)
2) P(A|B)=P(A|Bc)=P(A) andP(A|B)=P(A|Bc)=P(A)
3) P(B|A)=P(A|Ac)=P(B) andP(B|A)=P(B|Ac)=P(B)

Remark: Two disjoint events A and B are s-dependent since the Hausdorff di-
mension of the empty set can not be equal to that one of any other set so condition
1 is never satisfied. In particular the events A and B of Example 1, that are logical
dependent but epistemically independent, are not s-independent.

We prove that logical independence between two events A and Bis a neces-
sary condition for s-independence when dimH(A) and dimH(B) are both less then
1.

Theorem 4 LetΩ=[0,1], let F be theσ-field of all subsets of [0,1], letG=F and
let us denoted byP and Pbe the upper and lower conditional probabilities defined
by the outer and inner Hausdorff measures as in Theorem 2. Then two events A
and B ofG0, s-independent and with Hausdorff dimension less then 1, are logical
independent.

Proof. Since dimH(A) and dimH(B) are both less then 1 if A and B are s-
independent then the following conditions hold:
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1) dimH(AB)=dimH(B)=dimH(A)
2) P(A|B)=P(A|Bc)=P(A)=h1(A)=0 and P(B|A)=P(A|Ac)=P(B)=h1(B)=0

3) P(A|B)=P(A|Bc)=P(A)=h
1
(A)=0 andP(B|A)=P(B|Ac)=P(B)=h

1
(B)= 0.

From 1) we have that A∩B6= /0 since the Hausdorff dimension of the empty
set can not be equal to that one of any other set, from 3) we haveP(A|B)=0 then
B is not contained in A andP(B|A)=0 then A is not contained in B. Moreover
since dimHA and dimHB are both less then 1 then h1(A∪B)=0 while h1(Ω)=1 so
Ω 6=A∪B. ✷

We prove that logical independence is a necessary conditionfor the s-independence
when the events have Hausdorff dimension equal to 1 and positive and finite
Lebesgue outer measure.

Theorem 5 LetΩ=[0,1], let F be theσ-field of all subsets of [0,1], letG=F and
let us denoted byP and Pbe the upper and lower conditional probabilities defined
by the outer and inner Hausdorff as in Theorem 2. Two events A and B ofG0, s-

independent, with Hausdorff dimension equal to 1 and such that 0< h
1
(A)<1 and

0< h
1
(B)<1, are logically independent.

Proof. Since A and B are s-independent, from condition 1 we
have dimHA∩B=1, that implies A∩B6= /0; from condition 3 we have

P(A|B)=P(A|Bc)=P(A)=h
1
(A) 6=1 so B is not contained in A and Bc is not con-

tained in A; moreoverP(B|A)=P(B|Ac)=P(B)= h
1
(B) 6=1 so A is not contained in

B and Ac is not contained in B.Then A and B are logically independent. ✷

We can observe that the converse of Theorems 3 and 5 is not true; in fact
logical independence is not a sufficient condition for the s-independence.

Example 3 Let Ω=[0,1], let F be theσ-field of all subsets of [0,1], letG=F
and let us denoted byP and Pbe the upper and lower conditional probabilities
defined by the outer and inner Hausdorff measures as in Theorem 2. Let A and B
two finite subsets of [0,1] such that each of four sets A∩B, A∩Bc, Ac∩B, Ac∩Bc is
non-empty, that is A and B are logical independent. We have that A and B are not
s-independent since conditions 2 and 3 of Definition 2 are never satisfied.

If G is properly contained inF and A belong toF-G, for any H in G0 we
cannot test the s-independence between A and H because epistemic independence
is symmetric, so it requires that also A belongs toG0; in this case we introduce
the following definition.

Definition 2. LetΩ=[0,1], letF be theσ-field of all subsets of [0,1] and letG a
sub field ofF. Denoted byP and Pbe the upper and lower conditional probabilities
defined by the outer and inner Hausdorff measures and given A in F and B inG0,
then B iss-irrelevantto A if the following conditions hold:

1) dimH(AB)=dimH(B)=dimH(A)
2) P(A|B)=P(A|Bc)=P(A) andP(A|B)=P(A|Bc)=P(A).
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Proposition 1 Let Ω=[0,1], let F be theσ-field of all subsets of [0,1] andG a
sub field properly contained inF. Given A inF and B inG0 such that dimH(A)<1,
dimH(B)<1 and B is s-irrelevant to A then the following conditions hold:

1a) A∩B6= /0;
2a) B is not contained in A and Bc is not contained in A;
3a)Ω 6=A∪B;

Proof. The result follows from Theorem 5. ✷

Definition 3. Let Ω=[0,1], letF be theσ-field of all subsets of [0,1] and letG
an additive subclass contained inF. Given A inF we say thatG is s-irrelevantto
A if any event H ofG such that dimH(A)=dimH(H) is irrelevant to A.

The previous results can be used to solve paradoxical situations proposed in
literature that show that the interpretation of conditional probability in terms of
partial knowledge breaks down in certain cases. A conditional probability can be
used to represent partial information as proposed by Billingsley [1]. A probability
space (Ω,F,P) can be use to represent a random phenomenon or an experiment
whose outcome is drawn fromΩ according to the probability given by P. Partial
information about the experiment can be represented by a subσ-field G of F in
the following way: an observer does not know whichω has been drawn but he
knows for each H inG, if ω belongs to H or ifω belongs to Hc.

A subσ-field G of F can be identified as partial information about the random
experiment, and, fixed A inF, conditional probability can be used to represent
partial knowledge about A given the information onG. By standard definition,
an event A is independent from theσ-field G if it is independent from each H
in G, that is, if conditional probability is defined by the Radon-Nikodym deriva-
tive, P[A||G]ω=P(A) with probability 1. Example 3 shows that the interpretation
of conditional probability in terms of partial knowledge breaks down in certain
cases. In fact the event A is independent from the information represented byG
and this is a contradiction according to the fact that the information represented
by G is complete sinceG contains all the singletons ofΩ. The contradiction can
be dissolved if s-irrelevance is tested with respect to conditional probabilities as-
signed by a class of Hausdorff dimensional measures.

Example 4 Let (Ω,F,P) be a probability space whereΩ=[0,1], F is theσ-field
of Borel ofΩ and P is the Lebesgue measure onF. Let G be the subσ-field of
F of sets that are either countable or co-countable. LetP be the finitely additive
conditional probability defined onC=F×G0 by

P(A|H) =





h1(AH)
h1(H)

H co-countable
h0(AH)

h0(H)
H finite

m(AH) H countable

(3)

where m is a 0-1 valued finitely additive (but not countably additive) probability
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measure.

Given A=[a,b] with 0<a<b<1, we have thatG is not s-irrelevant to A, since
condition 2 of the definition of s-irrelevance is not satisfied.

In fact for every H= [0,1]-{ω} we have thatP(A)=P(A|Ω)=h1(A) is different
from 0 and 1, while P*(A|Hc)=P*(A|{ω}) must be, for the coherence, equal to 1
or 0 according to the fact thatω belongs to A or not.

5 Conclusions and Applications

The results proposed in this paper would be an attempt to showthat Hausdorff
dimensional measures can be used as a tool to define coherent conditional prob-
abilities. This approach is based on the idea thatcommensurableevents [4] with
respect to the given coherent conditional probability, aresubsets ofΩ with the
same Hausdorff dimension. Given a coherent conditional probabilities P* defined
on C =F×G0, any pair of events A and B ofG0 can be compare as proposed by
de Finetti. In fact

P∗(A|A∪B)+P∗(B|A∪B)≥ 1

so the above conditional probabilities cannot be both zero and their ratio can be
used to introduce an ordering between A and B. In fact this ratio is finite if either
P∗(A|A∪B) and P∗(B|A∪B) are finite and in this case A and B are calledcommen-
surable. Otherwise if one of the conditional probability is zero thecorresponding
event has a probability infinitely less then the other and thetwo events A and B
belong to different layers [5]. We can observe that when conditional probability
P∗ is countably additive there can be only finitely many layers above a given layer,
but not so when P is only finitely additive.

Two events A and B ofG0, commensurable with respect to the coherent con-
ditional probability defined by (3) of Example 4, are subsetsof Ω with the same
Hausdorff dimension. The converse is not true, in fact if A iscountable and B
finite then the two events have Hausdorff dimension equal to 0, but they are not
commensurable with respect to the previous conditional probability, since coher-
ence requires that P∗(B|A∪B)=0. Two events are commensurable in the sense of
de Finetti if and only if they have both finite and positive Hausdorff measure and
the same Hausdorff dimension.

Also from a practical point of view there are some advantagesto assess co-
herent conditional probabilities, by a class of Hausdorff dimensional measures. In
fact they can be used as a tool to assess probability to an event given a data set
coming from a real problem. In different fields of science (geology, biology, archi-
tecture, economics) many data sets are fractal sets, i.e. are sets with non-integer
Hausdorff dimension; for example the hypocentre distribution of earthquakes is
a fractal set so if we want to assess the probability that a given place will be the
hypocentre of a future earthquake knowing the set of the previous ones, we need
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to have a tool able to handling fractal sets. Moreover the classification of several
soils can be done by their Hausdorff dimensions. A future aimof this research
is to implement these results to dealing uncertainty in natural hazard and risk
assessment.
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Abstract

We adopt the same mathematical model of a setM of probability measures
as is central to the theory of coherent imprecise probability. However, we
endow this model with anobjective, frequentist interpretation in place of
a behavioral subjective one. We seek to useM to modelstable physical
sources of time series data that have highly irregular behavior and not
to model states of belief or knowledge that are assuredly imprecise. The ap-
proach we present in this paper is to understand a set of measures modelM
not as a traditional compound hypothesis, in which one of themeasures in
M is a true description, but rather as one in which none of the individual
measures inM provides an adequate description of the potential behaviorof
the physical source as actualized in the form of a long time series.

We provide aninstrumental interpretation of random process measures
consistent withM and the highly irregular physical phenomena we intend to
model byM . This construction provides us with the basic tools for simulation
of our models.

We present a method to estimateM from data which studies any given
data sequence by analyzing it into subsequences selected bya set of com-
putable rules. We prove results that help us to choose an adequate set of rules
and evaluate the performance of the estimator.
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1 Introduction

1.1 Orientation

We adopt the same mathematical model of a setM = {ν} of probability measures
as is central to the theory of coherent imprecise probability (e.g., see Walley [18]).
However, we endow this model with anobjective, frequentist interpretation in
place of a behavioral subjective one, and ask completely different questions of
this model. While the mathematical modelM is the same in the two theories of
probability (as it is in a variety of interpretations that have been offered for con-
ventional probability), on our account there is no focus on imprecision as is ap-
propriate in the behavioral account. In order to signal the distinction between the
two theories sharing the same mathematical model, we do not use the descriptor
“imprecise” and instead use“chaotic” . Although we remain interested in alterna-
tives to this term, it does connote a highly irregular sequence of physical (typically
mechanical) origin. We seek to useM to modelstable(although not stationary in
the traditional stochastic sense)physical sources of time series data that have
highly irregular behavior and not to model states of belief or knowledge that are
assuredly imprecise. Support for the existence of such chaotic sources is lent by
the following quotation from Kolmogorov [9]:

In everyday language we call random those phenomena where wecannot find a reg-

ularity allowing us to predict precisely their results. Generally speaking, there is no

ground to believe that random phenomena should possess any definite probability.

Therefore, we should distinguish between randomness proper (as absence of any reg-

ularity) and stochastic randomness (which is the subject ofprobability theory). There

emerges the problem of finding reasons for the applicabilityof the mathematical theory

of probability to the real world.

1.2 Previous Work

Previous work focused on asymptotics or laws of large numbers for interval-
valued probability models can be found in Fine et al. [10][12][7][15]. Cozman
and Chrisman [1] estimate credal sets by looking at the limiting relative frequen-
cies along several subsequences of a time series. Our current work focussed on
modelling finite length time series.

Our previous attempt at supplying an objective frequentistinterpretation for a
set of measuresM , reported at ISIPTA ’01 in Fierens and Fine [3], was based upon
the use of Kolmogorov complexity to enable us to simulate highly complex time
series data from the model and then to estimate the model fromsuch data through
the sequence of alternating minima and maxima of relative frequencies calculated
along a given sequence. The underlying motivation was an attempt at an analog
of the i.i.d. standard probability model; the modelM gave us the marginal or
univariate description and the high complexity was meant toensure that there was
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no further exploitable structure in the time evolution. We subsequently judged this
approach to be inadequate, in part after considering the performance of martingale
betting systems on such time series as advocated by the then newly-published
Shafer and Vovk [16].

1.3 Overview

As in our previous work, we focus on a description of univariate or marginal
events and not on descriptions ofk-tuples of outcomes. This restriction is intended
only to simplify our search for a meaningful interpretationand not because we
deny the importance of an extension tok-tuples. In Section 2.1, we provide an
instrumental interpretation of random process measures consistent withM and
the highly irregular physical phenomena we intend to model by M . Although we
do not offer this description as an explanation for real world data, we develop it
because it helps us to better understand chaotic probability models by reference to
well-known standard stochastic processes, and, at the sametime, this description
provides us with the basic tools for simulation of our models(see Section 2.2).
Essentially, our instrumental interpretation consists ofa decision mechanism that
at each time instant chooses a probability measureν ∈ M from which the next
outcome of a sequence will be generated. This measure selection function has
both properties of being highly complex so that it is difficult to discover it from
any given data sequence, and having enough simple structureto allow for the
estimation ofM (see Theorems 1-3). The approach we present in this paper is to
understand a set of measures modelM not as a traditional compound hypothesis,
in which one of the measures inM is a true description, but rather as one in which
none of the individual measures inM provides an adequate description of the
potential behavior of the physical source as actualized in the form of a long time
series. Instead, it is the whole setM that describes the potential behavior, and
this distinction has operational significance in terms of the time series data that is
anticipated from the physical source.

As explained in Section 3,we estimate M from a data sequence by com-
puting the relative frequencies along some of its subsequences. Subsequence
selection is a well-entrenched method of exposing behavioral patterns in time
series. It formed the basis of Richard von Mises’ pioneeringdefinition of ran-
domness ([17],[4],[11],[13]) for infinitely long sequences and the seminal work
of A.N. Kolmogorov on randomness of finite strings ([8]). Cozman and Chris-
man [1] estimate credal sets by looking at the relative frequencies along several
subsequences. In a similar way, we also study a given sequence by analyzing it
into subsequences selected by rules in some setΨ. Technically, we usecausal
subsequence selection rules, also known asChurch place selection rules(see
Definition 1 and also Li and Vitányi [11]). For any given model M , we expect to
find some set of rulesΨV for which M becomes“visible” , that is, a set of rules
such that all measures inM can be estimated by the relative frequencies along the
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selected subsequences (see Definition 2 and Theorems 2 and 3). Although such
a setΨV may exist, identifying it will not be easy. Furthermore, there are sets
of rulesΨT for which a chaotic source may appear to be“temporally homoge-
neous”, that is, for a certain setΨT there may exist a chaotic source generating
sequences such that the relative frequencies along subsequences selected by rules
in ΨT cannot expose more than a small neighborhood of a single measure con-
tained in the convex hull ofM (see Definition 3, Lemma 1 and Theorem 4).

Proofs have been omitted in what follows. However, they are available in the
appendices of Fierens [2].

2 From the Model to Data

2.1 An Instrumental Interpretation of the Model

Let X = {z1,z2, · · · ,zξ} be a finite sample space. We denote byX∗ the set of
all finite sequences of elements taken inX. A particular sequence ofn samples
from X is denoted byxn = {x1,x2, · · · ,xn}. P denotes the set of all measures on
the power set ofX. A chaotic probability modelM is a subset ofP and models
the “marginals” of some process generating sequences inX∗. In this section, we
present an instrumental (that is, without commitment to reality) interpretation of
such a process.

Consider the generation of a sequencexn by the following pseudo-algorithm:

FOR k = 1 TO k = n

1. Choose ν ∈ M.

2. Generate xk according to ν.

If the decision mechanism in1 is very complex1, say, random, with decisions
made in ani.i.d. manner according to some distribution onM , we would not be
able to distinguish whetherxn was produced by ani.i.d. process according to
some measure inch(M), the convex hull ofM , or by the algorithm in question.
On the other hand, if the decision rule were very simple and deterministic, we
would possibly be able to make such a distinction. For example, consider the
simple choice mechanism that alternates between two measuresν1,ν2 ∈ M . In
this case, for sufficiently largen, we expect to discover the alternating-measure
rule and to be able to estimateν1 andν2. However, if the choice mechanism in1
were neither too complex (as in the first example) nor too simple (as in the second
example), we may still be able to estimateM (or part of it), but we would probably

1Although Kolmogorov complexity captures part of the complexity to which we make reference
here, it seems not to suffice. Thus, the discussion in this paragraph follows at a more intuitive level.
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find it difficult (if not impossible given our computational resources) to discover
the choice mechanism itself. It is in this case that we believe chaotic probability
models to be useful: when dealing with chaotic sources, the measure selection
functionF has both properties of being highly complex so that it is difficult to
discover it from any given data sequence, and having enough simple structure to
allow for the estimation ofM .

We formalize the decision in1 of the previous algorithm by means of a func-
tion F : X∗ → M . Furthermore, we restrict ourselves tocausallymade decisions,
ones dependent only upon the past:

FOR k = 1 TO k = n

1. Choose ν = F(xk−1) ∈ M.

2. Generate xk according to ν.

Let νk = F(xk−1). For anyk≤ n, F determines the probability distribution of
thepotential kth outcomeXk of the sequence,

(∀A ⊆ X) P(Xk ∈ A|Xk−1 = xk−1) = νk(Xk ∈ A).

An actual data sequencexn is assessed by the graded potential of the realization
of a sequence of random variablesXn described by

P(X1 = x1, . . . ,Xn = xn) =
n

∏
k=1

νk(Xk = xk).

We denote byM∗ the family of all such process measuresP. From the analysis of
data, we do not expect in general to be able to pinpoint a single P∈ M∗ or even
a small subset ofM∗, what we call afine-grained picture of the source. On the
contrary, we expect our knowableoperational quantities to be (large) subsets
of M∗ which provide an appropriatecoarse-graineddescription of the source.
These ideas are related to those ofcoarse grainednessandfine grainednessin
physics. For example, in classical physics we commonly havesituations, say, ki-
netic theory, in which a coarse description suffices even though we have access
in principle to a more detailed quantum mechanical one. Unlike the case of clas-
sical physics, there need be no more than instrumental reality in the fine details
of our modelM∗. A similar situation may be found in quantum mechanics where
there are fine-grained pictures that have no empirical reality (see Gell-Mann [6],
Chapter 11, especially pp. 143-147).

2.2 Simulation

Simulation of sequences coming from a source modelled by a set of measures
M can be achieved by simply choosing an appropriate functionF and applying
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the algorithm presented above. Since we expect not to knowF in general, the
choice of the measure selection functions used for simulation depends on our
judgment, based on our knowledge of the physical phenomenonbeing modelled,
the intended use of the simulated sequences, etc.

In the typical case whereM has infinite cardinality, we need a notion of ap-
proximation to the measures inM by finitely many other measures in (or close
to) M . Given a distance or metricd on P, a particular form of approximation is
provided by anε-coveringof M , that is, by a covering of the setM by open balls
of radiusε (according tod) and centers in some setM ε ⊂ P (perhaps a subset of
M ). Note that, ifP is compact with respect tod, we can find afinite ε-covering
of M . Choose a minimal setM ε so that each ball has a non-empty intersection
with M and callB(ε,ν) the ball with centerν ∈ M ε and radiusε. Then, given an
appropriate measure selection functionF : X∗ → M ε, the following algorithm can
be used for simulation.

FOR k = 1 TO k = n

1. Choose ν = F(xk−1) ∈ M ε.

2. Choose any ν′ ∈ B(ε,ν)∩M.

3. Use a pseudo-random number generator to
generate xk according to ν′.

Since we want to expose all ofM in a single, but sufficiently long, simulated
sequence, we requireF to visit, many times, each measure inM ε. Theorems 1-2
in Section 3 can help us choose the minimum number of times that each measure
should be visited. Examples of simulation algorithms basedon the basic strategy
presented above are available in the appendices of Fierens [2] (see, e.g., the proof
of Theorem 4) and in Section 3.5

3 From Data to the Model

3.1 Subsequence Analysis

We begin the study of a sequencexn ∈ X∗ by analyzing it into several subse-
quences. These subsequences are selected by rules that satisfy the following

Definition 1 (Causal Subsequence Selection Rule)
An effectively computable functionψ is a causal subsequence selection rule

(also known as a Church place selection rule) if

ψ : X∗ → {0,1},
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and, for any xn ∈ X∗, xk is the j-th term in the generated subsequence xψ,n, of
lengthλψ,n, if

ψ(xk−1) = 1,
k

∑
i=1

ψ(xi−1) = j, λψ,n =
n

∑
k=1

ψ(xk−1).

Let Ψ = {ψα} be a set of causal subsequence selection rules. For eachψ∈ Ψ,
we study the behavior of the relative frequency of (only) marginal events along the
chosen subsequence. That is, givenxn and a selection ruleψ∈Ψ we determine the
frequentist empirical (relative frequency) measureµ̄ψ,n along the subsequence
xψ,n through

(∀A ⊂ X) µ̄ψ,n(A) =
1

λψ,n

n

∑
k=1

IA(xk)ψ(xk−1),

whereIA(·) is the{0,1}-valued indicator function of the eventA. In a similar
manner, for any such ruleψ, we may compute thetime average conditional
measureν̄ψ,n defined by

(∀A ⊂ X) ν̄ψ,n(A) =
1

λψ,n

n

∑
k=1

E
[
IA(Xk)

∣∣∣Xk−1 = xk−1
]

ψ(xk−1).

Rewritten in terms of our instrumental understanding of themeasure selection
functionF ,

ν̄ψ,n(A) =
1

λψ,n

n

∑
k=1

νk(A)ψ(xk−1),

whereνk = F(xk−1).
Since we want to expose some of the structure of the chaotic probability model

M by means of the rules inΨ, we are interested in how good an estimator ofν̄ψ,n

is µ̄ψ,n. Introduce the norm-based metric

(∀µ,µ′ ∈ P) d(µ,µ′) = max
z∈X

∣∣µ(z)−µ′(z)
∣∣ ,

which quantifies the “closeness” between two probability measures onX. We call
a ruleψ applied toxn causally faithful if the resulting subsequence yields a small
value ofd(ν̄ψ,n, µ̄ψ,n). The existence of such rules is guaranteed by

Theorem 1 Letξ be the cardinality ofX and denote the cardinality ofΨ by‖Ψ‖.
Let m≤ n. If ‖Ψ‖ ≤ tn, then for any process measure P∈ M∗

P

(
max
ψ∈Ψ

{
d(µ̄ψ,n, ν̄ψ,n) : λψ,n ≥ m

}
≥ ε
)
≤ 2ξtne−

ε2m2

2n .



252 ISIPTA ’03

Hence, so long as we restrict to a family of causal selection rules of sizetn and
examine discrepancies of sizeε only over subsequences of length at leastm, with
m large, we can with high probability avoid uncontrollably imposing our own
patterns through some of the selected subsequences and instead exhibit only the
patterns that have inductive validity. If, to the contrary,we allow the set of subse-
quence selection rules to be too large, we will observe with non-negligible proba-
bility measures that are outside the convex hull ofM . For example, if we enlarge
the set of subsequence selection rules by including all possible subsequences, then
we will observe measures that concentrate all the mass on a single atom (outcome
in X).

3.2 Visibility and Estimation

The possibility of exposing all ofM by means of the rules inΨ is expressed in
the following

Definition 2 (Visibility)
(a) M is made visible(Ψ,θ,δ,m,n) by P∈ M∗ if

P

(
\

µ∈M

[

ψ∈Ψ
{Xn : λψ,n(X

n) ≥ m,d(µ̄ψ,n,µ) ≤ θ}
)

≥ 1−δ.

(b) A subset ofM∗ renders M uniformly visible (Ψ,θ,δ,m,n) if M is made
visible(Ψ,θ,δ,m,n) by each of its elements. The maximal such subset is denoted
MV(Ψ) andMV(Ψ) may be empty.

The non-triviality of Definition 2(a), and, hence, of Definition 2(b), is asserted
in

Theorem 2 Let 0 < 2ε < θ andM ε ⊆ M be the centers of a minimal covering of
M by Nε balls of radiusε (according to the metric d as defined above2). Then, for
large n, there exists a process measure P and a familyΨ of size Nε such thatM is
made visible(Ψ,θ,δ,m,n) with

δ = 2(ξ +1)Nεe
− (θ−2ε)2m2

2n .

Theorem 2 asserts the existence of a set of rulesΨ such thatMV(Ψ) is not empty.
The following theorem shows how it is possible to estimateM by means of an

appropriate set of rulesΨ.

2According to our choice ofd, althoughM is not necessarily compact,P certainly is. Therefore,
as a subset of compactP, M will always have a finite open covering.
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Theorem 3 Let Mα be a subset of the non-empty maximalMV(Ψ) ⊆ M∗ that
rendersM uniformly visible(Ψ,θ,δ,m,n). Let [A]ε denote theε-enlargementof
a setA defined by

(∀A ⊆ P) (∀ε > 0) [A]ε = {µ : (∃µ
′ ∈ A)d(µ,µ

′
) < ε}.

Let M̂θ,Ψ be an estimator ofM defined by

(∀xn ∈ X∗) M̂θ,Ψ(xn) =
[

{ψ:ψ∈Ψ, λψ,n(xn)≥m}
B(θ, µ̄ψ,n).

Then the estimator̂Mθ,Ψ satisfies

(∀P∈ Mα) P
(
[ch(M)]θ+ε ⊃ M̂θ,Ψ ⊃ M

)
≥ 1−δ− τn,

where ch(M) is the convex hull ofM and

τn = 2ξ‖Ψ‖e−
ε2m2

2n .

3.3 Temporal Homogeneity

Not every set of rulesΨ can expose all ofM . The following definition deals
with some sets of rules that can only expose a small neighborhood of a single
probability measure inch(M).

Definition 3 (Temporal Homogeneity)
(a) P∈ M∗ is temporally homogeneous(Ψ,θ,δ,m,n) if

P

(
max

ψ1,ψ2∈Ψ

{
d(µ̄ψ1,n, µ̄ψ2,n) : λψ1,n(X

n),λψ2,n(X
n) ≥ m

}
≤ θ
)
≥ 1−δ.

(b) A subset ofM∗ is uniformly temporally homogeneous(Ψ,θ,δ,m,n) if
each of its elements is temporally homogeneous(Ψ,θ,δ,m,n). The maximal such
subset is denotedMT(Ψ).

The non-triviality of Definition 3(a), and, hence, of Definition 3(b), is estab-
lished by

Lemma 1 Choose µ0 ∈ P and 0 < 2ε < θ and constrain the measure selection
mechanism F so that

(∀x∗ ∈ X∗) F(x∗) ∈ B(ε,µ0),
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where B(ε,µ0) is a ball with center µ0 and radiusε; that is, every P induced
by F is approximately i.i.d. µ0. Then each such P is temporally homogeneous
(Ψ,θ,δ,m,n) provided thatδ satisfies

δ = 2ξtne−
[(θ−2ε)m]2

8n ,

where tn = ‖Ψ‖.

3.4 Consistency between Visibility and Temporal Homogene-
ity

We can better appreciate the difficulty of choosing an appropriate set of rules for
estimation ofM by means of the next theorem, which in some sense complements
Theorem 2 and Lemma 1.

Theorem 4 Letε > 1
m. Assume that there is anε-cover ofM by Nε open balls with

centers in a setM ε = {µ1,µ2, · · · ,µNε} such that, for each µi , there is arecursive
probability measure ν ∈ B(ε,µi)∩M . Let Ψ0 be a set of (causal deterministic)
place selection rules. Then, there are a process measure P and a familyΨ1 such
that, for large enough n, P will both renderM visible(Ψ1,3ε,δ,m,n) and ensure
temporal homogeneity(Ψ0,6ε,δ,m,n) with

δ = 2ξtne−
ε2m2

2n ,

where
tn = max{‖Ψ0‖,‖Ψ1‖} .

A more transparent version of Theorem 4, given in terms of an analyzing set
Ψ0 formed byfinite history rules defined as follows

Definition 4 Finite History Rules
We say thatψ is afinite history rule if there is a positive integer L, calledthe

history length of ψ, and a functionΓ : XL → {0,1} such that for all xn ∈ X we
have

ψ(xk−1) =

{
Γ(xk−L,xk−L+1, · · · ,xk−1) if k > L,

0 otherwise.

The next theorem is similar to Theorem 4:

Theorem 5 Assume thatM makes all atoms possible, i.e., there isφ> 0 such that

inf
µ∈M

min
z∈X

µ({z}) ≥ φ.
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LetΨ0 consist of finite history rules with length smaller than a given L. Then, for
ε > 0, there are a process measure P and a familyΨ1 such that P will both render
M visible(Ψ1,2ε,δ,m,n) and ensure temporal homogeneity(Ψ0,4ε,δ,m,n) with

δ = 4ξtne−
ε2m2

2n ,

where
tn = max{‖Ψ0‖,‖Ψ1‖} .

Although we do not present a complete proof here (it can be found in Fierens
[2]), we give the basic idea behind the construction ofP in Section 3.5 because it
provides a simple example of several ideas in this paper.

Put picturesquely, the results in this section show thatΨ determines there-
solving power of the analytical microscopewith which we examineM . When
one prepares a sample to be put under the lenses of the microscope, little or noth-
ing is seen of the structure of the sample, e.g., it may just look like some watery
solution. Similarly, in the case of a chaotic probability model, the temporal homo-
geneity property tells us thatM looks just like the traditional single measure. As
we exploreM with a large numbers of more complex selection rules, say, under
the more powerful lenses of the microscope, we begin to see orisolate different
relative frequency measures and begin to seeM as a set of measures. However,
we do not know in advance the final scale at whichM exhibits all of its structure
and do not know in advance how to chooseΨ to render all ofM visible. Our
abilities at progressive exploration are, of course, limited both by the increasing
computational burden, and by considerations of extractingfaithful subsequences.
Preserving the faithful subsequence property requires a relation between‖Ψ‖ and
the resulting confidence level 1− δ. As ‖Ψ‖ increases, maintaining confidence
levels requires longer subsequences (largerm) and in turn more data (largern).
These considerations make good traditional statistical sense.

3.5 Simulation Example

Let M ε = {µ1,µ2, · · · ,µNε} ⊆M be the centers of a finiteε-cover ofM by Nε open
balls. Letγ be defined as

γ=
⌈
logξ Nε

⌉
.

Let B1, · · · , BNε be a partition ofXγ, the histories of lengthγ, into Nε subsets
and consider the memory-γ Markov process defined by the following transition
probabilities:

(∀A ⊆ X) P
(
Xk ∈ A|Xk−1 = xk−1, · · · ,Xk−γ = xk−γ

)
= µi (Xk ∈ A) , (1)

iff (xk−γ, · · · ,xk−1) ∈ Bi . It can be proved that this Markov process has a unique
stationary probability measureµS (see Fierens [2]).
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Let R be an integer greater than a givenL and consider the construction of
a process measureP ∈ M∗ by an algorithm that: a) initializesR i.i.d. Markov
processes (as described by Eqn. 1) at the stationary measure; b) generates the
sequencexn by choosing outcomes from theRMarkov processes in a round-robin
fashion. A more detailed description of this algorithm follows.

FOR l = 1 TO l = R

1. Generate (xl ,1,xl ,2, · · · ,xl ,γ) according to µS.

2. FOR k = γ+1 TO k = ⌈n/R⌉
(a) Find the set Bi such that (xk−γ, · · · ,xk−1) ∈ Bi.

(b) Generate xk according to µi.

Set R counters i1, i2, · · · , iR to 1.

FOR k = 1 TO k = n

1. Let l = [(k−1) mod R]+1.

2. Let xk = xl ,i l.

3. Let i l = i l +1.

We now sketch the proof that the previous algorithm succeedsin constructing
a process measureP∈ M∗ satisfying the conditions stated in Theorem 5. By the
previous algorithm, fork > Rγ, the outcomeXk depends onXk−Rγ, Xk−R(γ−1), · · · ,
Xk−R, but it does not depend onXk−R+1, Xk−R+2, · · · , Xk−1. Let ψ be any rule in
Ψ0. Sinceψ has a limited time horizonL which is strictly smaller thanR, we have
for all A ⊂ X

E
n

∑
k=1

ψ(Xk−1)
[
E
[
IA(Xk)

∣∣∣Xk−1
]
−µS(A)

]
=

=
n

∑
k=1

P
(

ψ(Xk−1) = 1
)

E
[
IA(Xk)−µS(A)

∣∣∣ψ(Xk−1) = 1
]

= (by memoryL)

=
n

∑
k=1

P
(

ψ(Xk−1) = 1
)

E
[
IA(Xk)−µS(A)

∣∣∣ψ(Xk−L:k−1) = 1
]

= (by indep.)

=
n

∑
k=1

P
(

ψ(Xk−1) = 1
)

E[IA(Xk)−µS(A)] = 0.

It can be shown, by means of the same techniques used in the proof of Theorem
1, that this fact implies that

P

(
max
ψ∈Ψ0

{
d(ν̄ψ,n,µS) : λψ,n ≥ m

}
≥ ε
)
≤ 2ξ‖Ψ0‖e−

ε2m2

2n .
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Finally, this statement together with Theorem 1 imply thatM is Ψ0-temporal
homogeneous.

Let Ψ1 = {ψ1, · · · ,ψNε} be a set of rules such that

ψi(x
k−1) =

{
1 if k > Rγ and(xk−Rγ,xk−R(γ−1), · · · ,xk−R) ∈ Bi ,

0 otherwise.

Then, it is easy to see that

(∀A ⊆ X) ν̄ψi ,n(A) =
1

λψi ,n

n

∑
k=1

E
[
IA(Xk)

∣∣∣Xk−1 = xk−1
]

ψi(x
k−1) = µi(A).

This fact together with Theorem 1 ensureΨ1-visibility.

4 Conclusions and Future Work

As is well known in cognitive psychology (see, e.g., [5]), perception is intimately
related to expectation: in many cases, we see what we expect to see. In a similar
manner, our capacity to recognize new phenomena is conditioned by our exist-
ing mathematical constructs (see Fierens and Fine [3]). In the words of Meno to
Socrates3:

And how will you enquire, Socrates, into that which you do notknow? What will you

put forth as the subject of enquiry? And if you find what you want, how will you ever

know that this is the thing which you did not know?(From [14]).

We have presented here a new way of “seeing” time series by introducing chaotic
probability models. Although we have not shown real-world data supporting our
models, we have provided the basic tools needed to recognizeand study such
data. We have developed a basic understanding of chaotic sources by means of
the instrumental interpretation in Section 2 and we have presented methods to
estimate the model from data and to simulate it given the model in Section 3.

Bridge-building provides a metaphor for our approach to thedevelopment of
an objective theory based on sets of probability modelsM . The two piers of the
bridge are: the modelM as a set of probability measures on all subsets ofX (see
Section 2) representing potential; time series data in the form of a sequencexn of
finite lengthn with terms in the sequence all drawn from a finite sample space
X (see Section 3) representing the actualization of potential. Our models need
to show consistent descriptions of both piers and methods totraverse this bridge
in both directions. In estimation we have many ways to proceed from a unique
data sequence to an approximate model. In simulation we havemany ways to
proceed from a model to multiple data sequences that are typical of the model.

3We owe this quote to an anonymous referee.
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Structural soundness of the bridge amounts to self-consistency of estimation and
simulation, in the sense that a modelM̂ estimated from a simulated sequence ˆxn

must be similar to the original modelM being simulated:

M −−−−−−→
source gen.

xn −−−−−→
estimation

M̂(xn)(≈ M) −−−−−→
simulation

x̂n −−−−−→
estimation

M̂ (x̂n) ≈ M .

More work remains to be done on estimation and simulation before being able to
evaluate fairly this kind of consistency in our chaotic probability models. Also,
we need to find a way of quantifying such consistency. Do the models obtained
from simulated sequences look similar to the models used forsimulation? How
do we quantify these similarities? These questions need an answer if we want the
framework of chaotic probability models to be consistent.

In view of the instrumental interpretation in Section 2.1, it may be argued that
a set of probability measuresM provides only an unfinished picture of a chaotic
source, the description ofF being needed for a complete model. However, we
believe thatM provides, not an incomplete picture of the source, but a coarse
grained one. As thermodynamics in physics provides good (complete) enough
models of gases for many practical purposes, we believe setsof measuresM may
be good (complete) enough models of chaotic sources in many cases. Although
examples of the successful use of chaotic models in applied probability have yet
to be provided, the main elements needed for the applicationof our models have
been given in this paper.

References

[1] COZMAN , F., AND CHRISMAN, L. Learning convex sets of probability
from data. Tech. Rep. CMU-RI-TR-97-25, Robotics Institute, Carnegie Mel-
lon University, 1997.

[2] FIERENS, P. I. Towards a Chaotic Probability Model for Frequentist
Probability. PhD thesis, Cornell University, August 2003. Available at
http://www.people.cornell.edu/pages/pif1/thesis.pdf.

[3] FIERENS, P. I., AND FINE, T. L. Towards a frequentist interpretation of
sets of measures. InProceedings of the Second International Symposium
on Imprecise Probabilities and Their Applications(The Netherlands, 2001),
G. de Cooman, T. L. Fine, and T. Seidenfeld, Eds., Shaker Publishing.

[4] FINE, T. L. Theories of Probability: An Examination of Foundations. Aca-
demic Press, 1973.

[5] GALOTTI , K. M. Cognitive Science In and Out of the Laboratory.
Brooks/Cole, 1994.



Fierens & Fine: Towards a Chaotic Prob. Model for Frequentist Prob. 259

[6] GELL-MANN , M. The Quark and The Jaguar. W. H. Freeman and Com-
pany, 1994.

[7] GRIZE, Y.-L., AND FINE, T. L. Continuous lower probability-based mod-
els for stationary processes with bounded and divergent time averages.An-
nals of Probability 15(1987), 783–803.

[8] K OLMOGOROV, A. N. On tables of random numbers.Sankhya: The Indian
Journal of Statistics, Series A(1963), 369–376.

[9] K OLMOGOROV, A. N. On logical foundations of probability theory. In
Probability Theory and Mathematical Statistics, K. Ito and J. Prokhorov,
Eds., vol. 1021 ofLecture Notes in Mathematics. Springer-Verlag, 1983.

[10] KUMAR , A., AND FINE, T. L. Stationary lower probabilities and unstable
averages.Zeitschrift f̈ur Wahrscheinlichkeitstheorie und verwandte Gebiete
69 (1985), 1–17.
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Abstract

For cancers with more than one risk factor, the sum of probabilistic estimates
of the number of cancers attributable to each individual factor may exceed
the total number of cases observed when uncertainties aboutexposure and
dose-response for some factors is high. In this study we outline a method
to bound the fraction of lung cancer fatalities not attributed to specific well-
studied causes in which available data and expert judgment are used to at-
tribute portions of the observed lung cancer mortality to known causes such
as smoking, residential radon, and asbestos fibers. An upperbound on the
residual risk due to other causes is then inferred using a coherence constraint
on the total number of deaths, a maximum uncertainty principle, and impre-
cise probabilities.

Keywords

bounding analysis, lung cancer, belief functions, assessment methods, medicine

1 Introduction

Usually, the health risk of exposure to an environmental contaminant is calcu-
lated using a “front-to-back” procedure, which involves estimating toxic releases,
modeling environmental and physiological transformations, and then employing
exposure models and dose-response functions, see for example [6]. That method-
ology works best when the relevant science is well developed; however, when

∗This work has been supported by CNRS of France, and by the National Science Foundation
under grants SES-0216897 and SRB-9521914. A similar paper has been submitted for publication in
the journalRisk Analysis.

260



Ha-Duong et al.: Bounding Analysis of Lung Cancer Risks 261

Well characterized factors Less well characterized factors
Cigarette smoking Occupational exposures:
Passive smoking Asbestos
Indoor radon Arsenic

Chromates
Chloromethyl ethers
Diesel exhaust
Nickel

Polycyclic aromatic hydrocarbons (PAHs)
Ambient air pollution

Table 1: Examples of environmental risk factors for lung cancer

there are severalrisk factors(as the expression is used in the epidemiology liter-
ature), and uncertainty about some of the science is large, such a procedure can
lead to estimates for the numbers of cancers attributable tothe various factors that,
summed, exceed the total number of cases actually observed.

Morgan [12] argued that methods of bounding analysis could be used for
environmental risk analysis. For health risks with multiple external causes, the
available knowledge constrains the magnitude of the poorlycharacterized risks.
If most risks were known with precision, this would be a simple subtraction prob-
lem. However disease risks from environmental causes are often estimated from
models or inferred from studies involving limited numbers of subjects and incon-
sistent notions of controls or have other methodological problems that contribute
to the uncertainty of the results. It is common to see the central tendencies of such
risk estimates expressed as ranges, especially when there are competing plausible
models. Sometimes the sum of the individual risks exceeds the total risk. How to
quantify and bound the residual “unclaimed” risk is the subject of this paper.

Using lung cancer mortality from environmental factors as an illustrative ex-
ample, this paper presents a method for bounding the remaining uncertainty when
only some of the risk factors are well characterized. The result is an upper bound
on the mortality that can be attributed to all other, less well-characterized fac-
tors. Some of the major environmental risk factors for lung cancer are shown in
Table 1. “Well characterized” here means that population-wide longitudinal attri-
butional studies exist.

In the method presented, expert judgment is used to attribute a portion of
the observed cancers to known causes such as smoking, radon and asbestos. In-
formation about the risks from unspecified causes is inferred using a coherence
constraint on the total number of deaths, and a principle we term maximum un-
certainty.

Our method builds upon the work of Walley [23, chapter 4]. Mathematically,
this is an application of Smets’ Transferable Belief Model [20], which was de-
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veloped to solve some paradoxes in combining expert opinionin the theory of
evidence [19]. We elicit information about a finite set of variables (risk factors
for cancer) and represent this information as constraints on a linear programming
problem involving a convex family of probabilities. We invoke the maximum un-
specificity criterion in order to estimate the upper bound for the less well-studied
members of the set.

Ours is not the first combination of linear programming, expert elicitation,
and imprecise probabilities. Lins combined these elements[10] to assess prior
probabilities for a single continuous parameter.

The paper is organized as follows. Section 2 presents the conceptual model,
which is an application of the mathematical Transferable Beliefs Model to risk
assessment. Based on this, Section 3 discusses our method toelicit and validate
expert opinion using a maximum unspecificity criterion. From our reading of the
literature, we then provide a tentative attribution among the causes (because the
expert elicitation phase of this project is currently incomplete), and in Section 4
illustrate the method with a numerical application.

2 Model

2.1 Multiple pollutants may cause lung cancer

Let N denote the magnitude of the health end-point, in this case, the total annual
number of lung cancer deaths. LetΩ denote the set of all possible causes of lung
cancer deaths. For example,Ω = {C, R,A,X}whereC means tobacco smoke
primarily from cigarettes,R means indoor exposure to radon,A means asbestos
andX is the group of all other more poorly understood environmental factors of
interest.

The model assumes thatN is readily observable and therefore known with
precision. While this is not strictly true in the case of lungcancer [3, 2] the as-
sumption is not limiting, since the results of the method canbe stated in percent-
age terms and then applied to a range of possible numerical values ofN. We also
assume exposure to be binary, which is of course not true, butthe assumption is
consistent with the exposure definitions used in the supporting epidemiological
studies. With these two assumptions, each death can be linked to zero or more
possible causes inΩ. Most lung cancer deaths are caused by smoking alone, but
there are synergistic cases in which more than one cause is involved, such as
smoking and radon.

Figure 1 shows one way to subdivideN by causes that includes synergistic
effects. We denote the number of deaths linked to causes asn(s), wheres is any
subset ofΩ. In our example we consider four possible causes inΩ, so there could
be sixteen (= 24) possibles, but to simplify the analysis and to be consistent with
the cancer literature, we will consider only the two-factorinteractions involving
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n(⊘) n(C) n(R) n(CR) n(X) n(XC) n(XR) n(Ω)

✲✛

N = All lung cancer cases

Figure 1: The basic statisticn, simplified to include only the risk factors cigarettes
(C), radon (R), and all other causes (X). N is the total number of lung cancer fatal-
ities. n is the number of fatalities attributable to each risk factor, or combination
of factors.n(⊘) is the background number of lung cancer deaths that would occur
absent all the various risk factors.n(Ω) = n(CRX), those cases for which no risk
factor can be excluded.

cigarette smoke.
To adopt a more precise and cautious definition,n(s) is the number of cases

not caused by pollutants not ins. This implies that causes not ins are known to
be non-contributing to that lung cancer. For deaths inn(s), any cause ins may
have caused the lung cancer, but which one is uncertain and there may have been
synergies.

Our intuitive interpretation for this definition of “ambiguous causality” is that
n(s) represents the number of cases that were exposed to the possibly multiple
risk factors ins.

The number of lung cancer deaths where all causes ofΩ have been positively
excluded isn(⊘) shown to the left of the bar in Figure 1. Cases that could not be
linked to any pollutant inΩ are considered spontaneous lung cancer. It is impor-
tant to underline thatn(⊘) does not have the same status asn(X), which will be
deduced as a residual. It corresponds to the background rateof lung cancer that
occurs in a population without exposure to any environmental, dietary, occupa-
tional or other carcinogen.

The functionn does not come from real data. Direct measurement of the basic
statisticn is impossible, since exposure to a pollutant does not necessarily result
in a cancer fatality and because retrospectively, lifetimeexposures to the various
carcinogens can only be roughly estimated. It is only a mathematical tool used in
to support expert elicitation of consistent bounds, as discussed next.

2.2 Bounding the risk attributable to single and joint pollu-
tants

The basic statisticn can be used to bound the number of cases attributable to
smokingC as follows, wheren(C) andn(C) denote the upper and lower bounds
onn(C), respectively:

• The lower bound is the number of cases attributed only to smoking (we
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n(C) n(CX) n(X) n(⊘)

✲✛

Lower bound on C
✲✛

Upper bound on X
✲✛

Upper bound on C
✲✛

Lower bound on X

✲✛

Synergistic effects

Figure 2: Upper and lower bounds on the number of lung cancer deaths at-
tributable to C and X

lump both passive and active smoking together). That isn(C)=n(C).

• The upper bound is the number of cases exposed to smoke and possibly
other factors. That isn(C) = n(C)+ n(XC)+ n(CR)+ n(XCR)+n(CA)+
n(XCA)+n(CRA)+n(XCRA) or:

n(C) = ∑
E

n(E) for all subsetsE of Ω containingC

Figure 2 illustrates this definition of the upper and lower bounds of the num-
ber of lung cancer deaths attributable toX andC. For clarity the figure is drawn
showing only two causes, withΩ = {C,X}.

In epidemiologists’ terms, theattributable fractionof pollutantC is the pro-
portion of all cases that could be avoided if this pollutant were eliminated, denoted
a f(C). The model suggests the following bounds for smoking attributable frac-
tion:

n(C)

N
(1− r0) ≤ a f(C) ≤ n(C)

N
(1− r0) (1)

The lower bound accounts for the 1− r0 share of spontaneous lung cancer
cases in those cases exposed to cigarettes. The upper bound attributes all cigarette-
exposed deaths to this factor.

For this paper we will assume that the background rate of lungcancer mor-
tality in the U.S.,r0, is 3 deaths per 100 000 people. This background rate is the
number of lung cancer deaths in the unexposed population divided by the unex-
posed population. DenotingpC, pR andpA as the exposure probabilities ofC,R,A;
andT as the total population; assuming independence (meaning that people who
smoke are no more or less likely to be exposed to radon or to asbestos):

r0 =
n(⊘)

(1− pC)(1− pR)(1− pA)T
(2)
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Consider now the bounds on deaths attributed to multiple synergistic causes.
Denote these causess, a subset ofΩ, for examples= CR. For the lower bound
on the number of deaths attributable to these causes acting jointly, we continue to
adopt the number of cases exposed only to these causes, that is:

n(s) = n(s) (3)

And as the upper bound, we continue to adopt the number of cases exposed to
sand possibly other factors, that is:

n(s) = ∑
E

n(E) for all subsetsE of Ω containings (4)

This n corresponds to the commonality function in the Transferable Belief
Model [20]. Bounds on the attributable fraction can be computed as in equation 1.

2.3 Unspecificity, a measure of uncertainty

Structurally, the only uncertainty in this bounding analysis model comes from the
synergistic causes, because it is not possible to attributethe cancer to any one of
these causes. Consider these two (of the three) extreme cases:

• If each death were attributed to exactly one cause, then there would be no
uncertainty, and all lower bounds would coincide with theirupper coun-
terpart. We would haven(C)+n(R)+n(A)+n(X) = N−n(⊘). Note that
sincen is a positive function that sums up toN, this implies thatn(s) = 0
for all other subsets.

• If no information were available, each death would be attributed to the syn-
ergy of all factors. We would have all the lower bounds at 0 andall upper
bounds atN. Mathematically, this isn(Ω) = N. Note that this constitutes
a proper uninformative distribution: it is not the Bayesianuniform prior
probability distribution onΩ. It represents the family of all probability dis-
tributions that can be defined onΩ.

Unspecificity is an numeric indicator that equals one in the first case, and in
the second case equals the number of elements ofΩ. It is the expected value of the
number of elements ofs with respect to the probability distributionm(s) = n(s)

N ,
that is:

U =
n(C)+n(R)+n(A)+n(X)+2(n(CR)+n(RA)+ . . .)+3. . .+4n(Ω)

N
(5)

In this paper unspecificity is a kind of generalized cardinality, that specifies
the number of alternatives. The reason for using this word isthat when a death is
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attributed to the synergy ofk factors, it can be said that the unspecificity of this
information isk. See [16] for an extensive discussion of this concept.

A lower unspecificity measure corresponds to better information, so a third
extreme case needs discussion: unspecificity is zero when and only whenn(⊘) =
N. This is the case when for all deaths, all non-spontaneous causes ofΩ have been
positively excluded. It means that all the substances inΩ are actually safe (with
respect to lung cancer). This is the highest level of information achievable, to the
point that it makesΩ irrelevant.

Regarding unspecificity as a measure of information allows to implement nu-
merically the general principle of maximum uncertainty, also known as Laplace’s
principle of “raison insuffisante”. The principle states that one should select the
statistic that is the most unspecific, compatible with existing information. This is
the principle that we use in the next section to estimate the bounds on the unknown
cause, given information about all others.

3 Expert elicitation

3.1 Procedure

When we apply this procedure, we will elicit a set of judgments regardingn(s)
from a number of leading health scientists using methods previously developed
for expert elicitation in domains in which there is considerable scientific evi-
dence [13, 14, 15]

The results from an elicitation will be interpreted as linear constraints onn.
These constraints determine a setB of basic statistics, that is a set ofn that are all
compatible with the expert’s judgments. The most unspecificn in B is chosen to
represent the expert judgment, according to the maximum uncertainty principle.
This amounts to solving a linear program in a space with 2|Ω| dimensions.

Other ways of translating judgments into constraints are possible, for exam-
ple using relative risk, but are not used in this introductory paper. Note that both
quantitative and comparative judgments are possible, which may ultimately be
important because some of the pollutants have been well studied, but we are in-
terested in the less well-known pollutants.

In addition to elicited information, we impose these constraints:

• It is understood that alln(s) are non-negative, summing up to N.

• Three-way interactions and higher are not allowed. That is,n(s) = 0 if shas
3 or more elements.

The constraint on three-way interaction is a zero-order approximation. We as-
sume that that the number of deaths caused by multiple interactions are a very
small number that can be neglected. In a more sophisticated approach, this as-
sumption could be replaced by explicit considerations about causes interactivity
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and independence. But there is little scientific empirical knowledge about these
interactions.

3.2 Ensuring consistency

Maximizing unspecificity is possible only ifB is not empty. This means that the
different items of information given by the expert should becoherent with each
other. For example, one could not allow the expert to say thatthe lower bound
for C is 90 percent, and the lower bound forR is 20 percent at the same time,
because that would exceed 100 percent. Walley has shown [23]that the coherence
condition is:

a f(si)+ ∑
j 6=i

a f(sj) ≤ 1≤ a f(si)+∑
j 6=i

a f(sj)

The double inequality should hold for all causesi in {1, . . . , |Ω|}.
Besides mathematical consistency, it is also important to provide safeguards

so that the expert can check that formal implications of the elicited n are consistent
with its informal understanding of the problem. We propose two checks.

The first check onn is to make sure that the results in terms of bounds on
relative risks and on interactions between pollutants makesense. The definition
of relative risk for smoking cigarettesrr (C), for example, is the lung cancer rate
associated with exposure to tobacco smoke divided by the background lung cancer
rate. Given exposure probabilities in the general population, we will assess the
bounds on the relative risk for the various pollutants usingthe formula in [6,
appendix C p. 229].

The second check onn is to make sure that the risk-ranking it implies makes
sense. We will ask experts to rank risks during the elicitation process. The con-
sistency of results will be assessed by comparing the partial order derived fromn
with the expert’sa priori risk ranking.

Informally, this partial order says that the lung cancer risk related toR is not
larger than the risk related toC when we know with certainty thatRcauses fewer
lung cancer deaths thanC. For example, one sufficient condition for this is that
the lower bound onC is greater than the upper bound onR. But the mathematical
definition of the natural partial order relation associatedwith a basic statisticn
requires more explanations.

Let P denote a function such thatP(C)+P(R)+P(A)+P(X)= N. It is a basic
statistic with unspecificity one, describing an hypothetical world where each lung
cancer death is attributed to one and only one cause. For sucha P, the number of
deaths caused by any set of causess is ∑xP(x), for all causesx in s. We say thatP
is compatible with the basic statisticn if and only if for all s, that number respects
the bound determined byn in the following way:
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∀s⊂ Ω, ∑
x∈s

P(x) ≤ ∑
y,s∩y6=⊘

n(y) (6)

The right hand side of Equation 6 can be interpreted in the present model as
the upper bound on the number of deaths related to the causes in s acting either
jointly or separately. This function ofs corresponds to the belief function in the
Transferable Belief Model.

The heart of the problem is thatP is hypothetical. Because there are inter-
actions, more than oneP is compatible withn. DenoteP the family of all P
compatible withn. The natural partial order is mathematically defined by:

R�C ⇔ ∀P∈ P , P(R) ≤ P(C) (7)

Numerically, this is determined by checking the sign of the minimum of
P(C)−P(R) under constraint 6. It is tractable to work with the full partial or-
der, since there is at most|Ω|(|Ω| − 1)/2 comparisons. Assuming|Ω| = 7 for
example, there are no more than 21 information items, which can be presented
naturally in the diagonal half of a table. Moreover, practically there will be fewer
than 21 items, since not all risks can be compared. It is to be expected, for exam-
ple, that some experts may prefer to find that some of the less-known risks are not
comparable, because of missing scientific information.

4 Application

Our numerical simulations were performed using aMathematicanotebook1. The
code directly implements matrix calculus for belief functions as outlined in [21].
This is the most straightforward method given thatΩ remains small, but it would
not scale well to tens of pollutants, since it involves square matrices with 22|Ω|

elements. For example, 10 pollutants implies storing in memory arrays with 1M
numbers.

In our illustrationΩ, the set of possible causes of lung cancer, consists of:
C Smoking
R Radon
A Asbestos, glass wool, ceramic fibers
X All other environmental risk factors

Based on our own review of the literature [6, 7, 4, 18, 22, and others] we have
constructed a set of judgments attributing lung cancer deaths among the major
causes, as the expert elicitations have not at this time beenperformed. We offer
the following breakdown: Cigarette smoking combined with passive smoking ac-
counts for 70 to 95 percent of lung cancer mortality; indoor radon exposures for
02 to 21 percent; asbestos, 1 to 5 percent.

1Available on the web athttp://www.andrew.cmu.edu/user/mduong, or upon request,
under the GNU General Public License.
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Bounds C R A X
a f 95% 21% 5% 3.2%
a f 70% 02% 1% 0%

Exposure probability 45% 50% 5% 5%
rr 43.2 1.53 2.05 1.66
rr 6.19 1.04 1.20 1.

Table 2: Results of optimization: Upper and lower bounds on attributable fractions
and relative risks

We used a 3% background rate [1, 5, 11, 9, 17]. With our assumptions on
exposure probabilities, equation 2 implies thatn(⊘) = 0.013N.

The next table shows the implications for bounds ofa f and rr of the most
unspecific imprecise probability distribution compatiblewith these constraints.
The exposure probabilities needed to computerr are exogenous: radon exposure
is defined as living in a home with radon concentration at or above 25 Bqm−1,
and exposure toX is our estimate. The effect of this calculation on the bounds
of rr would serve as a calibration/validation reference for the expert who may be
more familiar with small sample studies than population effects, and might adjust
his or her initial responses in light of seeing their mathematical implications.

This result attributes between 0 and 3.2 percent of lung cancer deaths toX,
the group of unknown environmental pollutants. For the group of known and sus-
pected lung carcinogens other thanC, A andR, the risk analyst concludes that,if
one is confident in the bounds assigned to the well understoodrisk factors, the
sum of the effects of the other factors accounts for no more than 3.2% of total
lung cancer mortality.

The implication for judging future risk assessments of members ofX is that,
if the assessment projects the lung cancer risk in the U. S. population from these
pollutants to be in excess of 3.2% of the annual lung cancer mortality, then the
assumptions of the model should be re-examined and the upperbound on the
resulting estimate constrained.

5 Concluding remarks

5.1 Discussion

With less than ten pollutants, computing time is not a problem. Expert elicitation
could be done interactively, solving forn after each expert’s reply. This would al-
low the interviewer to point out and resolve inconsistency when there is no solu-
tion. But assuming that experts were willing to form judgments on a wider range
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of pollutants, the curse of dimensionality can be addressedalong the following
lines. Rather than using matrix calculus, it is possible to use faster algorithms
(namely the Fast Möbius transform) for belief function computations. If this is
not enough, further simplifications can be made if additional assumptions onn,
for example disallowing 3-way or higher interactions, are accepted.

The proposed method takes all information items provided bythe expert with
equal force. A potential advance of this research could be toask experts to rank
the reliability of each information item, or even to give an estimate of confidence
for them.

Further research could deal with inter-expert validation,a question linked with
the unresolved issue of judgment fusion. The Transferable Belief Model under-
lying this work offers a measure of contradiction between different sources of
information: it reinterpretsn(⊘), the number of spontaneous lung cancer deaths
found when one combines the opinion of all experts. The problem is how to com-
bine the experts.

Each expert’s judgment determines a setB of coherent basic statistics. If the
intersection of all these sets is non-empty, then experts agree on this intersection.
The principle of maximum unspecificity can be used to form a group judgment.

If the intersection is empty, the experts contradict each other. Studying which
information items cause the contradiction (which constraints make the LP infeasi-
ble) can identify the substantive sources of disagreement,and in that way inform
both future research priorities as well as the decision-making process. How (or
if) to fuse the judgments and quantify the degree of contradiction is still an active
research question, see [8] for example.

5.2 Conclusion

This paper has proposed an application of the Transferable Belief Model [20] to
estimate an upper bound on the number of lung cancers caused annually by the
group of causes for which comprehensive longitudinal studies are lacking. Such a
result is interesting from a risk management perspective, as it gives an indication
of the level of effort control of these pollutants deserve.

This was done by attributing a portion of the observed cancers to known
causes such as smoking, radon and asbestos, and then deducing information about
the residual using maximum unspecificity. The critical aspects of this procedure
are:

1. Uncertainty in the known causes is explicitly stated, using statements on
upper and lower bounds.

2. Synergistic effects in the known causes are part of the framework.

3. Consistency between known causes and poorly understood agents is re-
quired. (As Figure 2 illustrates, it is the lower bound on smoking that mostly
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constrains the upper bound on the residual.)

This paper presents the methodology. The results revealed by future expert
elicitation will be the subject of another paper.
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Robust Estimators under the
Imprecise Dirichlet Model

MARCUS HUTTER
IDSIA, Switzerland

Abstract

Walley’s Imprecise Dirichlet Model (IDM) for categorical data overcomes
several fundamental problems which other approaches to uncertainty suffer
from. Yet, to be useful in practice, one needs efficient ways for computing
the imprecise=robust sets or intervals. The main objectiveof this work is
to derive exact, conservative, and approximate, robust andcredible interval
estimates under the IDM for a large class of statistical estimators, including
the entropy and mutual information.

1 Introduction

This work derives interval estimates under the Imprecise Dirichlet Model (IDM)
[Wal96] for a large class of statistical estimators. In the IDM one considers an
i.i.d. process with unknown chances1 πi for outcomei. The prior uncertainty
aboutπππ 2 is modeled by a set of Dirichlet priors3 {p(πππ) ∝ ∏i πsti−1

i : ttt ∈ ∆},
where4 ∆ := {ttt : ti ≥ 0, ∑i ti = 1}, and s is a hyper-parameter, typically cho-
sen between 1 and 2. Sets of probability distributions are often called Imprecise
probabilities, hence the name IDM for this model. We avoid the termimprecise
and userobust instead, or capitalizeImprecise. IDM overcomes several funda-
mental problems which other approaches to uncertainty suffer from [Wal96]. For
instance, IDM satisfies the representation invariance principle and the symmetry
principle, which are mutually exclusive in a pure Bayesian treatment with proper
prior [Wal96]. The countsni for i form a minimal sufficient statistic of the data
of sizen = ∑i ni . Statistical estimatorsF(nnn) usually also depend on the chosen

1Also calledobjectiveor aleatoryprobabilities.
2We denote vectors byxxx := (x1, ...,xd) for xxx∈ {nnn,ttt ,uuu,πππ, ...}.
3Also calledsecond orderor subjectiveor beliefor epistemicprobabilities.
4Strictly speaking,∆ should be the open simplex [Wal96], sincep(πππ) is improper forttt on the

boundary of∆. For simplicity we assume that, if necessary, considered functions ofttt can and are
continuously extended to the boundary of∆, so that, for instance, minima and maxima exist. All con-
siderations can straightforwardly, but cumbersomely, be rewritten in terms of an open simplex. Note
that open/closed∆ result in open/closed robust intervals, the difference being numerically/practically
irrelevant.

274
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prior: so a set of priors leads to a set of estimators{Fttt(nnn) : ttt ∈ ∆}. For instance,
the expected chancesEttt [πi ] = ni+sti

n+s =: ui(ttt) lead to a robust interval estimate
[ ni
n+s,

ni+s
n+s ] ∋ Ettt [πi ]. Robust intervals for the variance Var[πi ] [Wal96] and for the

mean and variance of linear-combinations∑i αiπi have also been derived [Ber01].
Bayesian estimators (like expectations) depend onttt andnnn only throughuuu (and
n+swhich we suppress), i.e.Fttt(nnn) = F(uuu). The main objective of this work is to
derive approximate, conservative, and exact intervals[minttt∈∆ F(uuu),maxttt∈∆ F(uuu)]
for generalF(uuu), and for the expected (also called predictive) entropy and the
expected mutual information in particular. These results are key building blocks
for applying IDM. Walley suggests, for instance, to use minttt Pttt [F ≥ c] ≥ α for
inference problems and minttt Ettt [F ] ≥ c for decision problems [Wal96], whereF
is some function ofπππ. One application is the inference of robust tree-dependency
structures [Zaf01, ZH03], in which edges are partially ordered based on Imprecise
mutual information.

Section 2 gives a brief introduction to IDM and describes ourproblem setup.
In Section 3 we derive exact robust intervals for concave functionsF , such as the
entropy. Section 4 derives approximate robust intervals for arbitraryF. In Section
5 we show how bounds of elementary functions can be used to getbounds for
composite function, especially for sums and products of functions. The results
are used in Section 6 for deriving robust intervals for the mutual information. The
issue of how to set up IDM models on product spaces is discussed in Section 7.
Section 8 addresses the problem of how to combine Bayesian credible intervals
with the robust intervals of the IDM. Conclusions are given in Section 9.

2 The Imprecise Dirichlet Model

Random i.i.d. processes. We consider discrete random variablesı∈{1, ...,d} and
an i.i.d. random process with outcomei ∈ {1, ...,d} having probabilityπi . The
chancesπππ form a probability distribution, i.e.πππ ∈ ∆ := {xxx∈ IRd : xi ≥ 0∀i, x+ =
1}, where we have used the abbreviationxxx = (x1, ...,xd) andx+ := ∑d

i=1xi . The
likelihood of a specific data setDDD with ni observationsi and total sample size
n = n+ = ∑i ni is p(DDD|πππ) = ∏i πni

i . The chancesπi are usually unknown and have
to be estimated from the sample frequenciesni . The frequency estimateni

n for πi

is one possible point estimate.

Second order p(oste)rior. In the Bayesian approach one models the initial un-
certainty inπππ by a (second order) prior “belief” distributionp(πππ) with domain

πππ ∈ ∆. The Dirichlet priorsp(πππ) ∝ ∏i π
n′i−1
i , wheren′i comprises prior informa-

tion, represent a large class of priors.n′i may be interpreted as (possibly frac-
tional) virtual number of “observation”. High prior beliefin i can be modeled by
largen′i . It is convenient to writen′i = s· ti with s := n′+, hencettt ∈ ∆. Having
no initial bias one should choose a prior in which allti are equal, i.e.ti = 1

d ∀i.



276 ISIPTA ’03

Examples fors are 0 for Haldane’s prior [Hal48], 1 for Perks’ prior [Per47], d
2

for Jeffreys’ prior [Jef46], andd for Bayes-Laplace’s uniform prior [GCSR95].
From the prior and the data likelihood one can determine the posteriorp(πππ|DDD) =

p(πππ|nnn) ∝ ∏i πni+sti−1
i .

The posteriorp(πππ|DDD) summarizes all statistical information available in the
data. In general, the posterior is a very complex object, so we are interested in
summaries of this plethora of information. A possible summary is the expected
value or meanEttt [πi ] = ni+sti

n+s which is often used for estimatingπi . The accuracy
may be obtained from the covariance ofπππ.

Usually one is not only interested in an estimation of the whole vectorπππ, but
also in an estimation of scalar functionsF : ∆ → IR of πππ, such as the entropy
H (πππ) = −∑i πi logπi , where log denotes the natural logarithm. SinceF is it-
self a random variable we could determine the posterior distribution p(F0|nnn) =
R

∆ δ(F (πππ)−F0)p(πππ|nnn)dπππ of F , which may further be summarized by the poste-
rior meanEttt [F ] =

R

∆F (πππ)p(πππ|nnn)dπππ and possibly the posterior variance Varttt [F ].
A simple, but crude approximation for the mean can be obtained by exchanging
E with F (exact only for linear functions):Ettt [F (πππ)] ≈ F (Ettt [πππ]). The approxi-
mation error is typically of the order1n.

The Imprecise Dirichlet Model. The classical approach, which consists of se-
lecting a single prior, suffers from a number of problems. Firstly, choosing for
example a uniform priorti = 1

d , the prior depends on the particular choice of the
sampling space. Secondly, it assumes exact prior knowledgeof p(πππ). The solu-
tion to the second problem is to model our ignorance by considering sets of priors
p(πππ), often called Imprecise probabilities. The specificImprecise Dirichlet Model
(IDM) [Wal96] considers the set ofall ttt ∈ ∆, i.e. {p(πππ|nnn) : ttt ∈ ∆} which solves
also the first problem. Walley suggests to fix the hyperparameter s somewhere
in the interval[1,2]. A set of priors results in a set of posteriors, set of expected
values, etc. For real-valued quantities like the expected entropyEttt [H ] the sets are
typically intervals, which we call robust intervals

Ettt [F ] ∈ [min
ttt∈∆

Ettt [F ] , max
ttt∈∆

Ettt [F ]].

Problem setup and notation. Consider any statistical estimatorF . F is a function
of the dataDDD and the hyperparametersttt. We define the general correspondence

u···i =
ni +st···i

n+s
, where... can be various superscripts. (1)

F can, hence, be rewritten as a function ofuuu andDDD. Since we regardDDD as fixed, we
suppress this dependence and simply writeF = F(uuu). This is further motivated
by the fact that all Bayesian estimators of functionsF of πππ only depend onuuu and
the sample sizen+ s. It is easy to see that this holds for the mean, i.e.Ettt [F ] =
F(uuu; n+s), and similarly for the variance and all higher (central) moments. The
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main focus of this work is to derive exact and approximate expressions for upper
and lowerF values

F := max
ttt∈∆

F(uuu) and F := min
ttt∈∆

F(uuu), F := [F ,F ]

ttt ∈ ∆ ⇔ uuu∈ ∆′, where∆′ := {uuu : ui ≥ ni
n+s, u+ = 1}. We defineuuuF as theuuu∈ ∆′

which maximizesF , i.e.F = F(uuuF), and similarlytttF through relation (1). If the
maximum ofF is assumed in a corner of∆′ we denote the index of the corner by
iF , i.e.tF

i = δiiF , whereδi j is Kronecker’s delta function. SimilarlyuuuF , tttF , iF .

3 Exact Robust Intervals for Concave Estimators

In this section we derive exact expressions forF if F : ∆ → IR is of the form

F(uuu) =
d

∑
i=1

f (ui) and concave f : [0,1]→ IR. (2)

The expected entropy is such an example (discussed later). Convex f are treated
similarly (or simply take− f ).

The nature of the solution. The approach to a solution of this problem is moti-
vated as follows: Due to symmetry and concavity ofF , the global maximum is
attained at the centerui = 1

d of the probability simplex∆, i.e. the more uniformuuu
is, the largerF(uuu). The neareruuu is to a vertex of∆, i.e. the more unbalanceduuu is,
the smaller isF(uuu). The constraintsti ≥ 0 restrictuuu to the smaller simplex

∆′ = {uuu : ui ≥ u0
i , u+ = 1} with u0

i :=
ni

n+s
,

which prevents settinguF
i = 1

d anduF
i = δi1. Nevertheless, the basic idea of choos-

ing uuu as uniform / as unbalanced as possible still works, as we willsee.

Greedy F(uuu) minimization. Consider the following procedure for obtaininguuuF .
We start withttt ≡ 000 (outside the usual domain∆ of F, which can be extended to
[0,1]d via (2)) and then gradually increasettt in an axis-parallel way untilt+ = 1.
With axis-parallel we mean that only one component ofttt is increased, which
one possibly changes during the process. The total zigzag curve fromtttstart = 000
to tttend has lengthtend

+ = 1. Since all possible curves have the same (Manhattan)
length 1,F(uuuend) is minimized for the curve which has (on average) smallestF-
gradient along its path. A greedy strategy is to follow the directioni of currently
smallestF-gradient∂F

∂ti
= f ′(ui)

s
n+s. Sincef ′ is monotone decreasing (f ′′ < 0), ∂F

∂ti
is smallest for largestui . At tttstart =000,ui =

ni
n+s is largest fori = imin := argmaxi ni .

Once we start in directionimin, uimin increases even further whereas all otherui

(i 6= imin) remain constant. So the moving direction is never changed and finally
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we reach a local minimum attend
i = δiimin. In [Hut03] we show that this is a global

minimum, i.e.
tF
i = δiiF with iF := argmax

i
ni . (3)

Greedy F(uuu) maximization. Similarly we maximizeF(uuu). Now we increasettt in
direction i = i1 of maximal ∂F

∂ti
, which is the direction of smallestui ∝ ni + sti .

Again, (only)ui1 increases, but possibly reaches a value where it is no longerthe
smallest one. We stop if it becomes equal to the second smallest ui , say i = i2.
We now have to increaseui1 andui2 with same speed (or in anε-zigzag fashion)
until they become equal toui3, etc or untilu+ = 1 = t+ is reached. Assume the
process stops with directionim and minimalu being ũ, i.e. finally uik = ũ for
k≤ mandtik = 0 for k > m. From the constraint 1= u+ = ∑k≤muik + ∑k>muik =

mũ+ ∑k>m
nik
n+s we obtain ˜u(m) = 1

m[1−∑k>m
nik
n+s] = [s+ ∑k≤mnik]/[m(n+ s)].

One can show that ˜u(m) has one global minimum (no local ones) and that the
final m is the one which minimizes ˜u, i.e.

ũ = min
m∈{1...d}

s+ ∑k≤mnik

m(n+s)
, where ni1 ≤ ni2 ≤ ... ≤ nid , uF

i = max{u0
i , ũ}. (4)

If there is a unique minimalni1 with gap≥ s to the second smallestni2 (which
is quite likely for not too smalln), thenm= 1 and the maximum is attained at a
corner of∆ (∆′).

Theorem 1 (Exact extrema for concave functions on simplices) Assume F :
∆′ → IR is a concave function of the form F(uuu) = ∑d

i=1 f (ui). Then F attains the
global maximumF at uuuF defined in (4) and the global minimum Fat uuuF defined
in (3).

Proof. What remains to be shown is that the solutions obtained in thelast para-
graphs by greedy minimization/maximization ofF(uuu) are actually global min-
ima/maxima. For this assume thatttt is a local minimum ofF(uuu). Let j := argmaxi ui

(ties broken arbitrarily). Assume that there is ak 6= j with non-zerotk. Definettt ′ as
t ′i = ti for all i 6= j,k, andt ′j = t j +ε, t ′k = tk−ε, for some 0< ε ≤ tk. Fromuk ≤ u j

and the concavity off we get5

F(ttt′)−F(ttt) = [ f (u′j)+ f (u′k)]− [ f (u j)+ f (uk)]

= [ f (u j +σε)− f (u j)]− [ f (uk)− f (uk−σε)] < 0

whereσ := s
n+s. This contradicts the minimality assumption ofttt. Hence,ti = 0 for

all i except one (namelyj, where it must be 1). (Local) minima are attained in the
vertices of∆. Obviously the global minimum is fortF

i = δiiF with iF := argmaxi ni .
This solution coincides with the greedy solution. Note thatthe global minimum

5Slope f (u+ε)− f (u)
ε is a decreasing function inu for anyε > 0, sincef is concave.
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may not be unique, but since we are only interest in the value of F(uuuF) and not its
argument this degeneracy is of no further significance.

Similarly for the maximum, assume thatttt is a (local) maximum ofF(uuu). Let
j := argmini ui (ties broken arbitrarily). Assume that there is ak 6= j with non-
zerotk and uk > u j . Definettt′ as above with 0< ε < min{tk , tk− t j}. Concavity of
f implies

F(ttt ′)−F(ttt) = [ f (u j +σε)− f (u j)]− [ f (uk)− f (uk−σε)] > 0,

which contradicts the maximality assumption ofttt. Henceti = 0 if ui is not minimal
(ũ). The previous paragraph constructed the unique solutionuuuF satisfying this
condition. Since this is the only local maximum it must be theunique global
maximum (contrast this to the minimum case). ✷

Theorem 2 (Exact extrema of expected entropy) Let H (πππ) = −∑i πi logπi be
the entropy ofπππ and the uncertainty ofπππ be modeled by the Imprecise Dirich-
let Model. The expected entropy H(uuu) := Ettt [H ] for given hyperparameter ttt and
sample nnn is given by

H(uuu) = ∑
i

h(ui) with h(u) = u·[ψ(n+s+1)−ψ((n+s)u+1)] = u·
n+s

∑
k=(n+s)u+1

k−1 (5)

whereψ(x) = d logΓ(x)/dx is the logarithmic derivative of the Gamma function
and the last expression is valid for integral s and(n+s)u. The lower Hand upper
H expected entropies are assumed at uuuH and uuuH given in (3) and (4) (with F❀ H,
see also (1)).

A derivation of the exact expression (5) for the expected entropy can be found
in [WW95, Hut02]. The only thing to be shown is thath is concave. This may be
done by exploiting special properties of the digamma functionψ (see [AS74]).

There are fast implementations ofψ and its derivatives and exact expressions
for integer and half-integer arguments

Example. For d = 2, n1 = 3, n2 = 6, s= 1 we haven = 9, u1 = 3+t1
10 , u2 = 6+t2

10 ,

ttt0 = 0,uuu0 =
(.3
.6

)
, see (1). From (3),iH = 2,tttH =

(0
1

)
, uuuH =

(.3
.7

)
. From (4),i1 = 1,

i2 = 2, ũ = min{ 1+3
9+1, 1+3+6

2·(9+1)} = 4
10, uuuH = max{uuu0, ũ} =

(.4
.6

)
⇒ tttH =

(1
0

)
is in

corner. From (5),h( 3
10) = 2761

8400, h( 4
10) = 2131

6300, h( 6
10) = 1207

4200, h( 7
10) = 847

3600, hence

H = [H(uuuH),H(uuuH)] = [h( 3
10)+h( 7

10) , h( 4
10)+h( 6

10)] = [0.5639...,0.6256...], so
H −H = O( 1

10).

4 Approximate Robust Intervals

In this section we derive approximations forF suitable for arbitrary, twice dif-
ferentiable functionsF(uuu). The derived approximations forF will be robust in
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the sense of covering setF (for any n), and the approximations will be “good”
if n is not too small. In the following, we treatσ := s

n+s as a (small) expansion
parameter. Foruuu,uuu∗ ∈ ∆′ we have

ui −u∗i = σ·(ti − t∗i ) and |ui −u∗i | = σ|ti − t∗i | ≤ σ with σ := s
n+s. (6)

Hence we may Taylor-expandF(uuu) arounduuu∗, which leads to a Taylor series
in σ. This shows thatF is approximately linear inuuu and hence inttt. A linear
function on a simplex assumes its extreme values at the vertices of the simplex.
This has already been encountered in Section 3. The consideration above is a
simple explanation for this fact. This also shows that the robust intervalF is of
sizeF −F = O(σ).6 Any approximation toF should hence be at leastO(σ2). The
expansion ofF to O(σ) is

F(uuu) =

F0=O(1)︷ ︸︸ ︷
F(uuu∗) +

FR=O(σ)︷ ︸︸ ︷
∑
i

[∂iF(ǔ̌ǔu)](ui −u∗i ) (7)

where∂iF(ǔ̌ǔu) is the partial derivative∂iF(ǔ̌ǔu)
∂ǔi

of F(ǔ̌ǔu) w.r.t. ǔi . For suitable ˇǔǔu =

ǔ̌ǔu(uuu,uuu∗)∈ ∆′ this expansion is exact (FR is the exact remainder). Natural points for
expansion aret∗i = 1

d in the center of∆, or possibly alsot∗i = ni
n = u∗i . See [Hut03]

for such a general expansion. Here, we expand around the improper pointt∗i :=
t0
i ≡ 0, which is outside(!)∆, since this makes expressions particularly simple.7

(6) is still valid in this case, andFR is exact for some ˇǔǔu in

∆′
e := {uuu : ui ≥ u0

i ∀i, u+ ≤ 1}, where u0
i =

ni

n+s
.

Note that we keep the exact conditionuuu∈ ∆′. F is usually already defined on∆′
e

or extends from∆′ to ∆′
e without effort in a natural way (analytical continuation).

We introduce the notation

F ⊑ G :⇔ F ≤ G and F = G+O(σ2) (8)

stating thatG is a “good” upper bound onF . The following bounds hold for
arbitrary differentiable functions. In order for the bounds to be “good,”F has to
be Lipschitz differentiable in the sense that there exists aconstantc such that

|∂iF(uuu)| ≤ c and |∂iF(uuu)− ∂iF(uuu′)| ≤ c|uuu−uuu′|

∀uuu,uuu′ ∈ ∆′
e and ∀1≤ i ≤ d. (9)

6 f (nnn,ttt ,s) = O(σk) :⇔ ∃c∀nnn∈ INd
0 , ttt ∈ ∆, s> 0 : | f (nnn,ttt ,s)| ≤ cσk, whereσ = s

n+s.
7The order of accuracyO(σ2) we will encounter is for all choices ofuuu∗ the same. The concrete

numerical errors differ of course. The choicettt∗ = 000 can lead toO(d) smallerFR than the natural
center pointttt∗ = 1

d , but is more likely a factorO(1) larger. The exact numerical values depend on the
structure ofF.
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If F depends also onnnn, e.g. viaσ or uuu0, thenc shall be independent of them.

The Lipschitz condition is satisfied, for instance, if the curvature∂2F is uniformly
bounded. This is satisfied for the expected entropyH (see (5)), but violated for
the approximationEttt [H ] ≈H (uuu) if ni = 0 for somei.

Theorem 3 (Approximate robust intervals) Assume F: ∆′
e → IR is a Lipschitz

differentiable function (9). Let[F ,F ] be the global [minimum,maximum] of F
restricted to∆′. Then

F(uuu1) ⊑ F ⊑ F0 +Fub
R where Fub

R = max
i

Fub
iR and Fub

iR = σmax
uuu∈∆′

e

[∂iF(uuu)]

F0 +F lb
R ⊑ F ⊑ F(uuu2) where Flb

R = min
i

F lb
iR and Flb

iR = σ min
uuu∈∆′

e

[∂iF(uuu)]

F0 = F(uuu0), and u1i = δii1 with i1 = argmaxi F
ub
iR , and u2i = δii2 with i2 = argmini F

lb
iR ,

and⊑ defined in (8) means≤ and= +O(σ2), whereσ = 1−u0
+.

For conservative estimates, the lower bound onF and the upper bound onF are
the interesting ones.

Proof. We start by giving anO(σ2) bound onFR = maxuuu∈∆′ FR(uuu). We first insert
(6) with ttt∗ = ttt0 ≡ 000 into (7) and treat ˇǔǔu andttt as separate variables:

FR(ǔ̌ǔu,ttt) = σ∑
i
[∂iF(ǔ̌ǔu)] · ti ⊑ max

ǔ̌ǔu∈∆′
e

{
σ∑

i
[∂iF(ǔ̌ǔu)] · ti

}
⊑ ∑

i
Fub

iR · ti

with Fub
iR := σmax

ǔ̌ǔu∈∆′
e

[∂iF(ǔ̌ǔu)] (10)

The first inequality is obvious, the second follows from the convexity of max.
From assumption (9) we get∂iF(uuu)− ∂iF(uuu′) = O(σ) for all uuu,uuu′ ∈ ∆′

e, since∆′
e

has diameterO(σ). Due to one additionalσ in (10) the expressions in (10) change
only byO(σ2) when introducing or dropping maxǔ̌ǔu anywhere. This shows that the
inequalities are tight withinO(σ2) and justifies⊑. We now upper boundFR(uuu):

FR = max
uuu∈∆′

FR(uuu) ⊑ max
ttt∈∆

max
ǔ̌ǔu∈∆′

e

FR(ǔ̌ǔu,ttt) ⊑ max
ttt∈∆ ∑

i
Fub

iR · ti = max
i

Fub
iR =: Fub

R (11)

A linear function on∆ is maximized by setting theti component with largest
coefficient to 1. This shows the last equality. The maximization overǔ̌ǔu in (10) can
often be performed analytically, leaving an easyO(d) time task for maximizing
overi.

We have derived an upper boundFub
R onFR. Let us define the cornerti = δii1

of ∆ with i1 := argmaxi Fub
iR . SinceFR ≥ FR(uuu) for all uuu, FR(uuu1) in particular

is a lower bound onFR. A similar line of reasoning as above shows that that
FR(uuu1) = FR + O(σ2). Using F +const. = F + const. we getO(σ2) lower and
upper bounds onF , i.e.F(uuu1)⊑F ⊑ F0+Fub

R . F is bound similarly with all max’s
replaced by min’s and inequalities reversed. Together thisproves the Theorem 3.

✷
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5 Error Propagation

Approximation of F (special cases). For the special caseF(uuu) = ∑i f (ui) we
have∂iF(uuu) = f ′(ui). For concavef like in case of the entropy we get particularly
simple bounds

Fub
iR = σmax

uuu∈∆′
e

f ′(ui) = σ f ′(u0
i ), Fub

R = σmax
i

f ′(u0
i ) = σ f ′(mini ni

n+s ),

F lb
iR = σ min

uuu∈∆′
e

f ′(ui) = σ f ′(u0
i + σ), F lb

R = σmin
i

f ′(u0
i + σ) = σ f ′(maxi ni+s

n+s ),

where we have used maxuuu∈∆′
e

f ′(ui) = maxui∈[u0
i ,u

0
i +σ] f ′(ui) = f ′(u0

i ), and simi-
larly for min. Analogous results hold for convex functions.In case the maximum
cannot be found exactly one is allowed to further increase∆′

e as long as its diam-
eter remainsO(σ). Often an increase to✷′ := {uuu : u0

i ≤ ui ≤ u0
i + σ} ⊃ ∆′

e ⊃ ∆′

makes the problem easy. Note that if we were to perform these kind of crude
enlargements on maxuuu F(uuu) directly we would loose the bounds byO(σ).

Example (continued). σ = 1
10, h′( 3

10) = 13051
2520 − 1

2Π2, h′( 7
10) = 91717

8400 − 7
6Π2, H0 =

H(uuu0) = h( 3
10) + h( 6

10), Hub
R = 1

10h′( 3
10), H lb

R = 1
10h′( 7

10) ⇒ [H0 + H lb
R , H0 +

Hub
R ] = [0.5564...,0.6404...], henceH0 +Hub

R −H = 0.0148= O( 1
102 ), H −H0−

H lb
R = 0.0074... = O( 1

102 ).

Error propagation. Assume we found bounds for estimatorsG(uuu) andH(uuu) and
we want now to bound the sumF(uuu) := G(uuu) + H(uuu). In the direct approach
F ≤ G+ H we may loseO(σ). A simple example isG(uuu) = ui andH(uuu) = −ui

for whichF(uuu) = 0, hence 0= F ≤ G+H = u0
i +σ−u0

i = σ, i.e.F 6⊑ G+H. We
can exploit the techniques of the previous section to obtainO(σ2) approximations.

Fub
iR = σmax

uuu∈∆′
e

∂iF(uuu) ⊑ σmax
uuu∈∆′

e

∂iG(uuu)+ σmax
uuu∈∆′

e

∂iH(uuu) = Gub
iR +Hub

iR

Theorem 4 (Error propagation: Sum) Let G(uuu) and H(uuu) be Lipschitz differ-
entiable and F(uuu) = αG(uuu)+ βH(uuu), α,β ≥ 0, thenF ⊑ F0 +Fub

R and F⊒ F0 +
F lb

R , where F0 = αG0 + βH0, and Fub
iR ⊑ αGub

iR + βHub
iR , and Flb

iR ⊒ αGlb
iR + βH lb

iR.

It is important to notice thatFub
R 6⊑ Gub

R + Hub
R (use previous example), i.e.

maxi [Gub
iR + Hub

iR ] 6⊑ maxi Gub
iR + maxi Hub

iR . maxi can not be pulled in and it is im-
portant to propagateFub

iR , rather thanFub
R .

Every functionF with bounded curvature can be written as a sum of a concave
functionG and a convex functionH. For convex and concave functions, determin-
ing bounds is particularly easy, as we have seen. OftenF decomposes naturally
into convex and concave parts as is the case for the mutual information, addressed
later. Bounds can also be derived for products.
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Theorem 5 (Error propagation: Product) Let G,H : ∆′
e → [0,∞) be non-nega-

tive Lipschitz differentiable functions (9) with non-negative derivatives∂iG,∂iH ≥
0 ∀i and F(uuu) = G(uuu) ·H(uuu), thenF ⊑ F0 +Fub

R , where F0 = G0 ·H0, and Fub
iR ⊑

Gub
iR(H0 +Hub

R )+ (G0+Gub
R )Hub

iR , and similarly for F.

Proof. We have

Fub
iR = σmax∂iF = σmax∂i(G·H) = σmax[(∂iG)H +G(∂iH)] ⊑

σ(max∂iG)(maxH)+ σ(maxG)(max∂iH) ⊑ Gub
iR(H0+Hub

R )+ (G0+Gub
R )Hub

iR

where all functions depend onuuu and all max are overuuu∈ ∆′
e. There is one subtlety

in the last inequality: maxG 6= G⊑ G0 +Gub
R . The reason for the6= being that the

maximization is taken over∆′
e, not over∆′ as in the definition ofG. The correct

line of reasoning is as follows:

max
uuu∈∆′

e

GR(uuu) ⊑ max
ttt∈∆e

∑
i

Gub
iR · ti = max{0,max

i
Gub

iR} = Gub
R ⇒ maxG⊑ G0 +Gub

R

The first inequality can be proven in the same way as (11). In the first equality
we set theti = 1 with maximalGub

iR if it is positive. If allGub
iR are negative we set

ttt ≡ 000. We assumedG≥ 0 and∂iG≥ 0, which impliesGR ≥ 0. So, sinceGR ≥ 0
anyway, this subtlety is ineffective. Similarly for maxHR. ✷

It is possible to remove the rather strong non-negativity assumptions. Propa-
gation of errors for other combinations like ratiosF = G/H may also be obtained.

6 Robust Intervals for Mutual Information

Mutual Information. We illustrate the application of the previous results on
the Mutual Information between two random variablesı ∈ {1, ...,d1} and j ∈
{1, ...,d2}. Consider an i.i.d. random process with outcome(i, j) ∈ {1, ...,d1}×
{1, ...,d2} having joint probabilityπi j , whereπππ ∈ ∆ := {xxx ∈ IRd1×d2 : xi j ≥
0∀i j , x++ = 1}. An important measure of the stochastic dependence ofı and j
is the mutual information

I (πππ) =
d1

∑
i=1

d2

∑
j=1

πi j log
πi j

πi+π+ j
= ∑

i j
πi j logπi j −∑

i
πi+ logπi+−∑

j
π+ j logπ+ j (12)

= H (πππı+)+H (πππ+ j)−H (πππı j)

πi+ = ∑ j πi j andπ+ j = ∑i πi j are row and column marginal chances. Again, we
assume a Dirichlet prior overπππı j , which leads to a Dirichlet posteriorp(πππı j |nnn) ∝
∏i j πni j +sti j −1

i j with ttt ∈ ∆. The expected value ofπi j is

Ettt [πi j ] =
ni j +sti j

n+s
=: ui j
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The marginalsπππi+ andπππ+ j are also Dirichlet with expectationui+ andu+ j . The
expected mutual informationI(uuu) := Ettt [I ] can, hence, be expressed in terms of
the expectations of three entropiesH(uuu) := Ettt [H ] (see (5))

I(uuu) = H(uuuı+)+H(uuu+ j)−H(uuuı j) = Hrow+Hcol−H joint

= ∑
i

h(ui+)+∑
j

h(u+ j)−∑
i j

h(ui j )

where here and in the following we index quantities withjoint, row, andcol to
denote to which distribution the quantity refers.

Crude bounds for I(uuu). Estimates for the robust IDM interval[minttt∈∆ Ettt [I ] ,
maxttt∈∆ Ettt [I ]] can be obtained by [minimizing,maximizing]I(uuu). A crude upper
bound can be obtained as

I := max
ttt∈∆

I(uuu) = max[Hrow +Hcol−H joint] ≤

maxHrow +maxHcol −minH joint = Hrow +Hcol −H joint ,

where exact solutions toHrow, Hrow andH joint are available from Section 3. Sim-
ilarly I ≥ Hrow + Hcol −H joint . The problem with these bounds is that, although
good in some cases, they can become arbitrarily crude. The following O(σ2)
bound can be derived by exploiting the error sum propagationTheorem 4.

Theorem 6 (Bound on lower and upper Mutual Information) The following
bounds on the expected mutual information I(uuu) = Ettt [I ] are valid:

I(uuu1) ⊑ I ⊑ I0 + Iub
R and I0 + I lb

R ⊑ I ⊑ I(uuu2), where

I0 = I(uuu0) = H0row+H0col−H0 joint = h(u0
i+)+h(u0

+ j)−h(u0
i j ),

Iub
i jR ⊑ Hub

iRrow+Hub
jRcol−H lb

i jR joint = h′(u0
i+)+h′(u0

+ j)−h′(u0
i j +σ),

I lb
i jR ⊒ H lb

iRrow+H lb
jRcol−Hub

i jR joint = h′(u0
i++σ)+h′(u0

+ j +σ)−h′(u0
i j ),

with h defined in (5), and t0
i j = 0, and t1i j = δ(i j )(i j )1 with (i j )1 = argmaxi j Iub

i jR, and

t2
i j = δ(i j )(i j )2 with (i j )2 = argmini j I lb

i jR.

7 IDM for Product Spaces

Product spacesΩ = Ω1× ...×Ωm with Ωk = {1, ...dk} occur frequently in practi-
cal problems, e.g. in the mutual information (m= 2), in robust trees (m= 3), or in
Bayesian nets in general (m large). Without loss of generality we only discuss the
m= 2 case in the following. Ignoring the underlying structure in Ω, a Dirichlet
prior in case of unknown chancesπı j and an IDM as used in Section 6 with

ttt ∈ ∆ := {ttt ∈ IRd1×d2 ≡ IRd1 ⊗ IRd2 : ti j ≥ 0∀i j , t++ = 1} (13)
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seems natural. On the other hand, if we take into account the structure ofΩ and
go back to the original motivation of IDM this choice is far less obvious. Recall
that one of the major motivations of IDM was its reparametrization invariance
in the sense that inferences are not affected when grouping or splitting events
in Ω. For unstructured spaces likeΩk this is a reasonable principle. For illus-
tration, let us consider objects of variousshapeand color, i.e. Ω = Ω1 ×Ω2,
Ω1 = {ball, pen,die, ...}, Ω2 = {yellow, red,green, ...} in generalization to Wal-
leys bag of marbles example. Assume we want to detect a potential dependency
betweenshapeandcolor by means of their mutual informationI . If we have no
prior idea on the possible kind of colors, a model which is independent of the
choice ofΩ2 is welcome. Grouping red and green, for instance, corresponds to
(xi1, xi2, xi3, xi4, ...) ❀ (xi1, xi2+xi3, xi4, ...) for all shapes i, wherexxx∈ {nnn,πππ,ttt,uuu}.
Similarly for the different shapes, for instance we could group all round or all an-
gular objects. The “smallest IDM” which respects this invariance is the one which
considers all

ttt ∈ ∆⊗ := ∆d1 ⊗∆d2 ( ∆. (14)

The tensor or outer product⊗ is defined as(vvv⊗www)i j := viwj andV⊗W := {vvv⊗www :
vvv ∈ V, www ∈ W}. It is a bilinear (not linear!) mapping. This “small tensor”IDM
is invariant under arbitrary grouping of columns and rows ofthe chance matrix
(πππi j )1≤i≤d1,1≤ j≤d2. In contrast to the larger∆ IDM model it is not invariant under
arbitrary grouping of matrix cells, but there is anyway little motivation for the
necessity of such a general invariance. General non-column/row cross groupings
would destroy the product structure ofΩ and with that the mere concepts of shape
and color, and their correlation. Form> 2 as in Bayes-nets cross groupings look
even less natural. Whether the∆⊗ or the larger simplex∆ is the more appropriate
IDM model depends on whether one regards the structureΩ1 ×Ω2 of Ω as a
natural prior knowledge or as an arbitrary a posteriori choice. The smaller IDM
has the potential advantage of leading to more precise predictions (smaller robust
sets).

Let us consider an estimatorF : ∆ → IR and its restrictionF⊗ : ∆⊗ → IR. Robust
intervals[F ,F ] for ∆ are generally wider than robust intervals[F⊗,F⊗] for ∆⊗ . For-
tunately not much. Although∆⊗ is a lower-dimensionalsubspace of∆, it contains
all vertices of∆. This is possible since∆⊗ is anonlinearsubspace. The set of “ver-
tices” in both cases is{ttt : ti j = δii0δ j j0, i0 ∈ Ω1, j0 ∈ Ω2}. Hence,if the robust
interval boundariesF are assumed in the vertices of∆ thenthe interval for the∆⊗
IDM model is the same (F = F⊗). Since the condition is “approximately” true,
the conclusion is “approximately” true. More precisely:

Theorem 7 (IDM bounds for product spaces) The O(σ2) bounds of Theorem 3
on the robust intervalF in the full IDM model∆ (13), remain valid forF⊗ in the
product IDM model∆⊗ (14).

Proof.
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F(uuu1) ≤ F⊗ ≤ F ≤ F0 +Fub
R = F(uuu1)+O(σ2),

whereF⊗ := maxttt∈∆⊗ F(uuu) anduuu1 was the “FR maximizing” vertex as defined
in Theorem 6 (F(uuu1) ⊑ F). The first inequality follows from the fact that all
∆ vertices also belong to∆⊗ , i.e. ttt1 ∈ ∆⊗ . The second inequality follows from
∆⊗ ⊂ ∆. The remaining (in)equalities follow from Theorem 3. This shows that
|F⊗−F| = O(σ2), henceF0 +Fub

R is also anO(σ2) upper bound toF⊗. This im-
plies that to the approximation accuracy we can achieve, thechoice between∆
and∆⊗ is irrelevant. ✷

8 Robust Credible Intervals

Bayesian credible sets/intervals. For a probability distributionp : IRd → [0,1], an
α-credible region is a measurable setA for which p(A) :=

R

p(x)χ A(x)ddx ≥ α,
whereχA(x) = 1 if x ∈ A and 0 otherwise, i.e.x ∈ A with probability at leastα.
For givenα, there are many choices forA. Often one is interested in “small” sets,
where the size ofA may be measured by its volume Vol(A) :=

R

χA(x)ddx. Let us
define a/the smallestα-credible set

Amin := argmin
A:p(A)≥α

Vol(A)

with ties broken arbitrarily. For unimodalp, Amin can be chosen as a connected set.
Ford = 1 this means thatAmin = [a,b] with

R b
a p(x)dx= α is a minimal lengthα-

credible interval. If, additionallyp is symmetric aroundE[x], thenAmin = [E[x]−
a,E[x]+a] is also symmetric aroundE[x].

Robust credible sets. If we have a set of probability distributions{pt(x), t ∈ T},
we can choose for eacht anα-credible setAt with pt(At)≥α, a minimal one being
Amin

t := argminA:pt(A)≥α Vol(A). A robustα-credible set is a setA which contains
x with pt -probability at leastα for all t . A minimal size robustα-credible set is

Amin := argmin
A=∪tAt :pt(At)≥α∀t∈T

Vol(A) (15)

It is not easy to deal with this expression, sinceAmin is not a function of{Amin
t :

t ∈ T}, and especially does not coincide with
S

t Amin
t as one might expect.

Robust credible intervals. This can most easily be seen for univariate symmetric
unimodal distributions, wheret is a translation, e.g.pt(x) = Normal(Et [x] = t,σ =
1) with 95% credible intervalsAmin

t = [t −2,t + 2]. For, e.g.T = [−1,1] we get
S

t Amin
t = [−3,3]. The credible intervalsmovewith t. One can get a smaller union

if we take the intervalsAsym
t = [−at ,at ] symmetric around 0. SinceAsym

t is a non-
central interval w.r.t.pt for t 6= 0, we haveat > 2, i.e.Asym

t is larger thanAmin
t , but

one can show that the increase ofat is smaller than the shift ofAmin
t by t, hence
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we save something in the union. The optimal choice is neitherAsym
t nor Amin

t ,
but something in-between. In the extended version [Hut03] this is illustrated for
the triangular distributionpt(x) = max{0, 1−|x−t|} with t ∈ T := [−γ,γ], where
closed form solutions can be given.

An interesting open question is under which general conditions we can expect
Amin ⊆ S

t Amin
t . In any case,

S

t At can be used as a conservative estimate for a
robust credible set, sincept(

S

t′ At′) ≥ pt(At) ≥ α for all t.
A special (but important) case which falls outside the aboveframework are

one-sided credible intervals, where onlyAt of the form[a,∞) are considered. In
this caseAmin =

S

t Amin
t , i.e. Amin = [amin,∞) with amin = max{a : pt([a,∞]) ≥

α∀t}.

Approximations. For complex distributions like for the mutual information we
have to approximate (15) somehow. We use the following notation for shortest
α-credibleintervalsw.r.t. a univariate distributionpt(x):

x̃
∼t ≡ [x

∼t , x̃t ] ≡ [Et [x]−∆x
∼t , Et [x]+ ∆x̃t ] := argmin

[a,b]:pt([a,b])≥α
(b−a),

where∆x̃t := x̃t −Et [x] (∆x
∼t := Et [x]− x

∼t) is the distance from the right boundary

x̃t (left boundaryx
∼t ) of the shortestα-credible interval̃x

∼t to the meanEt [x] of

distributionpt . We can usẽx
≃
≡ [x

≃
, x̃] :=

S

t x̃
∼t as a (conservative, but not shortest)

robust credible interval, sincept(x̃
≃
) ≥ pt(x̃

∼t) ≥ α for all t. We can upper bound̃x

(and similarly lower boundx
≃

) by

x̃ = max
t

(Et [x]+ ∆x̃t) ≤ max
t

Et [x]+max
t

∆x̃t = E[x]+ ∆x̃. (16)

We have already intensively discussed how to compute upper and lower quanti-
ties, particularly for the upper meanE[x] for x∈ {F ,H ,I , ...}, but the lineariza-
tion technique introduced in Section 4 is general enough to deal with all in t
differentiable quantities, including∆x̃t . For example for Gaussianpt with vari-
ancesσt we have∆x̃t = κσt with κ given byα = erf(κ/

√
2), where erf is the error

function (e.g.κ = 2 for α ≈ 95%). We only need to estimate maxt σt .
For non-Gaussian distributions, exact expression for∆x̃t are often hard or im-

possible to obtain and to deal with. Non-Gaussian distributions depending on
some sample sizen are usually close to Gaussian for largen due to the central
limit theorem. One may simply useκσt in place of∆x̃t also in this case, keeping
in mind that this could be a non-conservative approximation. More systemati-
cally, simple (and for largen good) upper bounds on∆x̃t can often be obtained
and should preferably be used.

Further, we have seen that the variation of sample dependingdifferentiable
functions (likeEt [x] = Et [x|nnn]) w.r.t. t ∈ ∆ are of order s

n+s. Since in such cases

the standard deviationσt ∼ n−1/2 ∼ ∆x̃t is itself suppressed, the variation of∆x̃t
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with t is of ordern−3/2. If we regard this as negligibly small, we may simply fix
somet∗ ∈ ∆:

max
t

∆x̃t = κσt∗ +O(n−3/2)

Since∆x̃t is “nearly” constant, this also shows that we lose at mostO(n−3/2)
precision in the bound (16) (equality holds for∆x̃t independent oft). Expressions
for the variance ofI , for instance, have been derived in [WW95, Hut02].

9 Conclusions

This is the first work, providing a systematic approach for deriving closed form
expressions for interval estimates in the Imprecise Dirichlet Model (IDM). We
concentrated on exact and conservativerobust interval ([lower,upper]) estimates
for concave functionsF = ∑i fi on simplices, like the entropy. The conservative
estimates widened the intervals byO(n−2), wheren is the sample size. Here is a
dilemma, of course: For largen the approximations are good, whereas for small
n the bounds are more interesting, so the approximations willbe most useful
for intermediaten. More precise expressions for smalln would be highly in-
teresting. We have also indicated how to propagate robust estimates from sim-
ple functions to composite functions, like the mutual information. We argued
that a reduced IDM on product spaces, like Bayesian nets, is more natural and
should be preferred in order to improve predictions. Although improvement is
formally onlyO(n−2), the difference may be significant in Bayes nets or for very
smalln. Finally, the basics of how to combine robust with credible intervals have
been laid out. Under certain conditionsO(n−3/2) approximations can be derived,
but the presented approximations are not conservative. Allin all this work has
shown that IDM has not only interesting theoretical properties, but that explicit
(exact/conservative/approximate) expressions for robust (credible) intervals for
various quantities can be derived. The computational complexity of the derived
bounds onF = ∑i fi is very small, typically one or two evaluations ofF or related
functions, like its derivative. First applications of these (or more precisely, very
similar) results, especially the mutual information, to robust inference of trees
look promising [ZH03].
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Abstract

In some situations, a decision is best represented by an incompletely an-
alyzed act: conditionally to a certain event, the consequences of the deci-
sion on sub-events are perfectly known and uncertainty becomes expressable
through probabilities, whereas the plausibility of this event itself remains
vague and the decision outcome on the complementary event isimprecisely
known. In this framework, we study an axiomatic decision model and prove a
representation theorem. Decision criteria must aggregatepartial evaluations
consisting in: i) the conditional expected utility associated with the analyzed
part of the decision and ii) the best and worst outcomes of itsnon-analyzed
part.

Keywords

decision making under uncertainty, partially analyzed decision

1 Introduction

Consider the famous oil wildcatter problem of decision analysis textbooks. Its de-
scription only involves geophysical data and results of seismic tests, which makes
it quite convincingly expressible in a Savagean setting where decisions are acts
and events are endowed with subjective probabilities. However, it may well be
that the relevance of that analysis is only contingent on local political stability.
A complete description of the problem would require introducing this factor ex-
plicitly. The likelihood of political events being generally difficult to assess and
their impact on the wildcatter profits difficult to evaluate,the standard Savagean
approach reveals itself unsuitable for taking this aspect into account.

As another example, consider the question of the use of genetically modi-
fied organisms (GMO) in agriculture. Without GMO, farmers’ income depend

290
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basically on climatic and market variables. Available dataallow to estimate their
probability distribution and their impact on income. With GMO, expected income
remains assessable conditionally on the absence of cross-fertilization and contam-
ination of other plants. However, neither the plausibilityof the contamination, nor
its consequences on the farmers’ income, can be precisely evaluated. Here again,
the standard approach appears unsatisfactory.

In these situations, and many others (introduction of new technologies, mar-
keting of new medicines,...) decisions seem best represented by incompletely ana-
lyzed acts: conditionally to some events consequences of decisions on sub-events
are perfectly known and uncertainty becomes expressable through probabilities,
whereas the plausibility of these events themselves remains vague and the deci-
sion outcomes on complementary events are imprecisely known.

The axiomatic model proposed below is an attempt at formalizing such situa-
tions and at justifying adapted decision criteria.

2 The Model

2.1 Decisions

Consider:Ω, set of states of nature;E , σ−algebra of events;C , a set of conse-
quences;G , σ−algebra of subsets ofC containing singletons. A decision problem
involves a particular set of decisions,D, which are (measurable) acts in the sense
of Savage1, i.e., mappings(Ω,E) −→ (C ,G). However, in the decision model
below, these acts are not completely known by the decision maker. Specifically,
the decisions are only partially analyzed, i.e., for any decision a∈ D there is an
eventA such that the restriction ofa to A - the analyzed part ofa - denoteda|A is
exactly known but the only information abouta|Ac - the non-analyzed part ofa -
is its rangeMa = a(Ac). Thus, preferences will depend on pairs(a|A , Ma) .

A specific feature of the model is thatD is not assumed to contain all con-
ceivable pairs(a|A , Ma) . The reason is that decision makers cannot be expected
to meaningfully evaluate unrealistic decisions. Thus the rangeM on an ”unfavor-
able” event (such as a natural catastrophe) should not include any blissful con-
sequence. Similarly, in some situations, major ignorance about the relevant event
will necessarily imply much uncertainty about outcomes i. e. a wide consequence
rangeM on this event.

Completely analyzed decisions, denoted by(a|Ω , ·), can exist. In particular,
for evaluation purposes, we shall assume the existence of completely analyzedR -
measurable acts, where subalgebraR ofE can be interpreted as events associated
with sequences of heads and tails (see Savage [6, p. 38-39] and de Finetti [2,

1More precisely, we use Savage’s remark [6,§ 3.4, p. 42] that the results in his model remain valid
with events, consequences and acts defined in the present way.
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p.199-202]).
A decisiona analyzed on an eventA is called anA - act. It generates aσ -

algebra of subsets ofA :
{

a|−1
A (G), G∈ G

}
, which we embed into a richer one,

theσ - algebraAa of subsets ofA generated by
{

a|−1
A (G)∩R, G∈ G , R∈ R

}
.

Ma

A Ac

�����������
�����������
�����������
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�����������

a

Figure 1: A partially analyzed act

We denote byFa the set of all pairsg = (g|A , Ma) whereg|A is any conceiv-
able Savagean act(A, Aa) −→ (C , G). Thus,g∈ Fa impliesMg = Ma. There is
one such set corresponding to eacha ∈ D and their union is denoted byF . We
denote byAF the set of all eventsA such thatF contains at least oneA-act.

Note that the fact that two actsa′ anda′′ are bothA-acts, i.e., are analyzed on
the same eventA, does not imply the identity ofAa′ andAa′′ , nor that ofFa′ and
Fa′′ .

Example 1 Acts a, a′, a′′ characterize various oil field management strategies in
the same country. Political risk (event Ac) may imply partial or complete loss of
the investment. Act a′ involves the same investment level I as a but concerns the
exploitation of a different oil field, whereas act a′′ corresponds to a more intensive
exploitation of the same field as a. Thus, it is likely that Ma′ = Ma = [0,−I ] but
Aa′ 6= Aa (oil yields depend on different events), whereas Ma′′ = [0,−I ′′] 6= Ma

andAa′′ = Aa. Hence, although the three acts are analyzed on the same eventA,
Fa, Fa′ andFa′′ all differ from one another.

2.2 Preferences

Preferences onF are expressed by a binary relation% . We assume:

Axiom 1 % is a weak order onF .

We want to endow% with standard properties and, moreover, to establish links
between its restrictions%a to the variousFa. For this, we need in particular an
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appropriate version of Savage’s Sure Thing Principle.
Due to the partial information on the decisions, the common part Com(a,b)

of two actsa andb analyzed on eventsA andB, respectively, is defined as

Com(a,b) =

{
{ω ∈ A∩B : a(ω) = b(ω)} if Ma 6= Mb

{ω ∈ A∩B : a(ω) = b(ω)}∪ (Ac∩Bc) if Ma = Mb

Axiom 2 (Sure Thing Principle for partially analyzed decisions)
Let a, â,b, b̂ ∈ F whereâ results from a and̂b from b by a common modifica-

tion in the sense that Com(a,b) = Com(â, b̂).
Then a% b⇐⇒ â % b̂.

Note that the feasible common modifications of a given pair ofacts are strongly
limited by the fact that the modified acts must still belong toF .

Note also thatFa, Fâ, Fb, Fb̂ may differ.

Example 2 Suppose there are three countries:A,B andC. CountryA (resp.B)
may possibly face an economic crisis (event Ac (resp. Bc)) which however is un-
likely in countryC. A firm has to take a decision concerning a productive invest-
ment of amount I. The decision a of investing I in countryA will generate sales
shared out among countriesA,B and C in proportions 45% in countryA, 5%
in countryB and 50% in countryC, unless economic crisis (event Ac) happens
in A in which case I may be partially or completely lost, independently of crisis
occurring or not in countryB.

On the other hand, consider a′ with the same amount of investment inA as a
but generating a different sales sharing, namely 70%, 30% and 0% respectively in
countriesA,B andC if there is no economic crisis. With this investment decision,
the firm may loose up to I if crisis occurs only inA, but is sure to loose the
investment completely if the crisis takes place simultaneously inA andB (event
Ac∩Bc).

Decisions b and b′ have similar characteristics with the roles of countriesA
andB exchanged. We assume moreover that the countries are ”similar”, in the
sense that the return from sales is the same inA as in B, that is a|A = c and
b|B = c with c∈ C .

Thus, a and b are respectively an A−act and a B−act with

Com(a,b) = (A∩B)∪ (Ac∩Bc)

and Ma = Mb = [0,−I ].
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Figure 2: Original actsa andb.

a′ and b′ are (A∩B)∪ (Ac∩Bc)−acts resulting from a and b by a modifica-
tion of their common part. More precisely,

a|A∩B = b|A∩B = a′
∣∣
A∩B = b′

∣∣
A∩B ,

Ma′ = Mb′ = [0,−I ] and a′
∣∣
Ac∩Bc = b′

∣∣
Ac∩Bc =−I
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Figure 3: Modified actsa′ andb′.

3 Preferences on Analyzed Events and SEU

From preferences%a onFa, we can now derive, ”à la Savage”,%E
a , conditional

preferences given eventE, whereE ∈ Aa, by

g %E
a h⇔ g′ %a h′ where g′

∣∣
E = g|E , h′

∣∣
E = h|E and g′

∣∣
A\E = h′

∣∣
A\E
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Axiom 2 ensures that the ordering ofg′ andh′ is independent from their common
values onA\E.

Note that%A
a is the same as%a .

More generally, given anA-act,a∈D and aB-act,b∈D whereB∈Aa (hence
B⊂ A), orderings%B

a onFa and%b onFb are related as shown by the following
lemma.

Lemma 1 Let a′ = (a′|A , Ma) , a′′ = (a′′|A , Ma) with a′,a′′ ∈ Fa. Suppose that,
for some B∈Aa, b is a B−act and b′ = (a′|B , Mb) ,b′′ = (a′′|B , Mb) ∈ Fb. Then

a′ %B
a a′′⇔ b′ %b b′′.

Proof. Considerg′ andg′′ resulting fromb′ andb′′ by the common modification
consisting in giving them a constant common consequenceg′(ω) = g′′(ω) = c
for ω ∈ A\B and the same rangeMa on Ac. By Axiom 2, g′ % g′′ ⇔ b′ %b b′′.
Moreover,g′ andg′′ also belong toFa and can be obtained by modifyinga′ and
a′′ onA\Band giving them the constant valuec. By definition,a′%B

a a′′⇔ g′% g′′.
Hencea′ %B

a a′′⇔ b′ %b b′′ . ✷

As a direct consequence of Lemma 1, conditional preferencesgiven E are
intrinsic in the sense that they do not depend on whichAa containingE (hence on
whicha in F ) is considered, and can be defined byg %B h⇔ there isa such that
g %E

a h.
We also need slightly modified versions of the other Savage’sdefinitions and

axioms.
A constant A-act fca in Fa is defined by:f c

a(A) = {c} with c∈ C and f c
a(Ac) =

Ma.
Savage’s P3 becomes:

Axiom 3 For c′, c′′ ∈ C , let fc′
a , f c′′

a be constant A-acts inFa and fc
′

b , f c′′
b be

constant B-acts inFb.
Then fc

′
% f c′′ ⇐⇒ f c′

b % f c′′
b .

Preferences among consequencescan now be defined by
c′ �C c′′ ⇐⇒ there exista ∈ D and constantA-acts f c′

a , f c′′
a in Fa such that

f c′
a % f c′′

a .
SinceC can always be replaced by its quotient, we henceforth assumew.l.o.g.

that�C is an order (i.e. is antisymmetric) which justifies the use ofsymbol�C .
We moreover assume the existence ofc, c, respectively the worst and the best

consequence inC .
We now require Savage’s P4 (irrelevance of the values of the prizes on the

events) in everyFe, wheree∈D is anE-act.
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Axiom 4 Let A,B∈Ae where e∈D is an E-act; let c1,c′1,c2,c′2 ∈ C be such that
c1≻C c′1 and c2≻C c′2. Define acts f, f ′,g,g′ ∈ Fe by:

i) f (Ec) = f ′(Ec) = g(Ec) = g′(Ec) = Me;
ii) f (ω) = c1, f ′(ω) = c′1, for ω ∈ A;

f (ω) = c2, f ′(ω) = c′2, for ω ∈ E\A;
iii) g (ω) = c1, g′(ω) = c′1, for ω ∈ B;

g(ω) = c2, g′(ω) = c′2, for ω ∈ E\B;
then f% g⇔ f ′ % g′.

Wheneverf % g holds for f , g defined as in Axiom 4, we can writeA %E
e B.

However, ifA,B∈ Ae∗ for some othere∗ ∈ D which is also anE−act, it results
from Axiom 2 (f (Ec) = f ′(Ec) = g(Ec) = g′(Ec) = Me above can be replaced
by f (Ec) = f ′(Ec) = g(Ec) = g′(Ec) = Me∗ ) that: A %E

e B⇔ A %E
e∗ B. We can

therefore drop the subscripteand simply writeA%E B and read “eventA is qual-
itatively more probable thanB conditionally to eventE”.

The next axiom is Savage’s P5.

Axiom 5 There exists a pair c′,c′′ ∈ C such that c′ ≻C c′′.

We also introduce a version of Savage’s P6. It makes it clear that one of the
roles of the coin-toss related subalgebra of eventsR is to make all(Aa,%a) atom-
less.

Axiom 6 Let f,g ∈ Fa, where a∈ D is an A-act, with f≻ g and c∈ C . There
exists a partition of A, consisting of events R∩A, R∈ R , such that if f ( resp. g)
is modified on any element of the partition and given constantoutcome c on this
element, then the modified act f′ ( resp. g′) also satisfies f′ ≻ g (resp. f≻ g′).

We also need Savage’s P7 for each%a .

Axiom 7 Let f,g ∈ Fa, where a∈ D is an A-act and let E∈ Aa. If f %E
a (resp.

-E
a ) g(ω) for all ω ∈ E, then f%E

a (resp. -E
a ) g.

Axioms 1-7 imply the validity of Savage’s P1-7 in everyFa, where thus his
main result holds: preferences inFa can be represented by a subjective expected
utility (SEU) criterion with respect to an atomless probability on Aa.

Moreover, due to the explicit introduction ofσ-algebraR (A)= {A∩R,R∈ R }
in the statement of Axiom 6, it is clear that this result stillholds ifFa is replaced
by its restriction toR (A) - measurable acts. We can thus state:

Proposition 1 For every a∈ D there exist a bounded utility ua and an additive
probability Pa such that

f % g⇔
Z

A
ua◦ f dPa≥

Z

A
ua◦g dPa, ∀ f ,g∈ Fa
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where
ua is unique up to an affine transformation;
Pa is unique and for everyρ ∈ [0,1] there exists B∈ Aa such that Pa(B) = ρ.
Moreover, these existence and uniqueness statements are also valid whenFa

is replaced by its restriction toR (A) - measurable acts and thusAa byR (A).

4 Intrinsic Utility and Probability Consistency

It is well known that Savage’s axioms do not imply the existence of certainty
equivalents for the acts. However, this property is easily acceptable for sufficiently
rich consequence sets (for instance whenC is a real interval) and, although not
necessary, will be technically helpful later in the paper. So, we assume:

Axiom 8 For any a∈ F there exist c∈ C such that the constant A-act fc
a

satisfies
f c
a
∼a a

The next assumption and the lemma that follows assert that coin-toss related
events are ”qualitatively” independent and thus ”quantitatively” independent from
events inE .

Axiom 9 For every A,B∈ AF conditional preferences on events%A and%B sat-
isfy, for all R′,R′′ ∈ R :

A∩R′ %A A∩R′′⇐⇒ B∩R′ %B B∩R′′.

Lemma 2 Let a,b∈D. For every R∈ R , Pa(A∩R) = Pb(B∩R).

Proof. For anyR′,R′′ ∈ R , Pa(A∩R′) ≥ Pa(A∩R′′)⇔ A∩R′ %A A∩R′′⇐⇒
B∩R′ %B B∩R′′⇔ Pb(B∩R′)≥ Pb(B∩R′′). Thus, the mappingR (A) 7−→ [0,1]
defined byA∩R 7−→ Pb(B∩R) is a probability measure representing%A which
however is uniquely represented byPa. ThereforePa(A∩R) = Pb(B∩R) for every
R∈ R . ✷

WheneverA∩R′ %A A∩R′′ holds forR′,R′′ ∈ R and someA∈ AF , we shall
simply writeR′ %R R′′ and read ”eventR′ is qualitatively more probable thanR′′

” . Qualitative probability%R is uniquely represented by probabilityPR defined
by PR (R) = Pa(A∩R) for someA.

Thus, Axiom 8 ensures the existence of an intrinsic probability PR onR .
We shall use this result to derive properties of utilities. That far, all we know

about theua,a∈D is that they represent the same ordering�C and are therefore
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increasing transforms from one another. We would like functionsua to be identical
(after calibration).

According to Proposition 1 for every triplec′ �C c�C c′′, with c′ ≻C c′′, there
is an eventR∈R such that actg∈Fa with g(ω) = c′, for ω∈A∩R, andg(ω) = c′′

for ω ∈ A∩Rc is indifferent to the constantA−act f c
a in Fa. In other terms, there

is R∈ R such thatPa(A∩R) satisfies:

ua(c) = Pa(A∩R)ua(c
′)+ (1−Pa(A∩R))ua(c

′′), (1)

hence, according to the definition that follows Lemma 2

ua(c) = PR (R)ua(c
′)+ (1−PR (R))ua(c

′′).

Thus, all we need is an axiom ensuring that the eventR in (1) only depends
onc.

Axiom 10 For every triple c′ �C c �C c′′, with c′ ≻C c′′, there exist an event
R∈ R such that for every a∈ D, act g∈ Fa with g(ω) = c′, for ω ∈ A∩R, and
g(ω) = c′′ for ω ∈ A∩Rc is indifferent to the constant A−act fca in Fa.

If follows immediately that:

Proposition 2 Utilities ua (a∈D) are affine transforms from one another.

Thus, after calibrationua’s are identical and we will write from now onu
instead ofua. Note thatu is a utility function representing�C .

Next proposition guarantees the existence of intrinsic conditional probabil-
ities in the sense that they are independent from the contextin which they are
evaluated.

Proposition 3 Let a,b ∈ D be analyzed on A and B, respectively, with B∈ Aa

and let moreover E∈ Ab (hence E⊂ B⊂ A). Then Pa(E/B) = Pb(E).

Proof. By Proposition 2, there existsR∈ R such thatR∩B∼b E, and thus, by
Lemma 1,R∩B∼B

a E, implying

Pb(R∩B) = Pb(E) andPb(R∩B/B) = Pa(E/B). (2)

Moreover, by applying Lemma 1 to acts offering prizes on events R′ ∩ B and
R′′ ∩B, whereR′,R′′ ∈ R , we getR′ ∩B %b R′′ ∩B⇔ R′ ∩B %B

a R′′ ∩B. Thus,
the same ordering (say%b) on set of events{R∩B, R∈ R } is representable by
(restrictions of) probabilitiesPb andPa(./B); by uniqueness of such a representa-
tion (see Proposition 2),Pb(R∩B) = Pa(R∩B/B), for all R∈ R . Then according
to (2)Pb(E) = Pa(E/B). ✷

Thus, as for conditional preferences, intrinsic conditional probabilities can be
defined byP(E/B) = Pa(E/B) whereE, B∈ Aa andE ⊂ B.
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5 Preferences on Non-analyzed Events

We now turn to the non-analyzed part of the decisions.
LetM denote the set of ranges corresponding to all the decisions:
M ={Ma, ∃ a∈D such thata = (a|A , Ma)} .
We assume that everyM ∈M has a�C - greatest and a�C - lowest conse-

quence, respectively denotedg(M) andl(M).
We define a partial preference relation overM . For this, two axioms are

needed: Axiom 11 ensures the existence of the relation and Axiom 12 its tran-
sitivity.

Axiom 11 Let a′,a′′ be A−acts such that a′ = (a′|A , Ma′) , a′′ = (a′′|A , Ma′′)
with a′|A = a′′|Aand let b′,b′′ be B−acts such that b′= (b′|B , Mb′) , b′′= (b′′|B , Mb′′)
with b′|B = b′′|B , Mb′ = Ma′ and Mb′′ = Ma′′ . Then

a′ % a′′⇔ b′ % b′′.

Preferences among rangescan now be defined by the transitive closure%M

of the relation%0
M

given by:
M′ %0

M
M′′⇐⇒ there existA− actsa′,a′′ ∈D such thatMa′ = M′, Ma′′ = M′′,

a′|A = a′′|A anda′ % a′′.
%M is automatically a partial order if:

Axiom 12 %0
M

is acyclic i.e. there is no sequence Mi , i = 1..n in M such that
Mi %0

M
Mi+1, i = 1..n−1 and Mn ≻0

M
M1.

Let’s now turn to the representation of the preference relation %M .
The following requirement will allow us to extend a result ofBarbera, Barrett

and Pattanaik [1].

Axiom 13 (1) ∀M, c, ∃ A and two A−acts a′, a′′ such that Ma′ = M and Ma′′ =
M∪{c}

(2) Let c1,c2 ∈ C be such that c1 ≻C c2. Then, for any M0 ∈ M such that
c1,c2 /∈M0,

{c1}∪M0 %M {c1,c2}∪M0 %M {c2}∪M0.

Moreover, if c≻C c2 for all c ∈M0, then:

{c1}∪M0≻M {c1,c2}∪M0

and if c1≻C c for all c∈M0, then

{c1,c2}∪M ≻M {c2}∪M0.

Note that, if M0 = /0, we get

{c1} ≻M {c1,c2} ≻M {c2} .
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Note that Axiom 16 makes both existence and comparability requirements.

Lemma 3 (i) For all finite M ∈M such that g(M)≻C l(M), M∼M {g(M), l(M)} .
(ii) For finite M′,M′′ ∈M:

g(M′)�C g(M′′)
l(M′)�C l(M′′)

}
⇒M′ %M M′′. (3)

Moreover,
g(M′)≻C g(M′′)
l(M′)≻C l(M′′)

}
⇒M′ ≻M M′′. (4)

Proof. (i) For c ∈ M\{g(M), l(M)} , by Axiom 13, g(M) ≻C c implies
M\{c} %M M (takeM0 = M\{g(M),c}) and symmetricallyc≻C l(M) implies
M %M M\{c}; henceM ∼M M\{c}.

Let M = {g(M),c1,c2, ...,cn, l(M)} whereg(M)≻C c1≻C c2≻C ...≻C cn≻C

l(M). Then, by repeated application of last relation:
M ∼M M\{c1} ∼M M\{c1,c2} ∼M ...
∼M M\{c1,c2, ...,cn}= {g(M), l(M)} .
(ii) From (i) of the Lemma, we haveM′ ∼M {g(M′), l(M′)} and M′′ ∼M

{g(M′′), l(M′′)}. %M being transitive (Axiom 12), we just need to prove that
{g(M′), l(M′)}%M {g(M′′), l(M′′)} . Assume that in the left side of (3) there is at
least one strict preference, for instanceg(M′) ≻C g(M′′) (if it is not the case, the
result is straightforward). By Axiom 13 (point (2)) withM0 = {l(M′)}, we have
{g(M′), l(M′)}%M {g(M′′), l(M′)} . If l(M′)≻C l(M′′), by the same Axiom with
M0 = {g(M′′)}, {g(M′′), l(M′)} %M {g(M′′), l(M′′)}. Else (l(M′)∼C l(M′′)),
from the proof of (i)

{
g(M′′), l(M′), l(M′′)

}
∼M

{
g(M′′), l(M′)

}
∼M

{
g(M′′), l(M′′)

}
.

The proof of the second part of (ii) is similar and uses the second part of point
(2) in Axiom 13 (strict inequalities). ✷

Lemma 3 directly implies that, for a finite sequence(Mi)
n
i=1 of finite Mi with

g(Mi) andl(Mi) independent ofi, ∪n
j=1M j ∼M Mi , i = 1..n. We extend this prop-

erty to infinite unions in the following axiom.

Axiom 14 For any family(Mi)i∈I , of finite Mi ∈ M such that g(Mi) and l(Mi)
are independent of i, ∪ j∈I M j ∼M Mi , i ∈ I .

We can then prove the following proposition:
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Proposition 4 For all M ∈M such that g(M)≻C l(M), M ∼M {g(M), l(M)} .

Proof. It is sufficient to note that anyM in M is the infinite union of finite
subsets of it also inM and with the same greatest and lowest elements. ✷

Proposition 5 There exists a mapping v: M →R such that

M′ ≻M M′′⇒ v(M′) > v(M′′)

M′ ∼M M′′⇒ v(M′) = v(M′′)

with M 7→ v(M) = ϕ(g(M), l(M)) and

g(M′)≻C g(M′′), l(M′)�C l(M′′)
or

g(M′)�C g(M′′), l(M′)≻C l(M′′)




⇒ v(M′) > v(M′′).

Proof. Let the elements ofC be indexed asc1≻C c2≻C ...≻C cN and mapping
ϕ defined:

for i < j by ϕ(ci ,c j) = ∑
(r,s)∈Ei j

1
2r+s,

whereEi j =
{
(r,s) : r < sand

{
ci ,c j

}
≻M {cr ,cs}

}

for i = j by ϕ(ci ,ci) = ∑
(r,s)∈Fi

1
2r+s ,

whereFi = {(r,s) : r < sand{ci} ≻M {cr ,cs}}

Then,v defined byv(M) = ϕ(g(M), l(M)) has the required properties since
if g(M) ≻M l(M) thenM ∼M

{
ci ,c j

}
for someci = g(M) andc j = l(M) and if

g(M) = l(M) M ∼M {ci} for ci = g(M). ✷

6 Representation Theorem

We now want to construct a utility representation of preferences% in F that in-
corporates the results obtained so far concerning its restrictions%a to the various
Fa as well as those concerning%M .

This construction will be based on the existence of certainty equivalent for
the acts which is directly required by the following axiom, where f k denotes the
constant act:f k(Ω) = {k}.

Axiom 15 For any act a∈ F there exists k∈ C such that fk ∼ a.
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Proposition 6 The weak order% onF is representable by a utility function V:

• For an A-act a such that A6= Ω,

a = (a|A , Ma) 7−→V(a) = Φ
(

A,
Z

A
u◦a dPa, g(Ma), l(Ma)

)

where

Pa is a subjective conditional probability on theσ-algebraAa;
g(Ma), l(Ma) are the�C - greatest and the�C - lowest consequences in Ma;

andΦ is increasing in
Z

A
u◦a dPa, g(Ma), l(Ma).

• Otherwise, for A= Ω,

a = (a|Ω , ·) 7−→V(a) = Ψ
(

Z

Ω
u◦a dPa

)

with Ψ increasing in
Z

Ω
u◦a dPa.

Proof. Any a in F has a certainty equivalentk in C (by Axiom 15) and�C is
representable by utility functionu. A priori consequencek, hence numberu(k),
depends on all the elements characterizinga namelyA, Aa, a|A andAa.

Since, by Axiom 8, there existc in C such thata∼a f c
a
, then

a∼ (A, Aa, f c
a

∣∣
A
, Ma). (5)

The constantA-act f c
a

being measurable with respect to anyσ-algebraAa of
subsets ofA, we have, for anyA-actsa′, a′′ such thatMa′ = Ma′′ and f c

a′
= f c

a′′
,

a′ ∼ a′′. Thus, the preference betweena′ anda′′ does not explicitly depend onAa′

andAa′′ and (5) becomes:

a∼ (A, f c
a

∣∣
A , Ma). (6)

Moreover, the certainty equivalentk depends ona|A only through
Z

A
u◦a dPa (by

Proposition 1) and onMa only throughg(Ma), l(Ma) (by Proposition 4). ✷

Example 3 A common practice in international borrowing consists in classify-
ing countries into various groups according to their insolvency risk. The rating
is generally based on a check-list of economic indicators through a multiple cri-
teria decision model; probability evaluations are rarely involved (Cf: Saini and
Bates [5]). A given country is then allowed to borrow money atan interest rate
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equal to the LIBOR, i plus a risk spread∆i, which depends on its group. Thus, the
net expected present value of a one period investment I is

EV =−I +
ER

(1+ i + ∆i)
=−I +

ER
(1+ i)

− ∆i×ER
(1+ i + ∆i)

; (7)

the risk premium, given by the last term, is proportional to the expected return
ER. On the contrary, a particular, additive, instance of our model would evaluate
the preceding investment according to formula:

V∗ =−I +
ER

(1+ i)
−k× I

i. e. require the risk premium to be proportional to the maximal possible loss, here
I , which seems to make more sense.

7 Discussion

The family of criteria described by the representation theorem is still rather wide
and various behavioural assumptions could be added and leadto more specific
criteria. On the other hand, the building blocks of the model, SEU for the ana-
lyzed part and “(max, min)” for the non-analyzed one could easily be replaced
by other theories for instance the analyzed part would stillbe be endowed with
probabilities but Quiggin’s Rank Dependent Utility [4] would replace EU or in-
formation on the non-analyzed part of the acts would not be quantified in terms
of consequence sets but according to symbolic categories.

The model is consistent with various generalizations of SEU. For instance
partially analyzed acts are a special case of multivalued acts; once restricted to this
special class, the criteria of Ghirardato’s model [3], become a subfamily of ours.
Moreover, our model allows the expression of various types of beliefs concerning
the relative plausibility of the analyzed and the non analyzed events ranging from
probabilities (P(A) + P(Ac) = 1) to complete ignorance that include capacities
(v(A)+v(Ac) 6= 1), and in particular necessities(for instanceN(A) = α,N(Ac) =
0).
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On Approximating Multidimensional
Probability Distributions by

Compositional Models∗

R. JIROUŠEK
Academy of Science, Czech Republic

Abstract

Because of computational problems, multidimensional probability distribu-
tions must be approximated by distributions which can be defined by a rea-
sonable number of parameters. As a rule, distributions witha special depen-
dence structure (i.e., complying with a system of conditional independence
relations) are considered; graphical Markov models and especially Bayesian
networks are often used. This paper proposes application ofcompositional
models for this puropose. In addition to a theoretical background, a heuris-
tic algorithm solving one part of a model learning process ispresented. Its
basic idea, construction of an approximation exploiting informational con-
tent of given low-dimensional distributions in a maximal possible way, was
proposed by Albert Perez as early as in 1977.

Keywords

multidimensional distributions, approximations, conditional independence, operator of
composition

1 Introduction

Data-driven methods for probability model construction usually suffer from a lack
of data. This is why one must always keep in mind that any probability estimate is
imprecise and the more probabilities, the less precise their estimates. Moreover,
it would be absurd to try to get estimates of (let us say) 250 probabilities defining
a 50-dimensional distribution (of binary variables) from afile whose size is only
several Mbytes. Such an effort would also be in contradiction with theMinimum
Description Lengthprinciple often employed in the field of AI. Therefore, appli-
cation of probabilistic models to problems of practice, when the dimensionality

∗This work has been supported in part by GA AVČR, under grant A2075302.
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of considered multidimensional probability distributions is expressed in hundreds
rather than tens, quite naturally leads to the necessity of approximations.

The present paper proposes to look for an approximation of a probability dis-
tribution in a class of so-calledcompositional models(CM), which is an alterna-
tive apparatus to that usually calledGraphical Markov Modeling(GMM). GMM
is used as a general term describing any of the approaches representing multidi-
mensional probability distributions by means of graphs andsystems of quantita-
tive parameters like Bayesian networks (BN), decomposableand graphical mod-
els, influence diagrams and chain graph models.

The main idea of CM is the same as that of GMM: not to strive for esti-
mating multidimensional distribution but only its oligo-dimensional marginals,
from which the multidimensional model is subsequently composed. In a way this
model resembles a jigsaw puzzle that has a great number of parts, each bear-
ing a local piece of a picture, and the goal is to find how to assemble them in a
way that the global picture makes sense, reflecting all the individual small parts.
Naturally, the whole task can be split into two subproblems:how to find which
oligo-dimensional distributions are to be estimated and how to compose them into
a multidimensional model. Though the present paper concentrates exclusively on
the latter one, let us mention that, to be consistent with theapparatus employed
in this paper, the problem of selection of oligodimensionaldistributions should
be solved with the help of information theoretic quantities; distributions with the
highest informational content (see section 5) should be selected.

Before introducing the apparatus of CM let us mention that both GMM and
CM are based on the very idea published by Albert Perez as early as 1977 in
his unfortunately neglected paper [10]. In this paper Perezcalls these probability
distributionsdependence structure simplification approximationsand studies in-
crease of risk connected with statistical decision problemwhen, instead of Bayes
optimal solution,ε-Bayes optimal solution (ie., Bayes optimal with respect to
ε-approximation) is accepted.

2 Notation

In this text, we will deal with a finite system of finite-valuedrandom variables. Let
N be an arbitrary finite index set,N 6= /0. Each variable from{Xi}i∈N is assumed
to have a finite (non-empty) set of valuesX i . Distributions of these variables will
be denoted by Greek letters (π,κ); thus forK ⊆ N, we can consider a distribution
π((Xi)i∈K). To make the formulae more lucid, the following simplified notation
will be used. Symbolπ(xK) will denote both a|K|-dimensional distribution and a
value of a probability distributionπ (when several distributions are considered, we
shall distinguish between them by indices), which is definedfor variables(Xi)i∈K

at a combination of valuesxK ; xK thus represents a|K|-dimensional vector of
values of variables{Xi}i∈K . Analogously, we shall also denote the set of all these
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vectorsXK :
XK =×i∈KX i .

For a probabilistic distributionπ(xK) and J ⊂ K we will often consider a
marginal distributionπ(xJ) of distributionπ(xK), which can be computed by

π(xJ) = ∑
xK\J∈XK\J

π(xK) = ∑
xK\J∈XK\J

π(xK\J,xJ).

In this simple formula we have introduced a notation used throughout this article:
a vectorxK is composed of two subvectorsxK\J andxJ, wherexJ is aprojection
of xK into XJ, and, analogouslyxK\J is a projection ofxK into XK\J. For com-
putation of marginal distributions we need not exclude situations whenJ = /0. In
accordance with the above-introduced formula we getπ(x/0) = 1.

In some situations we will want to stress that we are dealing with a marginal
distribution of a distributionπ; we will use symbolπ(J) to denote the marginal
distribution ofπ for variables(Xi)i∈J. That is, forJ⊆ K and a distributionπ(xK),

π(J) = π(xJ).

For a distributionπ(xK) and two disjoint subsetsJ,L ⊆ K we will also speak
about aconditional distributionπ(xJ|xL), which is, for each fixedxL ∈ XL, a |J|-
dimensional probability distribution, for whichπ(xJ|xL)π(xL) = π(xJ∪L). (Notice
that this definition is ambiguous ifπ(xL) = 0 for some combination(s) of values
xL ∈ XL.) The reader can immediately see that ifJ = /0 thenπ(xJ|xL) = 1, and if
L = /0 thenπ(xJ|xL) = π(xJ).

ConsiderK ⊆ L⊆ N and a probability distributionπ(xK). With Π(L) we shall
denote the set of all probability distributions defined for variablesXL. Similarly,
Π(L)(π) will denote the system of allextensionsof the distributionπ to L-di-
mensional distributions:

Π(L)(π) =
{

κ ∈Π(L) : κ(xK) = π(xK)
}

,

(whereκ(xK) naturally denotes the marginal distribution ofκ for variablesXK).
Having a system

Ξ = {π1(xK1),π2(xK2), . . . ,πn(xKn)} ,
of oligo-dimensional distributions (K1∪ . . .∪Kn⊆ L), the symbolΠ(L)(Ξ) denotes
the system of distributions that are extensions of all the distributions fromΞ:

Π(L)(Ξ) =
{

κ ∈Π(L) : κ(Ki) = πi ∀i = 1, . . . ,n
}

=
n

\

i=1

Π(L)(πi).
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3 Operator of composition

To be able to compose low-dimensional distributions to get adistribution of a
higher dimension we will introduce anoperator of composition.

To make this construction clear from the very beginning, letus stress that it is
just a generalization of the idea of computing the three-dimensional distribution
from two two-dimensional ones introducing the conditionalindependence:

π(x1,x2)⊲ κ(x2,x3) =
π(x1,x2)κ(x2,x3)

κ(x2)
= π(x1,x2)κ(x3|x2).

Consider two probability distributionsπ(xK) and κ(xL), such thatκ(xL∩K)
dominates1 π(xL∩K); in symbol:π(xL∩K)≪ κ(xL∩K). Thecompositionof these
two distributions is defined by the formula

π(xK)⊲ κ(xL) =
π(xK)κ(xL)

κ(L∩K)
.

Since we assumeπ(L∩K)≪ κ(L∩K), if for anyx∈ X(L∩K) κ(L∩K)(x) = 0 then there
is a product of two zeros in the nominator and we take 0.0/0 = 0. If L∩K = /0
thenκ(L∩K) = 1 and the formula degenerates to a simple product ofπ andκ.

Let us stress that in the caseπ(L∩K) 6≪ κ(L∩K), the expressionπ ⊲ κ remains
undefined.

Thus, the formal definition of the operator⊲ is as follows.

Definition 1 For two arbitrary distributionsπ ∈Π(K) andκ ∈Π(L) their compo-
sition is given by the following formula

π(xK)⊲ κ(xL) =






π(xK)κ(xL)

κ(xK∩L)
if π(xK∩L)≪ κ(xK∩L),

undefined otherwise.

The following simple assertion proven in [5] answers the question: what is the
result of the composition of two distributions?

Theorem 1 If π(xL∩K) ≪ κ(xL∩K) (i.e., if π(xK) ⊲ κ(xL) is defined) then
π(xK) ⊲ κ(xL) is a probability distribution fromΠ(L∪K)(π), i.e., it is a probabil-
ity distribution of XK∪L and its marginal distribution for variables XK equalsπ:
(π ⊲ κ)(xK) = π(xK).

An importance of this operator arises from the fact that, when applied itera-
tively, it defines a multidimensional distribution from a system of low-dimensional
ones.

1The concept of dominance (or absolute continuity)π≪ κ in finite case simplifies to

∀x∈ X (κ(x) = 0 =⇒ π(x) = 0) .
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4 Generating sequences

Let us now consider a system ofn low-dimensional distributionsπ1(xK1), π2(xK2),
. . . ,πn(xKn), and start studying a distributionπ1 ⊲ π2 ⊲ . . . ⊲ πn, which (if defined)
is a distribution of variablesXK1∪K2∪...∪Kn. Regarding the fact that the operator is
neither commutative nor associative, let us stress that we always apply the opera-
tors from left to right:

π1 ⊲ π2⊲ . . . ⊲ πn = (. . . ((π1 ⊲ π2)⊲ π3)⊲ . . . ⊲ πn).

Therefore, in order to construct a multidimensional distribution it is sufficient
to determine a sequence – we call it agenerating sequence– of low-dimensional
distributions.

Example 1 In agreement with what has just been said, the generating sequence

π1(x1,x3),π2(x3,x5),π3(x1,x4,x5,x6),π4(x2,x5,x6)

defines distribution

(π1 ⊲ π2⊲ π3⊲ π4)(x1,x2,x3,x4,x5,x6)

=
(
(π1(x1,x3)⊲ π2(x3,x5)) ⊲ π3(x1,x4,x5,x6)

)
⊲ π4(x2,x5,x6)

= π1(x1,x3)π2(x5|x3)π3(x4,x6|x1,x5)π4(x2|x5,x6). ✸

Not all generating sequences are equally efficient in their representations of
multidimensional distributions. Among them, the so-called perfect sequences hold
an important position.

Definition 2 A generating sequence of probability distributionsπ1,π2, . . . ,πn is
calledperfectif for all k = 2, . . . ,n distributionsπ1 ⊲ . . . ⊲ πk are defined and

π1 ⊲ . . . ⊲ πk = πk ⊲ (π1⊲ . . . ⊲ πk−1).

This definition enables us to check whether a generating sequence is perfect2

but one can hardly see from it the importance of perfect sequences. This impor-
tance becomes clearer from the following characterizationtheorem (Theorem 2
in [7]).

Theorem 2 A sequence of distributionsπ1,π2,. . . ,πn is perfectiff all the distri-
butions from this sequence are marginals of the distribution (π1 ⊲ π2⊲ . . . ⊲ πn).

What is the main message conveyed by this characterization theorem? Consid-
ering that low-dimensional distributionsπk are carriers of local information, the
constructed multidimensional distribution represents global information, faith-
fully reflecting all of the local input.

Let us briefly summarize the main properties of distributions represented by
perfect sequences and their relation to the well-known concepts of GMM.

2A sequence is perfectiff for all k = 2, . . . ,n, (π1 ⊲.. . ⊲πk−1)
(Kn∩(K1∪...∪Ki−1)) = π(Kn∩(K1∪...∪Ki−1))

k .
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(i) It was shown that perfect sequences are equivalent to BNs in the sense that
any distribution representable by a perfect sequence can berepresented by
BN (and vice versa) and both of these strucures are defined with the same
number of parameters – probabilities (for details see [7]) .

(ii) In analogy to BN, for each distribution represented by a perfect sequence a
list of conditional independence relations holds true. Fora BN, one can read
all these relations from its graph by the famous d-separation criterion. How
to determine them for CM was shown in [8].

(iii) Let us stress that whether a generating sequence is perfect does not depend
only on structural properties (those corresponding to setsK1, . . . ,Kn and
their ordering), but also on probabilities. To make this remark clearer notice
the two extreme sufficient conditions, guaranteeing perfecness of a gener-
ating sequence:

(a) if distributionsπ1(xK1), . . . ,πn(xKn) are pairwise consistent (π(Ki∩K j )
i =

π(K1∩K j )
j ) and the sequenceK1, . . . ,Kn meets therunning intersection

property3 thenπ1(xK1), . . . ,πn(xKn) is perfect;

(b) if all the distributionsπk(xKk) are uniform thenπ1(xK1), . . . ,πn(xKn) is
always perfect.

(iv) Distributions represented by perfect sequences are uniquein the following
sense: if two permutationsπi1, . . . ,πin andπ j1, . . . ,π jn of a system of oligodi-
mensional distributions are perfect thenπi1 ⊲ . . . ⊲ πin = π j1 ⊲ . . . ⊲ π jn. This
property, somehow resembling decomposable distributions, is especially
important for designing computational procedures.

(v) Notice that we have not imposed any conditions on setsKk. For example,
considering a generating sequence where one distribution is defined for a
subset of variables of another distribution (ie.,K j ⊂ Kk) is fully sensible
and may enrich a system of considered multidimensional distributions (cf.
Algorithm in Section 6.3).

5 Information-theoretic notions

In Section 6 several notions characterizing probability distributions and their re-
lationship will be used. The first is the well-knownShannon entropydefined (for
π ∈Π(N))

H(π) =− ∑
x∈XN

π(x) logπ(x).

3∀k = 2, . . . ,n ∃ j(1≤ j < k) Kk∩ (K1∪ . . .∪Kk−1)⊂ K j .
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Recall that for two disjoint index setsK,L ⊂ N one can also define aconditional
entropy H(π(xK |xL) using the expression:

H(π(xK |xL)) = − ∑
x∈XK∪L

π(x) logπ(xK |xL).

To compare two distributions defined for the same system of variables (i.e.
π,κ∈ΠN) we will useKullback-Leibler divergence(in literature sometimes called
I-divergence, or cross-entropy). It is in fact a relative entropy of the first distribu-
tion with respect to the other:

Div(π‖κ) =






∑
x∈XN

π(x) log π(x)
κ(x) if π≪ κ,

+∞ otherwise.

The reader can immediately see that ifπ = κ thenDiv(π‖κ)= 0. It is a well-known
property of Kullback-Leibler divergence (and not too difficult to be proven) that
its value is always non-negative and equals 0 if and only ifπ = κ. (Recall also that
this divergence is not symmetric, i.e., generallyDiv(π‖κ) 6= Div(κ‖π).)

One of the fundamental notions of information theory is amutual information.
Having a distributionπ(xN) and two disjoint subsetsK,L ⊂ N, it expresses how
much one group of variablesXK influences the other one –XL. It is defined

MIπ(XK ;XL) = ∑
xK∪L∈XK∪L

π(xK∪L) log
π(xK∪L)

π(xK)π(xL)
,

and equals 0 if and only if the groups of variablesXK andXL are independent
under the distributionπ. Otherwise, it is always positive.

The last notion, which will be of great importance, but whichis not as fa-
mous as Shannon entropy or mutual information, is aninformational contentof a
distribution defined by the formula:

I(π) = ∑
x∈XN

π(x) log
π(x)

∏
j∈N

π(x j)
.

Notice that this formula is nothing but a Kullback-Leibler divergence of two
distributions:π(xN) and ∏ j∈N π(x j). Therefore, it is always non-negative and
equals 0 if and only ifπ(xN) = ∏ j∈N π(x j). In fact, this value expresses how
much individual variables are dependent under the distribution π. Therefore the
higher this value, the more dependent the variables, and consequently, the greater
amount of information carried by the distribution.

One can also immediately see that for a 2-dimensional distributionπ(x1,x2)

I(π) = MIπ(X1;X2).
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6 Approximations

Let us consider an arbitrary multidimensional distribution κ ∈ Π(N) and assume
that for one reason or another we are looking for its approximation in the form of
a compositional model. Such situations appear quite often in practical problems;
κ can be, for example, a sample distribution of a large database, or it can be an
unknown theoretical distribution, from which some data filehas been generated.
In any case, we need its approximation.

6.1 Criterion function

For a candidate compositional distributionπ = π1 ⊲ π2⊲ . . . ⊲ πn ∈Π(N), the Kull-
back-Leibler divergenceDiv(κ‖π) will be used as a criterion function. Naturally,
the smaller the value of the Kullback-Leibler divergence, the better approximation
π.

For compositional models this divergence can be expressed in a special form,
which enables us to analyze individual factors of the divergence. To make the
formulae more transparent we will use the following notation: for eachi = 1, . . . ,n
setKi is split into two disjoint parts

Ri = Ki \ (K1∪ . . .∪Ki−1), Si = Ki ∩ (K1∪ . . .∪Ki−1).

(Naturally,R1 = K1 andS1 = /0.) In the following computations we shall use a
standard trick, according to which

∑
x∈XN

κ(x) logκ(xK) = ∑
xK∈XK

κ(xK) logκ(xK) ∑
xN\K∈XN\K

κ(xN\K |xK)

= ∑
xK∈XK

κ(xK) logκ(xK)

because∑xN\K∈XN\K κ(xN\K |xK) = 1. Thus, assumingDiv(κ‖π) is finite, we can
compute

Div(κ‖π) = ∑
x∈XN

κ(x) log
κ(x)

π1(xK1)⊲ . . . ⊲ πn(xKn)

= ∑
x∈XN

κ(x) logκ(x)− ∑
x∈XN

κ(x) log
n

∏
i=1

πi(xRi |xSi )

=−H(κ)−
n

∑
i=1

∑
x∈XN

κ(x) logπi(xRi |xSi )

=−H(κ)−
n

∑
i=1

∑
xKi∈XKi

κ(xKi ) logπi(xRi |xSi )
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=−H(κ)+
n

∑
i=1

∑
xKi∈XKi

κ(xKi ) log
κ(xRi |xSi )

πi(xRi |xSi )
−

n

∑
i=1

∑
xKi∈XKi

κ(xKi ) logκ(xRi |xSi )

=−H(κ)+
n

∑
i=1

Div(κ(xRi |xSi )‖πi(xRi |xSi ))+
n

∑
i=1

H(κ(xRi |xSi )).

Now, let us have a look at the meaning of the expression

n

∑
i=1

H(κi(xRi |xSi ))−H(κ).

First, for eachi = 1, . . . ,n we get

H(κi(xRi |xSi )) = − ∑
xKi∈XKi

κ(xKi ) logκ(xRi |xSi )

= − ∑
xKi∈XKi

κ(xKi ) log
κ(xKi )

κ(xSi )

∏
j∈Ki

κ(x j)

∏
j∈Ki

κ(x j)

= −I(κ(xKi ))+ I(κ(xSi ))+ ∑
j∈Ri

H(κ(x j)).

Since all setsRi are mutually disjoint and their union is the whole setN we are
getting

n

∑
i=1

H(κi(xRi |xSi ))−H(κ) =
n

∑
i=1

(I(κ(xSi ))− I(κ(xKi )))+ ∑
j∈N

H(κ(x j))−H(κ)

=
n

∑
i=1

(I(κ(xSi ))− I(κ(xKi )))+ I(κ).

In this way we have deduced that

Div(κ‖π)

=
n

∑
i=1

Div(κ(xRi |xSi )‖πi(xRi |xSi ))+
n

∑
i=1

(I(κ(xSi ))− I(κ(xKi )))+ I(κ), (1)

which is a result that is worth being formulated as a theorem.

Theorem 3 Let a distributionκ ∈ Π(N) and a sequence of distributionsπ1(xK1),

π2(xK2), . . . ,πn(xKn), for which
n
S

i=1
Ki = N, be such that Div(κ‖π1 ⊲ . . . ⊲ πn) is

finite. Then, denotingπ = π1 ⊲ π2 ⊲ . . . ⊲ πn, for the Kullback-Leibler divergence
Div(κ‖π) the equation (1) holds true.



314 ISIPTA ’03

So, the divergence of distributionsκ andπ consists of two parts. The first one

n

∑
i=1

Div(κ(xRi |xSi )‖πi(xRi |xSi ))

describes the “local” difference betweenκ andπ (more precisely it renders the
difference between conditional distributionsκ(xRi |xSi ) andπi(xRi |xSi )), and the
second part

I(κ)−
n

∑
i=1

(I(κ(xKi ))− I(κ(xSi )))

describes the difference resulting from the application ofa compositional model.
As it will be shown below, in the case thatκ(xK1),κ(xK2), . . . ,κ(xKn) is a per-
fect sequence, it is exactly a difference between the informational content of the
distributionsκ andκ(xK1)⊲ . . . ⊲ κ(xKn).

Corollary 1 If for a distributionκ a generating sequence of its marginalsκ(xK1),
κ(xK2), . . . ,κ(xKn) is perfect then

I(κ(xK1)⊲ κ(xK2)⊲ . . .⊲ κ(xKn)) =
n

∑
i=1

(I(κ(xKi ))− I(κ(xSi))) ,

and therefore also

Div(κ‖κ(xK1)⊲ . . . ⊲ κ(xKn)) = I(κ)− I(κ(xK1)⊲ . . .⊲ κ(xKn)).

Proof. The first equation can immediately be obtained by substituting κ(xK1) ⊲
κ(xK2)⊲ . . . ⊲ κ(xKn) for bothκ andπ in equation (1), because then the Kullback-
Leibler divergence must equal 0. The second one is a direct consequence of the
first equality following from (1). ✷

6.2 Perfect sequence approximations

Problem of model learning in context of CM means that one wants to find a prop-
erly ordered system of oligodimensional distributions. Itis evident from the ex-
pression (1) that the best approximations are defined by generating sequences
consisting of distributions which are marginals4 of the approximated distribution
κ. In this case, namely, for alli = 1, . . .n, Div(κ(xRi |xSi )‖πi(xRi |xSi )) equal 0 and
the formula (1) simplifies to

Div(κ‖π) = I(κ)−
n

∑
i=1

(I(κ(xKi ))− I(κ(xSi ))) , (2)

4In fact, it is enough when allπi (xRi |xSi ) = κ(xRi |xSi ).
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which does not depend on values of distributionsπi (quite naturally, because
they are marginals ofκ) but only on the system, or more precisely sequence,
K1,K2, . . . ,Kn. In the following example we shall show that different orderings
of the distributions in generating sequences can result in different values of the
Kullback-Leibler divergence.

Example 2 Consider a4-dimensional distributionκ(x1,x2,x3,x4) and its three
marginal distributions denotedπ1,π2,π3:

π1(x1,x2) = κ(x1,x2), π2(x2,x3) = κ(x2,x3), π3(x3,x4) = κ(x3,x4).

ComputeDiv(κ‖π) andDiv(κ‖π̂) for π = π1⊲π2⊲π3 andπ̂ = π1⊲π3⊲π2. For the
first distribution it is

Div(κ‖π) = I(κ)−
(
I(κ(x{1,2}))+ I(κ(x{2,3}))+ I(κ(x{3,4}))

)

+
(
I(κ(x/0))+ I(κ(x{2}))+ I(κ(x{3}))

)

= I(κ)− I(κ(x{1,2}))− I(κ(x{2,3}))− I(κ(x{3,4})),

whereas for̂π we get

Div(κ‖π̂) = I(κ)−
(
I(κ(x{1,2}))+ I(κ(x{3,4}))+ I(κ(x{2,3}))

)

+
(
I(κ(x/0))+ I(κ(x/0))+ I(κ(x{2,3}))

)

= I(κ)− I(κ(x{1,2}))− I(κ(x{3,4}))− I(κ(x{2,3}))+ I(κ(x{2,3}))

= Div(κ‖π)+ I(κ(x{2,3})).

The reader probably noticed that, for the sake of simplicity, we introduced a situa-
tion corresponding to a decomposable model. It is perhaps worth mentioning that
even in this case it may happen that both of the sequences defining distributions
π andπ̂ are perfect. In correspondence with the assertion mentioned in Section 4
(item (iv)), it happens only whenπ = π̂ and therefore alsoDiv(κ‖π) = Div(κ‖π̂),
from which we get thatI(κ(x{2,3})) = 0. This means that variablesX2 andX3 are
independent. ✸

In the example we have shown that a quality of a compositionalapproximation
depends not only on the selected system of low-dimensional distributions (possi-
bly marginals of the approximated distribution) but also ontheir ordering. We
could see thatκ was better approximated by perfect sequenceπ1,π2,π3 than by
π1,π3,π2, in case that the latter one was not perfect. From the following assertion
we will see that perfect sequences are always, in a sense, thebest approximations.

Theorem 4 If π1,π2, . . . ,πn is a perfect sequence of marginal distributions ofκ
(κ ∈Π(K1∪...∪Kn)) then

Div(κ‖π1⊲ π2⊲ . . . ⊲ πn)≤ Div(κ‖πi1 ⊲ πi2 ⊲ . . . ⊲ πin)

for any permutation i1, i2, . . . , in of indices1,2, . . . ,n.
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Proof. Sinceπ1,π2, . . . ,πn is a perfect sequence of marginals ofκ, we get from
Corollary 1

Div(κ‖π1⊲ π2 ⊲ . . . ⊲ πn)) = I(κ)− I(π1⊲ π2⊲ . . . ⊲ πn),

and, because the Kullback-Leibler divergence is always nonnegative,

I(κ)≥ I(π1 ⊲ π2⊲ . . . ⊲ πn).

We assume thatπ1,π2, . . . ,πn are marginals ofκ, and since they form a perfect
sequence (due to Theorem 2) they are also marginals ofπ1 ⊲ π2 ⊲ . . . ⊲ πn. There-
fore, equation (2) can be applied to bothDiv(κ‖πi1 ⊲ . . . ⊲ πin)) and
Div(π1 ⊲ . . . ⊲ πn‖πi1 ⊲ . . . ⊲ πin)):

Div(κ‖πi1 ⊲ . . . ⊲ πin)) = I(κ)−
n

∑
ℓ=1

(
I(κ(xKiℓ

))− I(κ(xSiℓ
))
)

, (3)

Div(π1 ⊲ . . . ⊲ πn‖πi1 ⊲ . . . ⊲ πin)) = I(π1 ⊲ . . . ⊲ πn)−
n

∑
ℓ=1

(
I(κ(xKiℓ

))− I(κ(xSiℓ
))
)

.

The latter equality gives (respecting again the fact that the Kullback-Leibler di-
vergence value must be nonnegative)

I(π1 ⊲ . . . ⊲ πn)≥
n

∑
ℓ=1

(
I(κ(xKiℓ

))− I(κ(xSiℓ
))
)

.

Combining this with equality (3) we get

Div(κ‖πi1 ⊲ . . . ⊲ πin))≥ I(κ)− I(π1⊲ . . . ⊲ πn),

where the right-hand side part of the inequality equals, as mentioned at the very
beginning of the proof,Div(κ‖π1⊲ . . . ⊲ πn). ✷

6.3 Heuristic algorithm

Regarding the above-mentioned fact that perfect sequence models are equivalent
to Bayesian networks, it is obvious that all the methods for Bayesian network
learning can be adapted to CM construction (see eg. [1]). Another very simple
and effective possibility, though far from being optimal, is the process discussed
in the rest of the paper.

We split the model construction process into two steps. The first one, which
is not discussed in this paper, is selection of oligodimensional distributions, from
which the model will be constructed. In some situations one can be quite natu-
rally relieved of necessity to perform this step. For example, when the data file
is too small and only 2-dimensional distributions can be estimated, then all these
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2-dimensional distributions can be considered. In other situations, an expert can
select the distributions from which the model should be constructed. Otherwise,
informational content of low-dimensional distributions should be taken as a crite-
rion for selection of a system of oligodimensional distributions.

The second step of the model construction process is to find a proper ordering
of the selected oligodimensional distributions. The properties presented in the
above sections theoretically support a heuristic algorithm, which arranges low-
dimensional distributions into a generating sequence in a manner that utilizes its
informational content as much as possible. In this section its simplest version is
presented that enables the reader to understand the basic principle of exploiting
the informational content of individual input low-dimensional distributions.

The reader will see that the procedure considers not only thegiven system of
distributions but also their marginals; this can, in some situations, improve ex-
ploitation of the informational content of distributions,since it considers a greater
variety of conditional independence structures.

Algorithm

Input: System of low-dimensional distributionsπ1(xK1), . . .πn(xKn).

Initialization: Select a variableXm and a distributionπ j such thatm∈ K j .
Setκ1 := π j(xm), L := {m} andk := 1.

Computational Cycle: While K1 ∪ . . .∪Kn \ L 6= /0 perform the following
3 steps:

1. for all j = 1, . . . ,n and all m ∈ K j \ L compute the mutual
information

MIπ j (Xm;XK j∩L).

2. Fix j and m for which MIπ j (Xm;XK j∩L) achieved its maximal
value.

3. Increasek by 1. Setκk := π j(X(K j∩L)∪{m}) andL := L∪{m}.

Output: Generating sequenceκ1,κ2, . . . ,κk.

What can be said about the resulting generating sequenceκ1,κ2, . . . ,κk? Dis-
tribution κ∗ = κ1 ⊲ κ2 ⊲ . . . ⊲ κk is a probability distribution ofXK1∪K2∪...∪Kn. The
goal of the algorithm is to get a distribution with the highest possible informa-
tional contentI(κ∗) (we know that the higher informational content, the lower the
criterion function – Kullback-Leibler divergence). Important questions concern
the facts whether the resulting sequenceκ1,κ2, . . . ,κk is perfect and contains all
the distributions fromπ1,π2, . . . ,πn. Unfortunately, answers to both these ques-
tions are negative.
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Though the heuristics employed in the algorithm do not guarantee that a per-
fect sequence will always be found when it does exist, the advantage is in its
efficiency and in the fact that it always suggests a subset of distributions that
may form a perfect sequence, exploiting the available information in a subopti-
mal way5. One should realize, however, that a distribution from sucha perfect
sequence, though defined for groups of variables for which some input distribu-
tion π j is defined, can differ from this input distributionπ j . In such a case, we
employ aprocess of verification and refinement.

The detailed description of this process is beyond the scope(and extent) of
this paper. Briefly said, verification consists of computation of Kullback-Leibler
divergence of model distributions and the respective inputdistributions (or their
marginals). If we find that some of the distributions definingthe perfect model
are too far from the required marginals (assuming that inputdistributions are
marginals of the approximated distribution), then refinement is applied. This is
realized by substituting a group of input marginal distributions by one distribu-
tion defined for all of the variables which are arguments of the deleted distribu-
tions. Naturally, this must be applied carefully, to avoid too much increase in the
dimension of input distributions. New, more-dimensional input distributions are
either estimated from data, or often computed from the original input distributions
by the well-known Iterative Proportional Fitting Procedure ([3]). Then, having a
new group of input distributions, the process starts from the very beginning by
application of Algorithm.

The same process of verification and refinement is also applied when some of
the input distributions are not included in the model.

Let us illustrate this process by a simple example.

Example 3 Let us consider the following10 3-dimensional distributions (their
values were estimated from a data file):

π1(x1,x2,x4), π2(x1,x2,x6), π3(x1,x4,x6),
π4(x3,x6,x11), π5(x3,x10,x11), π6(x4,x6,x11),
π7(x5,x6,x8), π8(x6,x8,x11), π9(x7,x10,x11),

π10(x9,x10,x11).

The algorithm (starting with variableX1 and distributionπ1) produced the
sequence

π1(x1),π1(x1,x4),π3(x1,x4,x6),π6(x4,x6,x11),π8(x6,x8,x11),π4(x3,x6,x11),

π7(x5,x6,x8),π5(x3,x10,x11),π10(x9,x10,x11),π9(x7,x10,x11),π1(x1,x2,x4).

5Any generating sequence can be converted into a perfect sequence according to the following
assertion ([5, 6]).
Theorem 5 Letπ1⊲.. . ⊲πn be defined and let the sequenceκ1, . . . ,κn be:κ1 = π1, κ2 = κ(K2∩K1)

1 ⊲π2,

and generallyκ j = (κ1 ⊲ .. . ⊲κ j−1)
(K j∩(K1∪...∪K j−1)) ⊲π j . Thenκ1, . . . ,κn is perfect andπ1 ⊲ .. . ⊲πn =

κ1 ⊲ .. . ⊲κn.
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There are two points that can be made about this sequence. First, since all the dis-
tributions were estimated from one data file (with no missingvalues), all the distri-
butions were pairwise consistent, and thus bothπ1(x1) = π3(x1) andπ1(x1,x4) =
π3(x1,x4), and therefore also

π1(x1)⊲ π1(x1,x4)⊲ π3(x1,x4,x6) = π3(x1,x4,x6).

Therefore, the result of the algotihm was, in fact, a generating sequence

π3,π6,π8,π4,π7,π5,π10,π9,π1,

which was perfect (see assertion(iiia) in Section 4).
The negative property of this result was the fact that the algorithm finished

before exploiting distributionπ2(x1,x2,x6). Since we are looking for an approx-
imation of a distribution from which the data file was generated, (following the
verification and refinement process) we have to assess how much omitting π2

influences the quality of the achieved result. This is done byconsidering the
Kullback-Leibler divergenceDiv(π2(x1,x2,x6)‖πappr(x1,x2,x6)), for

πappr = π3 ⊲ π6⊲ π8⊲ π4⊲ π7⊲ π5⊲ π10⊲ π9⊲ π1

(let us mention that in this caseπappr(x1,x2,x6) = (π3 ⊲ π1)(x1,x2,x6)). If we are
not satisfied, refinement results in getting a distributionπ11(x1,x2,x4,x6) and sub-
stituting it for π1,π2 andπ3. Subsequent application of the algorithm to the set
of distributionsπ4,π5,π6,π7,π8,π9,π10,π11 resulted in obtaining the perfect se-
quence

π11,π6,π8,π4,π7,π5,π10,π9.
✸

7 Conclusions

We have presented theoretical results showing that if an approximation of a prob-
ability distribution is looked for in a family of compositional distributions then
the Kullback-Leibler divergence representing a quality ofthe approximation can
be expressed as a sum of two contributions. The first one, which can easily be
suppressed by considering only marginals of the approximated distribution, de-
scribes “local” differences, while the other one corresponds to the loss of infor-
mation resulting from the compositional model (from introducing the respective
conditional independence relations). This knowledge was exploited for designing
a heuristic algorithm based on an effort to maximize informational content of the
constructed approximation.

Let us conclude the paper by a brief comment advocating CMs. Based on
de Cooman approach to conditionning [2], J. Vejnarová introduced the operator
of composition also in possibility theory [11], which made it possible to extend
the whole approach beyond probabilistic framework.
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Abstract

The purpose of this paper is to survey recent developments and trends in
the area of generalized information theory (GIT) and to discuss some of the
issues of current interest in GIT regarding the measurementof uncertainty-
based information for imprecise probabilities on finite crisp sets.

Keywords

uncertainty, uncertainty-based information, generalized information theory

1 Introduction

The term “Generalized Information Theory” (GIT) was introduced in the early
1990s to name a research program whose objective was to develop a broader
treatment of uncertainty-based information, not restricted to the classical notions
of uncertainty [6]. In GIT, the primary concept is uncertainty, and information is
defined in terms of uncertainty reduction.

The basic tenet of GIT is that uncertainty can be formalized in many different
ways, each based on some specific assumptions. To develop a fully operational
theory for some conceived type of uncertainty, we need to address issues at four
levels:

• LEVEL 1 – we need to find an appropriate mathematical representation of
the conceived type of uncertainty

• LEVEL 2 – we need to develop a calculus by which this type of uncertainty
can be properly manipulated

• LEVEL 3 – we need to find a meaningful way of measuring the amount of
relevant uncertainty in any situation formalizable in the theory

• LEVEL 4 – we need to develop methodological aspects of the theory

321
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GIT is an outgrowth of two classical uncertainty theories. The older one,
which is also simpler and more fundamental, is based on the notion of possibility.
The newer one, which has been considerably more visible, is based on the notion
of probability. Proper ways of measuring uncertainty in these classical theories
were established, respectively, by Hartley [5] and Shannon[12]. Basic features of
the theories are outlined in [8].

The various nonclassical uncertainty theories in GIT are obtained by expand-
ing the conceptual framework upon which the classical theories are based. At
this time, the expansion is two-dimensional. In one dimension, the formalized
language of the classical set theory is expanded to a more expressive language
of fuzzy set theory, where further distinctions are based on various special types
of fuzzy sets [10]. In the other dimension, the classical (additive) measures the-
ory [4] is expanded to a less restrictivefuzzy measure theory[14], within which
further distinctions are made by using fuzzy measures with various special prop-
erties. This expanded conceptual framework is a broad base for formulating and
developing various theories of imprecise probabilities.

The subject of this paper is to discuss some of the issues of current interest
regarding the measurement of uncertainty for imprecise probabilities on finite
crisp sets. The various issues of possible fuzzifications ofimprecise probabilities
and of imprecise probablities on infinite sets are not addressed here. To facilitate
the discussion, some common characteristics of imprecise probabilities on finite
crisp sets are introduced in Section 2.

2 Imprecise Probabilities: Some Common Charac-
teristics

One of the common characteristics of imprecise probabilities on finite crisp sets is
that evidence within each theory is fully described by alower probability function
(or measure), g, or, alternatively, by anupper probability function(or measure)
g. These functions are always regular fuzzy measures that aresuperadditive and
subadditive [14], respectively, and

∑
x∈X

g({x})≤ 1, ∑
x∈X

g({x})≥ 1. (1)

In the various special theories of uncertainty, they possess additional special prop-
erties.

When evidence is expressed (at the most general level) in terms of an arbitrary
closed and convex setD of probability distribution functionsp on a finite setX,
functionsg

D
andgD associated withD are determined for eachA∈ P (X) by the

formulas
g
D

(A) = inf
p∈D ∑

x∈A

p(x) andgD(A) = sup
p∈D

∑
x∈A

p(x).
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Since

∑
x∈A

p(x)+ ∑
x6∈A

p(x) = 1,

for eachp∈D and eachA∈ P (X), it follows that

gD(A) = 1−g
D

(A). (2)

Due to this property, functionsg
D

andgD are calleddual (or conjugate). One of
them is sufficient for capturing given evidence; the other one is uniquely deter-
mined by (2). It is common to use the lower probability function g

D
to capture

the evidence.
As is well known [2, 3], any given lower probability functiong

D
is uniquely

represented by a set-valued functionmD for whichmD( /0) = 0 and

∑
A∈P (X)

mD(A) = 1. (3)

Any setA ∈ P (X) for which mD(A) 6= 0 is often called afocal set, and the
family of all focal sets,F , with the values assigned to them by functionmD is
called abody of evidence. FunctionmD is called aMöbius representationof g

D
when it is obtained for allA∈ P (X) via theMöbius transform

mD(A) = ∑
B|B⊆A

(−1)|A−B|g
D

(B), (4)

where|A−B| denotes the cardinality of the finite setA−B. The inverse transform
is defined for allA∈ P (X) by the formula

g
D

(A) = ∑
B|B⊆A

mD(B). (5)

It follows directly from (2) that

gD(A) = ∑
B|B∩A6= /0

mD(B). (6)

for all A∈ P (X).
Assume now that evidence is expressed in terms of a given lower probability

functiong. Then, the set of probability distribution functions that are consistent
with g, D(g), which is always closed and convex, is defined as follows:

D(g) = {p(x)|x∈ X, p(x) ∈ [0,1], ∑
x∈X

p(x) = 1, and

g(A)≤ ∑
x∈A

p(x) for all A∈ P (X)}. (7)

That is, each given function gis associated with a unique setD and vice-versa.
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3 Measures of Uncertainty

A measure of uncertaintyof some conceived type in a given theory of imprecise
probabilities is a functional,U , that assigns to each lower probability function in
the theory a nonnegative real number. This number is supposed to measure, in an
intuitively meaningful way, the amount of uncertainty of the considered type that
is embedded in the lower probability function. To be acceptable as a measure of
the amount of uncertainty, the functionalU must satisfy several intuitively essen-
tial axiomatic requirements. Considering the most generallevel, when evidence
is represented in terms of an arbitrary closed and convex setD of probability dis-
tribution functionsp on finite setX×Y, functionU must satisfy the following
requirements:

1. Subadditivity: U(D)≤U(DX)+U(DY), where

DX = {pX|pX(x) = ∑
y∈Y

p(x,y) for somep∈D},

DY = {pY|pY(y) = ∑
x∈X

p(x,y) for somep∈D}.

2. Additivity: U(D) = U(DX) +U(DY) if and only if DX andDY are not
interactive, which means that for allA∈ P (X) and allB∈ P (X), mD(A×
B) = mDX (A) ·mDY(B) andmD(R) = 0 for all R 6= A×B.

3. Monotonicity: if D ⊆ D ′, thenU(D) ⊆U(D ′); and similarly forDX and
DY.

4. Range: if uncertainty is measured in bits, thenU(D) ∈ [0, log2|X×Y|], and
similarly forDX andDY.

The requirement of subadditivity and additivity, as statedhere, are general-
ized counterparts of the classical requirements of subadditivity and additivity for
probabilistic and possibilistic measures of uncertainty.The requirement of mono-
tonicity (not applicable to classical probabilistic uncertainty) means that reducing
the set of probability distributions consistent with a given lower (or upper) prob-
ability function cannot increase uncertainty. The requirement of range, which de-
pends on the choice of measurement units, is defined by the twoextreme cases:
the full certainty and the total ignorance.

When distinct types of uncertainty coexist in a given uncertainty theory, it
is not necessary that these requirements be satisfied by eachuncertainty type.
However, they must be satisfied by an overall uncertainty measure, which appro-
priately aggregates measures of the individual uncertainty types.

It is well established that two types of uncertainty coexistin all theories of
imprecise probabilities [8, 9]. They are generalized counterparts of the classical
possibilistic and probabilistic uncertainties. They are measured, respectively, by
appropriate generalizations of the Hartley and Shannon measures.
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4 Generalized Hartley Measures

An historical overview of efforts to generalize the classical Hartley measure of
uncertainty can be found in [9]. Its full generalization (toarbitrary closed and
convex sets of probability distributions) was completed fairly recently by Abellan
and Moral [1]. They showed that the functional

GH(mD) = ∑
A∈F

mD(A) log2 |A|, (8)

wheremD is the Möbius representation of the lower probability associated with
a given closed and convex setD of probability distributions, satisfies all the es-
sential axiomatic requirements defined in Sec. 3 (subadditivity, additivity, etc.).
Moreover, this functional is also directly connected with the classical Hartley
measure: it is the weighted average of the Hartley measure for each given body of
evidence(F ,mD).

It is fairly obvious that the functionalGH defined by (8) measures the lack
of specificity in evidence. Large focal elements result in less specific predictions,
diagnoses, etc., than their smaller counterparts. The typeof uncertainty measured
by GH is thus well characterized by the term nonspecificity.

Observe thatGH(mD) = 0 for precise probabilities, whereD consists of a
single probability distribution function, which is expressed in (8) by functionmD .
All focal sets are in this case singletons. Evidence expressed by precise probabil-
ities is thus fully specific.

Eq. (8) is clearly applicable only to functionsmD defined on finite sets. It must
be properly modified whenmD is defined on then-dimensional Euclidean space
for somen≥ 1, as shown in [9]. However, this modification is not a subjectof this
paper.

5 Generalized Shannon Measures

There have been many promising, but eventually unsuccessful efforts to general-
ize the classical Shannon measure (usually referred to as the Shannon entropy).
Virtually all these efforts were based on the recognition that the Shannon entropy
measures the mean (expected) value of the conflict among evidential claims ex-
pressed by a single probability distribution function on a finite set of mutually
exclusive alternatives [9]. An historical overview of mostof these efforts is given
in [9].

All the proposed generalizations of the Shannon entropy were intuitively promis-
ing as measures of conflict among evidential claims in general bodies of evidence,
but each of them was eventually found to violate the essential requirement of sub-
additivity. In fact, no generalized Shannon entropy can be subadditive on its own,
as is shown in [13]. The subadditivity may be obtained only interms of the total
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uncertainty — an aggregate of the two coexisting types of uncertainty (nonspeci-
fivity and conflict). However, when the total uncertainty is viewed as the sum of
the generalized Hartley measure with the various candidates for the generalized
Shannon entropy, none of these aggregated uncertainty measures is still subaddi-
tive, as demonstrated by relevant counterexamples in each case [13].

The latest promising candidate (not previously analyzed interms of the re-
quirement of subadditivity) is based on the so-called Shapley index, which plays
an important role in game theory [11, 15]. For any given finiteuniversal setX,
this candidate for the generalized Shannon entropy,GS, is defined as the average
Shannon entropy of differences in a given lower probability(or, alternatively, an
upper probability) for all maximal chains in the lattice(P (X),⊆). Unfortunately,
the sumGH +GSdoes not satisfy in this case again the requirement of subaddi-
tivity. This can be demonstrated by the following counterexample.

Let X = {x1,x2} andY = {y1,y2}, and let us consider a body of evidence on
X×Y whose Möbius representation is:

m({(x1,y1),(x2,y2),(x2,y1)}) = a,

m(X×Y) = 1−a,

wherea∈ [0,1]. Then,mX(X) = mY(Y) = 1, and, hence,GSX(mX) = GSY(mY) =
0 andGHX(mX)+GHY(mY) = 2. Furthermore,

GS(m) = [−alog2a− (1−a)log2(1−a)]/4,

GH(m) = alog23+2−2a

For subadditivity ofGH+GS, the difference

∆ = (GHX +GHY +GSX +GSY)− (GH+GS)

= [alog2a+(1−a)log2(1−a)]/4+2a−alog23

is required to be nonnegative for all valuesa ∈ [0,1]. However,∆ is negative in
this case for any valuea ∈ (0,0.58) and it reaches its minimum,∆ = −0.1, at
a = 0.225.

6 Total Uncertainty Measures

Generalized Shannon measure,GS, was eventually defined indirectly, via anag-
gregated uncertainty, AU, covering both nonspecificity and conflict, and the well
established generalized Hartley measure of nonspecificity, GH, defined by (8).
Since it must be thatGH + GS= AU, the generalized Shannon measure can be
defined as

GS= AU−GH (9)
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Using this definition, the unsuccessful effort to findGSdirectly is replaced with
the effort to findAU and defineGS indirectly via Eq. (9). The latter effort was
successful in the mid 1990s, when a functionalAU satisfying all essential re-
quirements was established in evidence theory [9]. However, this functional is
applicable to all the other theories of imprecise probabilities as well, which fol-
lows from the common properties shared by these theories (Sec. 2). Given any
lower probability functiong

D
associated with a closed convex setD of probabil-

ity distributions (or vice versa),AU(g
D

) is defined by the formula

AU(g
D

) = max
p∈D

[−∑
x∈X

p(x) log2 p(x)]. (10)

It is the maximum Shannon entropy withinD. An efficient algorithm for com-
puting this maximum, which was proven correct for belief functions of evidence
theory [9], is applicable without any change when belief functions are replaced
with arbitrary lower probability functions of any other kind.

Given an arbitrary lower probability functiong onP (X), the generalized ver-
sion of this algorithm consists of the following seven steps:

Step 1. Find a non-empty setA⊆ X, such thatg(A)/|A| is maximal. If there are
more such sets than one, take the one with the largest cardinality.

Step 2. For all x∈ A, put p(x) = g(A)/|A|.

Step 3. For eachB⊆ X−A, putg(B) = g(B∪A)−g(A).

Step 4. PutX = X−A.

Step 5. If X 6= /0 andg(X) > 0, then go to Step 1.

Step 6. If g(X) = 0 andX 6= /0, then putp(x) = 0 for all x∈ X.

Step 7. CalculateAU =−∑x∈X p(x) log2 p(x).

Although functionalAU is a well-justified measure of total uncertainty in the
various theories of uncertainty, it is highly insensitive to changes in evidence due
to its aggregated nature. It is an aggregate of the two coexisting types of uncer-
tainty, nonspecificity and conflict. It is thus desirable to express the total uncer-
tainty,TU, in a disaggregated form

TU = (GH,GS), (11)

whereGH is defined by (8) andGS is defined by (9) and (10). It is assumed
here that the axiomatic requirements are defined in terms of the sum of the two
functionals involved, which is always the well-justified aggregate measureAU.
In this sense the measure satisfies trivially all the requirements. Its advantage
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is that measures of both types of uncertainty that coexist inuncertainty theory
employed (nonspecificity and conflict) are expressed explicitly and, consequently,
the measure is sensitive to changes in evidence.

To appreciate the difference betweenAU andTU, let us consider three sim-
ple examples of given evidence within a finite universal setX and let|X|= n for
convenience: (i) in the case of total ignorance (whenm(X) = 1), we obtainAU =
log2n andTU = (log2n,0); (ii) when evidence is expressed by the uniform prob-
ability distribution onX, then again we haveAU = log2n, but TU = (0, log2n);
(iii) when evidence is expressed bym({x}) = a for all x∈ X andm(X) = 1−na,
then againAU = log2n for all valuesa≤ 1/n, while

TU = ((1−na) log2n,nalog2n).

It is clear thatTU defined by (11) possesses all the required properties in
terms of the sum of its components, sinceGH + GS= AU. Moreover, as was
proven by Smith [13],GS≥ 0 for all bodies of evidence. Additional properties of
GSdefined by (9) can be determined by employing the algorithm for computing
AU, as shown for some properties in Section 7.

It is also reasonable to express the generalized Shannon entropy by the inter-
val [S,S], whereSandSare, respectively, the minimum and maximum values of
the Shannon entropy within the set of all probability distributions that are consis-
tent with a given lower probability function. ClearlyS= AU andS is defined by
replacing max with min in Eq. (10). Then, the total uncertainty, TU′, has the form

TU′ = (GH, [S,S]). (12)

Let us define a partial ordering of these total uncertaintiesas follows:

TU′1≤ TU′2 iff GH1≤GH2 and[S1,S1]⊆ [S2,S2].

Then, due to subadditivity ofS, subadditivity ofTU′ is guaranteed. Indeed,

[SX +SY,SX +SY] 6⊂ [S,S]

for any joint and associated marginal bodies of evidence. However, no algorithm
for computingS that has been proven correct is available as yet.

7 Some Properties of Generalized Shannon Entropy

The purpose of this section is to examine the generalized Shannon entropy defined
by (9). To facilitate this examination, let

F = {Ai|Ai ∈ P (X), i ∈Nq}
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denote the family of all focal sets of a given body of evidence, whereNq =
{1,2, . . . ,q} for some integerq, and letmi = m(Ai) for convenience. Moreover,
let

E =
[

i∈Nq

Ai .

The algorithm for computingS(= AU) produces a partition,

E = {Ek|k∈Nr , r ≤ q}

of E. For convenience, assume that blockEk of this partition was produced ink-th
iteration of the algorithm and letek = |Ek|. Then

S(m) =− ∑
k∈Nr

g
k
log2(gk

/ek)

whereg
k

denotes the lower probability ofEk in k-th iteration of the algorithm.
This equation can be rewritten as

S(m) =− ∑
k∈Nr

g
k
log2g

k
+ ∑

k∈Nr

g
k
log2ek.

It follows from this equation and from Eq. (9) that

GS(m) = S(g
k
|k∈ Nr)+GH(g

k
|k∈ Nr)−GH(m), (13)

whereSdenotes the Shannon entropy.
Assume now thatF consists of pair-wise disjoint focal sets. Then, the Möbius

representation,m, is a positive function since any negative valuemi for someAi ∈
F would clearly violate in this case the requirement that values of the associated
lower probability function must be in[0,1]. When applying the algorithm for
computingSto our case, it turns out that the valuesmi for all Ai ∈F are uniformly
distributed among elements of each focal setAi . This only requires to prove that

∑
i∈I

mi/∑
i∈I

ai ≤mk/ak

for eachk ∈ I and all nonempty setsI ⊆ Nq, whereak = |Ak|. The proof of this
inequality, which is omitted here due to limited space, can be obtained by the
method of contradiction. The maximum entropy probability distribution function,
p, for the given body of evidence is thus defined for allxik ∈ Ai(k∈ N|Ai |) and all
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Ai ∈ F by the formulap(xik) = mi/ai whereai = |Ai |. Hence,

S(m) =−
q

∑
i=1

ai

∑
k=1

p(xik) log2 p(xik)

=−
q

∑
i=1

mi log2(mi/ai)

=−
q

∑
i=1

mi log2mi +
q

∑
i=1

mi log2ai

=−
q

∑
i=1

mi log2mi +GH(m).

Consequently,

GS(m) =−
q

∑
i=1

mi log2mi .

This is clearly a property that we would expect, on intuitivegrounds, the general-
ized Shannon entropy to satisfy.

To examine some properties of the generalized Shannon entropy for nested
bodies of evidence, letX = {xi|i ∈Nn} and assume that elements ofX are ordered
in such a way that the family

A = {Ai = {x1,x2, . . . ,xi}|i ∈ Nn}

contains all focal sets. That is,F ⊆ A . For convenience, letmi = m(Ai) for all
i ∈ Nn.

To expressGS(m), we need to expressGH(m) andS(m). Clearly,

GH(m) =
n

∑
i=1

mi log2 i (14)

To expressS(m), three cases must be distinguished in terms of valuesmi :

(a)mi ≥mi+1 for all i ∈ Nn−1;

(b) mi ≤mi+1 for all i ∈Nn−1;

(c) neither (a) nor (b).

Following the algorithm for computingS, we obtain the formula

GSa(m) =−
n

∑
i=1

mi log2(mi i) (15)
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for any functionm that conforms to Case (a). By applying the method of Lagrange
multipliers, we can readily find out that the maximum,GS∗a(n), of this functional
for somen∈ N is obtained for

mi = (1/i)2(−1/ ln2+α)(i ∈ Nn), (16)

where the value ofα is determined by solving the equation

2−(1/ ln2+α)
n

∑
i=1

(1/i) = 1.

Let sn = ∑n
i=1(1/i). Then,

α =− log2(1/sn)− (1/ ln2)

and, hence,

mi = (1/i)2log2(1/sn)

= 1/(isn).

Substituting this expression formi in (15), we obtain

GS∗a(n) =
n

∑
i=1

(1/i)(1/sn) log2sn

= [(1/sn) log2sn]
n

∑
i=1

(1/i).

Consequently,
GS∗a(n) = log2sn. (17)

In Case (b),S= log2n andGH is given by (8). Hence,

GSb(m) = log2n−
n

∑
i=1

mi log2 i.

The maximum,GS∗b(n), of this functional for somen∈N subject to the inequali-
ties that are assumed in Case (b), is obtained formi = 1/n. Hence,

GS∗b(n) = log2
n

n!1/n
. (18)

Employing Stirling’s formula for approximatingn!, it can be shown that

limn→∞ log2
n

n!1/n = log2e

= 1.442695.
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GS∗b is thus bounded, contrary toGS∗a(n). Moreover,GS∗b(n) < GS∗a(n), for all
n∈N.

Case (c) is more complicated for a general analytic treatment since it covers a
greater variety of bodies of evidence with respect to the computation ofGS. This
follows from the algorithm for computingS . For each given body of evidence,
the algorithm partitions the universal set in some way, and distributes the value of
the lower probability in each block of the partition uniformly. For nested bodies
of evidence, the partitions preserve the induced order of elements ofX. There are
2n−1 order preserving partitions. The most refined partition andthe least refined
one are represented by Cases (a) and (b), respectively. All the remaining 2n−1−2
partitions are represented by Case (c). A conjecture, basedon a complete analysis
for n= 3 and extensive simulation experiments forn> 3, is that the maxima ofGS
for all these partitions are for alln∈ N smaller than the maximumGS∗a for Case
(a). According to this plausible conjecture, whose proof isan open problem, the
difference between the maximum nonspecificity,GH∗(n), and maximum conflict,
GS∗a(n), grows rapidly withn. For example,GH∗(2) = 1 andGS∗a(2) = 0.585,
while GH∗(104) = 13.29 andGS∗a(104) = 3.29. Similarly, the maximum value
of conflict is 36.9% of the maximum value of total uncertaintyfor n = 2, but it
reduces to 19.8% forn = 104. For nested (consonant) bodies of evidence, this
feature makes intuitively a good sense.

8 Conclusions

For the last two decades or so, research in GIT has been focusing on developing
justifiable ways of measuring uncertainty and the associated uncertainty-based
information in the various emerging uncertainty theories.This objective is now,
by and large, achieved. However, some research in this direction is still needed
to improve our understanding of the generalized Shannon entropy, defined either
by (9) or by the interval[S,S]. Results presented in this paper are intended to
contribute a little to this understanding.

In the years ahead, the focus of GIT will likely divide into two branches of
research. One of them will focus on developing methodological tools based on
our capability to measure uncertainty in the various established theories of uncer-
tainty. Methodological tools for making the principles of uncertainty maximiza-
tion, minimization, and invariance operational will in particular be sought due to
the broad utility of these principles [7, 9]. The other branch of research will pursue
the development of additional uncertainty theories. One direction in this research
area will undoubtedly include a comprehensive investigation of the various ways
of fuzzifying existing uncertainty theories.
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Reducing Uncertainty by Imprecise
Judgements on Probability Distributions:

Application to System Reliability∗
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Abstract

In this paper the judgement consisting in choosing a function that is believed
to dominate the true probability distribution of a continuous random variable
is explored. This kind of judgement can significantly increase precision in
constructed imprecise previsions of interest, which of great importance for
applications. New formulae for computing system reliability are derived on
the basis of the technique developed.

Keywords

imprecise probabilities, probability density function, reliability

1 Introduction

Natural extension, a tool to extend statistical knowledge to other domains and to
make a set of available statistical partial evidence coherent, can appear and be
used in different forms. In [1] four equivalent forms of the natural extension were
reported. They are all nothing other than properly stated optimisation problems
for obtaining lower and upper coherent bounds of probability characteristics of
interest. The primal form suggests seeking coherent boundsdefined by a set of
feasible probability distributions, and this set, in turn,is formed by the available
evidence expressed as constraints in the optimisation task. If no evidence is avail-
able (the state of complete ignorance), then the solution issought over the set of
all possible probability distributions, which brings us tothe vacuous probability of
the event of interestA, i.e.,P(A) ∈ [0,1]. The crux of such optimisation problems

∗Participation of V. Krymsky in this work has been supported by NATO grant #26-02-0001.
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is that their solutions are defined on the family of degenerate probability distribu-
tions1, which are included on equal footing in the set of all possible probability
distributions. As proven in [1], solving these optimisation problems, on the set of
all possible probability distributions, gives the same solution as that obtained on
only the set of degenerate distributions. This issue is closely related to the central
theorems and methods of Chebychev systems as described in [2]. All this would
simply be mathematical subtlety, that is, far from practitioners’ interest, if this did
not give us a clue for deriving more precise previsions of interest for continuous
random variables. For these variables it is often not realistic to assume that the
probability masses are concentrated in a few points as opposed to being contin-
uously distributed over the set of possible outcomes. The existence of solutions
on degenerate distributions often results in high imprecision, negating the prag-
matic value of the assessments of interest. For example, in reliability applications
the time to failure of a system/component can not admit (except for very special
cases) the concentration of probability masses in a very fewpoints of the positive
real line. Not being able to utilise such evidence leads to the fact that imprecision
in the reliability of a system grows rapidly as the number of components in the
system increases, making the results rather practically useless [3].

This feature of the natural extension was found disturbing and precluded wider
implementation of imprecise statistical reasoning into reliability analysis. An at-
tempt to mitigate the influence of degenerate probability distributions on the so-
lutions was undertaken in [4]. No significant effect was attained through the in-
troduction of judgements on the skewness and unimodality ofthe distributions
as, in this case, the peaks of degenerate distributions simply become repositioned
and probability masses become redistributed among the peaks. The nature of the
distributions defining the solutions stays the same.

In this paper we explore a more drastic and, as it will be demonstrated, effec-
tive way to exclude the family of degenerate distributions from the set of proba-
bility distributions, which, as was expected, results in more precise previsions of
interest. This is attained through judgements on a value (ora function, in general)
that dominates the probability density functionρ(x) of a continuous random vari-
ableX. That is, we introduce judgements of the formρ(x)≤Ψ(x), whereΨ(x) is
a real-valued positive function satisfying the inequalities 1≤ R

R+

Ψ(x)dx< ∞, and

demonstrate a way of their utilisation. In particular,Ψ(x) can be set asΨ(x) =
K · I[a,b](x) wherea,b∈ R+ anda≤ b, I[a,b](x) is the indicator function such that
I[a,b](x) = 1 if x∈ [a,b], andI[a,b](x) = 0 otherwise, andK ≥ (b−a)−1 is a con-
stant.

Similar ideas of utilising bounds on density functions wereexplored in [5].
The tool of their utilisation was dynamic programming whichgives us numerical

1The probability distribution of a continuous random variable is referred to as degenerate if the
probability masses are concentrated in a finite number of points belonging to the continuous set of
possible states
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solutions of the stated problems, while we suggest an approach to solving the
problems analytically.

Breaking down a multidimensional case,X=(X1, . . . ,Xn), provides a theoreti-
cal basis for system reliability computations, which is a subject of the second part
of the paper.

2 Relevant basics of the approach

Comprehensive coverage of the foundation of the theory of imprecise previsions
can be found in the books [6] and [7]. In this section we brieflydescribe only
those concepts that are necessary to understand the approach developed.

Consider a system consisting ofn components. Letfi j (xi) be j−th function of
thei-th component lifetimexi , i = 1, . . . ,n, and j = 1, . . . ,mi . Suppose that reliabil-
ity characteristics of the components are not known precisely and represented as
a set of lower and upper previsionsai j = M( fi j (xi)),ai j = M( fi j (xi)), i = 1, . . . ,n,
and j = 1, . . . ,mi , which means that there existmi interval-valued judgements for
thei-th component formally represented as expected values. Thefunctionsfi j (xi)
can be regarded as gambles, where a gamble is a real-valued function on a pos-
sibility space whose value is uncertain [6]. If, for instance, fi j (xi) = x, then the
lower previsionai j is the lower bound of the mean time to failure of thei-th com-
ponent; or if fi j (xi) = I[t,∞)(xi), whereI[t,∞)(xi)=1 if xi ∈ [t,∞) and I[t,∞)(xi)=0
otherwise, then the lower previsionai j is the lower bound of the probability of a
failure occurrence within[t,∞).

DenoteX=(X1, . . . ,Xn) a random vector andx = (x1, . . . ,xn) is the vector of
numerical values forX1, ...,Xn. Then, there exists a functiong(X) of the compo-
nent lifetimes that characterises the system’s reliability. The functiong(X) is also
a gamble.

In order to compute the coherent lower and upper previsionsM(g) andM(g)
of interest characterising the system reliability, a proper optimisation problem
(also referred to as the natural extension in its primal form) can be posed

M(g)〈M(gt)〉= inf
ℜn

〈
sup
ℜn

〉
Z

Rn
+

g(x)ρ(x)dx (1)

subject to

0≤ ρ(x),
R

Rn
+

ρ(x)dx= 1,

ai j ≤
R

Rn
+

fi j (xi)ρ(x)dx≤ ai j , i = 1, ...,n, j = 1, ...,mi .





(2)

Here the minimum and maximum are taken over the setℜn of all possiblen-
dimensional density functions{ρ(x)} satisfying conditions (2). That is, each con-
straint in (2) is associated with a subset ofℜn and the intersection of those subsets,
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if not empty, defines the solutions of the above optimisationproblems. If the ini-
tial interval-valued data, forming the constraints, are not consistent, then some of
the subsets ofℜn associated with the constraints are disjoint and the solution does
not exist. The requirement of the existence of a non-empty set of probability dis-
tributions associated with the set of constraints is the only consistency principle
imposed on the initial interval-valued data. This requirement is equivalent to the
principle of avoiding sure loss [6] and is easily subject to technical checks.

If the components of a system are independent, thenρ(x) = ρ1(x1),. . . ,ρn(xn).
In some cases the duals of optimisation problems (1)-(2) canbe stated, which

makes it technically easy to solve them [1]. The duals of (1)-(2) are

M(g) = sup
c0,ci j ,di j

(
c0 +

n

∑
i=1

mi

∑
j=1

(ci j ai j −di j ai j )

)
, (3)

subject toc0 ∈R, ci j ,di j ∈R+ and for anyxi ≥ 0, i = 1,2, ...,n, j = 1,2, ...,mi ,

c0 +
n

∑
i=1

mi

∑
j=1

(ci j −di j )I[t,∞)(xi)≤ g(x). (4)

And

M(g) = inf
c0,ci j ,di j

(
c0 +

n

∑
i=1

mi

∑
j=1

(ci j ai j −di j ai j )

)
, (5)

subject toc0 ∈ R,ci j ,di j ∈ R+ and for anyxi ≥ 0, i = 1,2, ...,n, j = 1,2, ...,mi ,

c0 +
n

∑
i=1

mi

∑
j=1

(ci j −di j )I[t,∞)(xi)≥ g(x). (6)

The validity of the transition from a primal form similar to (1)-(2) to the dual form
is explained in [1], [8].

Problems (3)-(4) and (5)-(6) are linear optimisation problems and and have
technically straightforward solutions.

In some cases dual problems do not exist. This takes place if aprimal op-
timisation problem is not linear. For example, the judgement of independence
among system components, which is equivalent to the introduction of ρ(x) =
ρ1(x1),. . . ,ρn(xn), makes the problem non-linear, and, as a consequence, it leads
to the non-existence of the dual optimisation problem.

3 Extending knowledge: one-dimensional case

Let us consider first a one-dimensional case of extending partial statistical infor-
mation to probability characteristics of interest. That is, we will be focusing in
this section on the construction of new imprecise characteristics provided some
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other imprecise statistical characteristics are known on the same possibility set,
and, more important, we will demonstrate how “soft” judgements on the proba-
bility density function of a random variable can be modelledand utilised in the
framework of the theory of imprecise probabilities.

Assume that there arem interval-valued judgements on probability character-
istics on a specific possibility set, i.e.M ( fi(X))∈ [ai ,ai ], and there is an additional
judgement ofρ(x)≤Ψ(x), 1≤ R

R+

Ψ(x)dx< ∞. The objective is to extend this ev-

idence to the prevision of interestM (g(X)) that cannot be found precisely, as the
initial data are partial.

Write the primal form of natural extension

M (g)
〈
M (g)

〉
= inf

ℜ

〈
sup

ℜ

〉
Z

R+

g(x)ρ(x)dx (7)

subject to

0≤ ρ(x)≤Ψ(x),
R

R+

Ψ(x)dx= H < ∞,
R

R+

ρ(x)dx= 1 and

ai ≤
R

R+

fi(x)ρ(x)dx≤ ai , i = 1,2, ...,m.




 (8)

The dual of the above optimisation problem cannot be straightforwardly writ-
ten. First, introduce a new variablez(x) instead ofρ(x)

z(x) =
Ψ(x)−ρ(x)

H−1
,

and denoteΓ =
R

R+

g(x)Ψ(x)dx; Φi =
R

R+

fi(x)Ψ(x)dx, i = 1,2, ...,m.

It is clear that
R

R+

z(x)dx= 1. Then, optimisation problem (7)-(8) can be rewrit-

ten

M (g)
〈
M (g)

〉
= inf

ℜ

〈
sup

ℜ

〉
R

R+

g(x)ρ(x)dx=

= Γ− (H−1)sup
Z

〈
inf
Z

〉{
R

R+

g(x)z(x)dx

} (9)

subject to

0≤ z(x),
R

R+

z(x)dx= 1, Φi−ai
H−1 ≤

R

R+

fi(x)z(x)dx≤ Φi−ai
H−1 ,

i = 1, ...,m.




 (10)

And finally, the challenge is to solve the following problems

s(g)〈s(g)〉= inf
Z

〈
sup

Z

〉
Z

R+

g(x)z(x)dx, (11)
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subject to (10).
Before we go on to the duals, one consistency condition must be fulfilled. It

is of avoiding sure loss [6] and is transparent from the standof common sense
and can be written as inf( f (x)) ≤M ( f (x)) ≤M ( f (x)) ≤ sup( f (x)). Applied to
objective functions (9), it appears as

inf (g)≤ Γ− (H−1)sup
Z

{
R

R+

g(x)z(x)dx

}
≤

Γ− (H−1) inf
Z

{
R

R+

g(x)z(x)dx

}
≤ sup(g)

Optimisation problems (11) subject to (10) have their duals

s(g) = sup
c0,ci ,di

{
c0 +

m

∑
i=1

[
ci

(
Φi−ai

H−1

)
−di

(
Φi−ai

H−1

)]}
(12)

subject toc0 ∈ R, ci ,di ∈ R+ and for anyx≥0 c0 +
m
∑

i=1
(ci−di) fi(x)≤ g(x). And

s(g) = inf
c0,ci ,di

{
c0 +

m

∑
i=1

[
ci

(
Φi−ai

H−1

)
−di

(
Φi−ai

H−1

)]}
(13)

subject toc0 ∈ R, ci ,di ∈ R+ and for anyx≥0 c0 +
m
∑

i=1
(ci−di) fi(x)≥ g(x).

Thus, having derived the dual optimisation problems (12) and (13), we have
got a tool for utilising “soft” judgements concerning probability density functions
and extending them to other probability characteristics ofinterest defined on a
one-dimensional possibility set.

Example 1. The information concerning a continuous random variableX is
that of ρ(x) ≤ Ψ(x) = K · I[0,T](x) < ∞, whereT,K are fixed positive numbers.
What are the bounds for the expectationM(X)?

The above approach brings us to the following results

M(X) =
KT2

2
− (KT−1)T = T

(
1− KT

2

)
andM(X) =

KT2

2
.

Example 2. Assume now that besides the information stated in example 1we
know precisely the probabilityP{a≤ X ≤ a} = p, where 0≤ a < a≤ T. How
would the given information change the bounds for the expectationM(X)?

The result is

M(X) = T
(
1− KT

2

)
+(T−a) [K(a−a)− p] ,

M(X) = KT2

2 −a[K(a−a)− p] .
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4 Computation of system reliability

Extending knowledge on multidimensional possibility sets, taking into account
imprecise judgements on probability density functions, isundertaken in a similar
way to the one-dimensional case described above. The multidimensional case is
broken down in detail in [9]. In this section we represent theresults concerning
system reliability computations that follow from this case.

As it has been found earlier (see elsewhere [3], [10], [11]),the reliability of a
system,PSeries, the components of which are connected in series given the lower
and upper bounds of the components’ reliabilities and the state of complete igno-
rance concerning their dependence, is calculated according to the formulae

PSeries= M

(
I[t,∞)(min

i
xi)

)
= max

(
0;

n

∑
i=1

p
i
− (n−1)

)
,

and

PSeries= M

(
I[t,∞)(min

i
xi)

)
= min

i
pi ,

wherePSeries≤ PSeries≤ PSeries, andp
i
andpi , i = 1, ...,n are the lower and upper

reliabilities of the components.
By applying the above described approach, the formulas for the calculation

of the reliability of series systems become updated in the light of the evidence
concerning the probability density function of time to failure

PSeries= Γ− (H−1)min
i

(
Φi −ai

H−1

)
= Γ−min

i
(Φi−ai),

PSeries= Γ− (H−1)max

(
0;

n
∑

i=1

(
Φi−ai
H−1

)
− (n−1)

)
=

= Γ−max

(
0;

n
∑

i=1
(Φi −ai)− (H−1) · (n−1)

)
.

The reliability of a system,PParallel, the components of which are connected in
parallel given the lower and upper bounds of the components’reliabilities and the
state of ignorance concerning their independence, is calculated according to the
formulas (see elsewhere [3], [10], [11])

PParallel = M

(
I[t,∞)(max

i
xi)

)
= max

i
p

i
,

PParallel = M

(
I[t,∞)(max

i
xi)

)
= min

(
1;

n
∑

i=1
pi

)
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Their update in the light of the new evidence appears as follows

PParallel = Γ− (H−1)min

(
1;

n
∑

i=1

(
Φi−ai
H−1

))
=

= Γ−min

(
(H−1);

n
∑
i=1

(Φi −ai)

)
,

and

PParallel = Γ− (H−1)max
i

(
Φi−ai

H−1

)
= Γ−max

i
(Φi−ai).

For a system of an arbitrary structure the reliability bounds satisfy the inequalities
[3], [10], [11]:

PArbStruct≥ max
1≤ j≤r

max(0,L j),

wherer is a number of system minimal pathsπ1,π2, ...,πr , L j = ∑
i∈π j

p
i
− (µj−1),

andµj is the number of components belonging to pathπ j , and

PArbStruct≤ min
1≤ j≤s

min

(

∑
i∈K j

pi ;1

)
,

wheres is a number of system minimal cut sets denoted by K1,K2, ...,Ks.
Now by applying the approach developed and using the substitutions pi =

Φi−ai
H−1 , p

i
= Φi−ai

H−1 , we obtain

PArbStruct≥ Γ− min
1≤ j≤s

min

(

∑
i∈K j

(Φi−ai);(H−1)

)
,

PArbStruct≤ Γ− max
1≤ j≤r

max(0,L∗j ),

whereL∗j = ∑
i∈π j

(Φi−ai)− (H−1) · (µj−1).

Example 3. A system consists of two components (n=2) connected in se-
ries, and the reliability of the first component isp1 ∈ [a1,a1] and the second
is p2 ∈ [a2,a2]. One more judgement is of the formρ(x1,x2) ≤ Ψ(x1,x2) = K ·
I{[0,T];[0,T]}(x1,x2), whereK andT are constants andI{[0,T];[0,T]}(x1,x2) is a two-
dimensional indicator function. What is system reliability?

The reliabilities of the components for an arbitrary timetare to be written in
the form (2)

a1≤
T
R

0
I[t,T](x1)

T
R

0
ρ(x1,x2)dx1dx2≤ a1,

a2≤
T
R

0
I[t,T](x2)

T
R

0
ρ(x1,x2)dx1dx2≤ a2.
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Note that in this caseH = KT2, Γ = K(T− t)2, hence

PSeries= Γ−min
i

(Φi−ai) = Γ−
T
R

t

T
R

0
Ψ(x1,x2)dx1dx2 +max

i
(ai) =

= max
i

(ai)−Kt(T− t);

PSeries= Γ−max

(
0;

n
∑

i=1
(Φi−ai)− (H−1) · (n−1)

)
=

= min

(
K(T− t)2;(Kt2 +

2
∑
i=1

ai−1)

)
.

5 Concluding remarks

Judgements concerning the functionΨ(x), which is believed to dominate the true
probability distribution of a continuous variable, are practically elicitable and may
be unambiguously understood by those inexperienced in probabilistic reasoning.
So, a sample probability density function is defined by the totality of the values
ρi = ni

/
(N∆x), i = 1,2, ..., whereni is the number of observed realisations of a

continuous random variableX falling in the i−th bin with a width of∆x, and
N is the size of the sample. For example, in reliability analysis the continuous
random variable is time to failure or time between failures,and usually reliability
characteristics are counted for a time period of 1 year. Thatis, the width of the
bins is equal to 1 year for anyi except for the last bin which is an open interval [xk,
∞). As a matter of fact, any reliability calculation and failure reporting systems
are scaled to one-year assessments so that the experts in thefield are used to think
of reliability characteristics as values scaled to a year. Aquestion of “what would
be the maximum percentage of failures per year for a specifiedcomponent over
its lifetime?” or alike would be quite easy to answer for an expert or to assess
based on even scarce failure evidence.
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Climate Projections for the 21st Century
Using Random Sets∗
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Abstract

We apply random set theory to an analysis of future climate change. Bounds
on cumulative probability are used to quantify uncertainties in natural and
socio-economic factors that influence estimates of global mean temperature.
We explore the link of random sets to lower envelopes of probability fami-
lies bounded by cumulative probability intervals. By exploiting this link, a
random set for a simple climate change model is constructed,and projected
onto an estimate of global mean warming in the 21st century. Results show
that warming estimates on this basis can generate very imprecise uncertainty
models.

Keywords

climate change, climate sensitivity, imprecise probability, random sets, belief functions

1 Introduction

It is widely acceped by now that a discernible influence of anthropogenic emis-
sions of greenhouse gases (GHGs) on the earth’s climate exists. Greenhouse gas
concentrations in the atmosphere have risen by, to name justa few, 30% (car-
bon dioxide), 250% (methane) and 15% (nitrous oxide) in the industrial era since
1750, mainly due to human activity. Empirical evidence for agrowing climate
change signal is mounting, and nearly all climate models need the increased ra-
diative forcing due to growing GHG concentrations to reproduce this signal. Still,
uncertainty abounds. How sensitive is the climate to growing GHG concentra-
tions? What amount of greenhouse gases will humankind put into the atmosphere
in the 21st century?

∗This work has been supported in part by the Deutsche Bundesstiftung Umwelt (German Federal
Foundation of the Environment).
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We believe that the application of imprecise probability concepts carries the
potential to greatly improve the situation in climate change forecasting and inte-
grated assessment of climate change policies. However, an obstacle might be the
dynamical nature of climate change models, and the large number of uncertain
variables which mostly range over continuous possibility spaces. In this paper,
we present an application of random set methods to the estimation of global mean
temperature (GMT) change in the 21st century. We interpretethe correspond-
ing belief functions as a lower envelope of a set of probability measures, and
try to respect this interpretation throughout the reasoning process. The uncertain
model parameters are initially quantified by lower and uppercumulative proba-
bility distribution functions (CDF) on the real line. In section 2, we discuss how
this information can be converted into a random set, combined for independent
model parameters, and projected onto the model output. In section 3, we present
the simple temperature change model, and construct a randomset for its uncertain
parameters. In section 4, the uncertainty in the input values is projected onto an
estimate of global mean temperature change.

2 Methods

2.1 Random Sets of Imprecise CDF Models

Consider an uncertain quantityX that enters a model of some causal relationship,
e.g. of the link between GHG emissions and GMT. The impreciseuncertainty
aboutX shall be described by a lower boundFX : R→ [0,1] and an upper bound
FX : R→ [0,1] for a set of CDFsFX(x) := P(X ≤ x) on the real lineR. In the
following, such an uncertainty assessment will be called animprecise CDF model

MX(F ,F) := {P|∀ x∈ R F(x)≤ P(−∞,x]≤ F(x)} (1)

A monotone set functionP : R → [0,1], P( /0) = 0, P(R) = 1 is a lower en-
velopeor coherent lower probabilityon the Borel algebraR of the real line, if
it defines a non-empty set of countably additive probabilitymeasuresM (P) :=
{P|∀ A∈ R P(A)≤ P(A)}, and∀ A∈ R P(A) = infP∈M (P) P(A) [13, theorem
3.3.3]. An∞-monotone lower envelope is abelief functionBel.

In the theory of Dempster [4], belief functions are generated by a multi-valued
mapping from an underlying spaceΨ = {ψ1, ...,ψn} onto a field of sets, in our
case the Borel algebraR . By means of the multi-valued mapping, aprobabil-
ity mass assignment mon Ψ can be transferred toR , i.e. there existsm : R →
[0,1], with m(A) > 0 for only a finite number of setsF = {E1, ...,En} ⊂ R and
∑A∈R m(A) = 1. The pair(F ,m) is called a (finite support)random set, and the
setsEi ∈ F focal elements. A belief functionBel and its conjugateplausibility
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function Plare connected to a random set by [4, 11]

Bel(A) = ∑
B⊆A

m(B) = ∑
i |Ei⊆A

mi , Pl(A) = ∑
B∩A6= /0

m(A) = ∑
i |Ei∩A6= /0

mi

Thus, knowledge of the random set(F ,m) suffices to determineBel andPl onR .

We explore the relationship between the lower envelope of animprecise CDF
model and a belief function that can be represented by a finitesupport random set
(In the following, the reference to the finiteness of the random set will be omitted).
The goal is to capture the information content of an imprecise CDF model with a
random set.

Proposition 1 LetMX(F ,F) be an imprecise CDF model as defined in (1). Let
A be the algebra generated by the set of half-closed intervals(a,b], a < b of the
real line R. Let (F ,m) be a random set, and BelF , PlF the corresponding belief
and plausibility functions, respectively.

If (I) (F ,m) contains only closed intervals Ei = [xi ,xi ],
(II) (F ,m) includes no pair of focal elements Ei , E j with xi < x j < x j < xi , and
(III) ∀ x∈ R BelF (−∞,x] = F(x), PlF (−∞,x] = F(x),

then ∀ A∈ A BelF (A) = PX(A) := inf
P∈MX(F ,F)

P(A)

Proof. Step 1: Consider an arbitrary(a,b] ∈ A , a < b. We have to show
PX(a,b] = BelF (a,b] andPX(a,b] = PlF (a,b]. SincePX(A) = 1−PX(Ac) and
BelF (A) = 1−PlF (Ac), this implies that the equalities hold for the complement
(a,b]c as well.

1a) PX(a,b] = F(b)−F(a) = ∑
i |Ei∩(−∞,b]6= /0

mi− ∑
j |E j⊆(−∞,a]

mj

= ∑
s(i) |Es(i)⊆(−∞,a]

ms(i) + ∑
t(i) |Et(i)∩(a,b]6= /0

mt(i)− ∑
j |E j⊆(−∞,a]

mj

= PlF (a,b]

1b) PX(a,b] = max[0,F(b)−F(a)] = max[0, ∑
i |Ei⊆(−∞,b]

mi− ∑
j |E j∩(−∞,a]6= /0

mj ]

If F(b) < F(a), there existsE∗ = [x∗,x∗] ∈ F with E∗∩(−∞,a] 6= /0 andE∗ 6⊆
(−∞,b]. Assume an arbitraryE′ = [x′,x′] ∈ F with x′ > a≥ x∗. By condition (II),
x′ ≥ x∗ > b. Thus,E′ 6⊆ (a,b], andBelF (a,b] = 0.

Assume there existsE∗ ∈ F with E∗ ∩ (−∞,a] 6= /0 and E∗ 6⊆ −(∞,b]. By
condition (I)+(II), all Ei ⊆ (−∞,b] ∈ F intersect(−∞,a], andF(b) < F(a).
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Thus, ifF(b)≥ F(a), there is no such focal elementE∗ ∈ F . In other words,
∀ Ei ∈ F Ei 6⊆ (−∞,b]⇒ Ei ∩ (−∞,a] = /0.

⇒ PX(a,b] = ∑
s(i) |Es(i)⊆(a,b]

ms(i) + ∑
t(i) |Et(i)∩(−∞,a]

mt(i)− ∑
j |E j∩(−∞,a]6= /0

mj

= BelF (a,b]

Step 2: Consider an arbitrary union ofk disjoint half-closed intervalsAk =
(a1,b1]∪ ...∪ (ak,bk], a1 < b1 < ... < ak < bk.

Choose a CDFF∗ : R→ [0,1] with F∗(a1) = min[F(a1),F(b1)], F∗(b1) =
F(b1), ..., F∗(ak) = min[F(ak),F(bk)], F∗(bk) = F(bk). Since F∗(a1) ≤
F∗(b1) ≤ ... ≤ F∗(ak) ≤ F∗(bk), such a CDF does exist, and is contained in
MX(F ,F).

P∗(Ak) = F∗(bk)−F∗(ak)+ ...+F∗(b1)−F∗(a1)

= max[0,F(bk)−F(ak)]+ ...+max[0,F(b1)−F(a1)]

= PX(ak,bk]+ ...+PX(a1,b1]

Since the lower envelopePX is super-additive on a union of disjoint sets

[13, Ch. 2.7.4],PX(Ak) = P∗(Ak). Thus,PX(
k
S

l=1
(al ,bl ]) =

k
∑

l=1
PX(al ,bl ]. Since

PX(al ,bl ] = Bel(al ,bl ] as shown in step 1:

2a) PX(Ak) =
k

∑
l=1

∑
i|Ei⊆(al ,bl ]

mi = ∑
i|Ei⊆

k
S

l=1
(al ,bl ]

mi = BelF (Ak)

2b) PX(Ak) = PX(−∞,bk]−PX((−∞,a1]∪ (b1,a2]∪ ...∪ (bk−1,ak])

= F(bk)−F(a1]−PX(b1,a2]− ...−PX(bk−1,ak]

= ∑
i|Ei∩(a1,bk]6= /0

mi− ∑
j |E j⊆

k−1
S

l=1
(bl ,al+1]

mj = PlF (Ak)

Every element ofA is either/0, R, a union ofk∈ N disjoint half-closed inter-
vals, or its complement. For the latter,PX(A) = BelF (A) has been shown in step
1 and 2. For/0, R, PX( /0) = BelF ( /0) = 0 andPX(R) = BelF (R) = 1. ✷

Since the random set(F ,m) contains only a finite number of focal elements,
its corresponding belief and plausibility function cannotfulfil condition (III) of
proposition 1 for continuousF and/orF. For application purposes, however, this
defect is not disturbing. Every imprecise CDF model with continuous lower and
upper bound can be approximated by two step functions approaching the lower
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bound from below and the upper bound from above [7, 12]. Consider two step
functionsSF∗,SF∗ : R→ [0,1] of the form 0= SF(x1) < ... < SF(xk) = 1,

SF∗(x)=






SF∗(x∗i) x∗i ≤ x < x∗i+1

0 x < x∗1
SF∗(x∗k) x∗k ≤ x

SF∗(x)=






SF∗(x∗j+1) x∗j < x≤ x∗j+1
0 x≤ x∗1
SF∗(x∗k) x∗k′ < x

If ∀ x ∈ R SF∗(x) ≥ SF∗(x), the two step functions define an imprecise CDF
modelM (SF∗,SF∗) := {P|∀ x ∈ R SF∗(x) ≤ P(−∞,x] ≤ SF∗(x)}. The fol-
lowing algorithm can be used to construct a random set(F ,m), which fulfils the
requirements of proposition 1, from two arbitrarySF∗≤SF∗. Let the lower bound
have cumulative probabilitySF∗(x∗i) at the “step” pointsx∗1 < ... < x∗n, and the
upper bound have cumulative probabilitySF∗(x∗j ) at x∗1 < ... < x∗m.

Algorithm 1 1. Initialize indices k= 1 (running over the focal elements of
the random set to be constructed), i= 1 (running over x∗i), j = 1 (running
over x∗j ). Let pk denote the cumulative probability already accounted for in
step k. Assign p0 = 0.

2. Construct random set Ek = [x∗j , x∗i ].

3. (a) SF∗(x∗i) < SF∗(x∗j ): mk = SF∗(x∗i)− pk−1 , pk = SF∗(x∗i). Raise
indices k→ k+1, i→ i +1. Return to step 2.

(b) SF∗(x∗i) > SF∗(x∗j ): mk = SF∗(x∗j )− pk−1 , pk = SF∗(x∗j ). Raise
indices k→ k+1, j→ j +1. Return to step 2.

(c) SF∗(x∗i) = SF∗(x∗j ): mk = SF∗(x∗j )− pk−1 . If SF∗(x∗i) = SF∗(x∗j ) =
1 abort the algorithm.

If SF∗(x∗i) = SF∗(x∗j ) < 1, set pk = SF∗(x∗j ). Raise indices k→ k+1,
i→ i +1, j→ j +1. Return to step 2.

Algorithm 1 is well defined. For each stepk, x∗j ≤ x∗i , mk > 0, and the al-
gorithm will always reach the pointsx∗n,x∗m with SF∗(x∗n) = SF∗(x∗m) = 1 and
abort. It constructs a random set(F ,m) with k≤ n+ m focal elements. TheEk

are either closed intervals[ak,bk] or singletons{a} = [ak,ak]. The algorithm is
also applicable to the case of a precise probability, whereSF∗ = SF∗ = SF.

2.2 Combining and Extending Random Sets

In almost all assessments of climate change, uncertainty accumulates from dif-
ferent sources. In general, we need to consider a multivariate uncertainty model
that arises from a vector of uncertain quantitiesX = {X1, ...,Xn}, each of which
is described by an imprecise CDF modelMXi (F ,F) on the real lineR. There are
different ways to construct a joint lower envelopePX from the lower envelopes of
independent marginalsPXi

. They depend on the concept of independence that is
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employed to generate the joint envelope [2, 13]. In general,the resulting envelopes
agree only on product setsA1× ...×An , Ai ⊆ R.

In our case, the lower envelopesPXi
of the independent marginals are rep-

resented by belief functionsBelFi with corresponding random sets(Fi ,mi) =
{(E1i ,m1i ), ...,(Eki ,mki )}. The concept ofrandom set independence[4] leads to
joint belief functions by applying Dempster’s rule of combination to logically
independent “marginal” random sets(Fi ,mi) , 1≤ i ≤ n.

(F ,m) = {(El1...ln = El1× ...×Eln,ml1...ln = ml1 · ... ·mln), 1≤ l i ≤ ki } (2)

It can be easily checked that(F ,m) generates indeed a belief and plausibility
functionBelF andPlF that agree with the joint lower and upper envelopesPX
and PX on product sets, no matter under which concept of independence they
were generated. However, it is less clear, howBelF relates to the different types
of the joint lower envelope on setsA∈ R n that are not product sets. Comparisons
of different independence concepts on finite possibility spaces indicate that ran-
dom set independence yields a lower envelope that is dominated by the envelopes
emanating from epistemic or strong independence [2]. It needs to be further inves-
tigated how far these findings translate to the special case presented here. For the
time being, we use random set independence to construct the joint lower envelope
BelF from the independent marginalsBelFi .

Consider a model of some causal relationship, which generates a transfer func-
tion f : Rn→ Rm, y = f (x). Let the uncertainty in the input variablesx be de-
scribed byMX(BelF ) := {PX |∀ A∈R n BelF (A)≤ PX(A)}. The corresponding
random set(F ,m) = {(E1,m1), ...,(Ek,mk)} can be transferred to the model out-
puty by applying the extension principle for random set-valued variables [5]:

f (Ei) := {y|∃ x∈ Ei y = f (x)} , mf (B) := ∑
f (Ei)=B

mi B∈ Rm (3)

Let ( f (F ),mf ) denote the transferred random set. It corresponds to a belief func-
tion Belf (F ) that is the lower envelope of a set of probabilitiesMY(Belf (F )).
Let f : Rn → Rm be Borel measurable, i.e.∀ B ∈ R m f−1(B) = {x ∈ Rm :
f (x) ∈ B} ∈ R n. Then, every probability measureP on (Rn,R n) is transformed
by the mappingf into a probability measurePf on (Rm,R m) defined by∀ B ∈
R m Pf (B) := P( f−1(B)). Using this definition, we can transform each element
of MX(BelF ) to a probability measure on(Rm,R m), thus generating:

f (MX(BelF )) := {PY |∃ PX ∈MX(BelF ) ∀ B∈ R m PY(B) = PX( f−1(B))}

Proposition 2 LetR n, R m be Borel algebras, f: Rn→ Rm a Borel measurable
transfer function. Let(F ,m), BelF describe the set of probabilitiesMX(BelF ).
Let f(MX(BelF )) be the f -tranformed set of probabilities as defined above.
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Similarly, let( f (F ),mf ) be the f -extension of(F ,m) calculated from equa-
tion (3), and Belf (F ) the corresponding belief function. Then

f (MX(BelF )) ⊆ MY(Belf (F )) := {PY |∀ B∈ R m Belf (F )(B)≤ PY(B)}

Proof. Consider an arbitraryPY ∈ f (MX(BelF )). There exists aPX ∈MX(BelF )
with ∀ B∈ R m PY(B) = PX( f−1(B)). For a particular, yet arbitraryB∈ R m

PY(B) = PX( f−1(B)) ≥ BelF ( f−1(B)) = ∑
Ei⊆ f−1(B)

mi

= ∑
f (Ei)⊆B

mi = Belf (F )(B)

✷

3 A Random Set for a Simple Climate Model

3.1 Global Mean Temperature Model

We use a simple dynamical model to link radiative forcingF(t) to a change∆T
in global mean temperature (GMT) since preindustrial times[14].

Ce ·∆T ′(t) = F(t)−F2x ·
∆T(t)

T2x
(4)

Ce effective ocean heat capacity

F2x radiative forcing for a doubling of atmospheric CO2

T2x climate sensitivity

Differential equation (4) is the simplest type of energy balance model. It equates
the net radiative flux into the system at the top of the atmosphere to oceanic heat
uptakeCe∆T ′. If the radiative forcing was kept constant at a valueF(t) = F2x, the
system would undergo an equilibrium temperature change of∆T = T2x. Climate
sensitivityT2x is a crucial parameter to characterize the response of the climate
system to an increase in GHG concentrations.

The Intergovernmental Panel on Climate Change (IPCC) givesan estimate
of climate sensitivityT2x = [1.5 K,4.5 K] [3]. The panel explicitely refrains from
specifying probabilistic information. Recently, models of intermediate complex-
ity (EMICs) were used to establish probability distributions from a comparison
of model results with historical atmosphere, surface and deep ocean temperature
data [1, 6, 8]. Efforts are hampered by the presence of natural variability, the lack
of long-term data and the multitude of forcings.

In this analysis, we use the probability distributions of [1, 6] to generate an
imprecise CDF model forT2x (fig. 1). The estimates of [1] are shifted to consider-
ably higher values of climate sensitivity compared to [6], ranging up to values of
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Figure 1: Imprecise CDF model forT2x: Shown are 5%, 25%, 50%, 75% and 95% quantiles of
probability distributions from [1, 6]. Estimates of [6] depend on a prior probability forT2x. Estimates
of [1] depend on whether solar forcing (S), volcanic aerosolforcing (V) and tropospheric ozone (T)
was added to greenhouse gas (G) and aerosol forcing (A). The capital letters G, A, T, S, V in the figure
key specify the radiative forcing components that were considered for the particular estimate of [1].

T2x = 22 K. One reason could be that [1] does not compare their results with deep
ocean temperature data. [6] requires the ocean record to restrict T2x from above.
However, [8] considers ocean heat uptake, and fails to discriminate between cli-
mate sensitivity in the rangeT2x = [1 K,10 K]. In this situation, we simply cut of
the probability distributions of [1] atT2x = 10 K, and allocate their total probabil-
ity massP(T2× ≥ 10 K) to this value.

Fig. 1 depicts the resulting ranges for 5%, 25%, 50%, 75% and 95% quantile
estimates in [1, 6]. We interpolate the extreme values of theranges to generate
a lower and upper CDF, and approximate the resulting imprecise CDF model
with two step functionsSF∗ andSF∗ (Fig. 1). There is some arbitrariness here.
It could be resolved by fixing the number of “step” pointsT2x,i∗ andT∗2x, j , and
calculating the optimal approximation according to some accuracy measure [7,
12]. Algorithm 1 is applied to construct a random set(FT2x,mT2x) that corresponds
toMT2x(SF∗,SF∗) := {P|∀ T2x ∈R SF∗(T2x)≤P(−∞,T2x]≤ SF∗(T2x)} (in the
sense of proposition 1).MT2x(SF∗,SF∗) can be compared with the IPCC estimate
[1.5 K, 4.5 K] for climate sensitivity. The probability forT2x ∈ [1.5 K, 4.5 K] lies
in the interval[0,1], for T2x < 1.5K in [0,0.25], and forT2x > 4.5 K in [0,0.75]. The
numbers show thatMT2x(SF∗,SF∗) does not support the IPCC estimate, especially
for high climate sensitivitiesT2x > 4.5 K. This reflects the fact that the upper
bound of the IPCC estimate is not supported by [1, 6, 8].

Effective ocean heat capacityCe is an artificial quantity that arises from the
simple form of the energy balance model (4). It depends on ocean characteristics,
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but also on climate sensitivity [3]. A comparison of model (4) with emulations
of different AOGCMs suggest a functional dependence ofCe on T2x of the form
Ce∼ Tγc

2x with 0 < γc ≤ 1. We specify an interval uncertainty for the parameters
C̄ = Ce(T2x = 3 K) andγc, which is an adequate choice in the light of the large
uncertainty surrounding ocean characteristics like vertical diffusivity [6]. Interval
uncertainty is the simplest form of an imprecise CDF model. Lower and upper
CDF are either 0 or 1. The model can be immediately captured bya random set
(FC̄,γc

,mC̄,γc
) containing just one focal elementE = [40 Wa/m2K, 50 Wa/m2K] ×

[0.6,1] with probability mass assignmentm(E) = 1.
An additional uncertainty concerns the present day global mean warming∆To

since 1860, which enters model (4) as initial value. Estimates of∆To lie in the
range 0.6±0.2 K. We adopt the interval uncertainty [0.4 K, 0.8 K] for∆To, since
its small influence on future GMT projections does not justify a more complicated
imprecise CDF model.

3.2 Radiative Forcing Model

We group the anthropogenic sources of radiative forcingF(t) into carbon diox-
ide, which is the most important GHG, the “other” greenhousegases (OGHG)
including both the remaining direct as well as indirect GHGs, and aerosols. So-
lar and volcanic sources are neglected since we are interested in estimating the
anthropogenic climate change signal.

F(t) = F2x ln

(
CCO2(t)

CCO2(1750)

)
/ ln2+FAerg(EAer(t))+FOGHG h(t) (5)

CCO2 atmospheric CO2 concentration

EAer anthropogenic sulfate aerosol emissions

FAer Total aerosol forcing in the period 1990-2000

FOGHG Total OGHG forcing in the period 1990-2000

The radiative properties of aerosol particles are most uncertain. Aerosols in-
fluence the radiation balance not only directly, but also indirectly by altering cloud
formation processes. The IPCC estimates that the negative forcing of aerosols has
been in the range [-0.8 W/m2, -0.2 W/m2] (direct effect) and [-2 W/m2, 0 W/m2]
(indirect effect) for the period 1990-2000 [10]. [1, 6, 8] have investigatedFAer in
their comparison of model results with historical data. Fig. 2 shows the ranges
for the 5%, 25%, 50%, 75% and 95% quantile estimates from [1, 6]. [8] presents
a histogram probability which can be converted into two stepfunctions for the
lower and upper bound on the CDFs that are supported by the probability masses
allocated to the bins of the histogram. Analogous to the caseof climate sensitivity,
we construct a lower CDFSF∗ and upper CDFSF∗ (solid lines in fig. 2). Algo-
rithm 1 is used to generate the random set(MFAer,mFAer) that corresponds to the
imprecise CDF modelMFAer(SF∗,SF∗).
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Figure 2:Imprecise CDF model forFAer: Shown are 5%, 25%, 50%, 75% and 95% quantiles of
probability distributions from [1, 6], and a histogram probability from [8]. See Fig. 1 for additional
explanation of the figure key.

The probability thatFAer is contained in the IPCC estimate [-2.8 K, -0.2 K]
(direct and indirect effect combined) lies in the range[0.95,1]. In contrast to cli-
mate sensitivity, the IPCC range includesMFAer(SF∗,SF∗) almost entirely. The
results in [1, 6, 8] support a more narrow range, where in particular the potential
of a very strong negative aerosol forcing contribution is discarded.

Estimates for the radiative forcing contributions of indirect GHGs, in particu-
lar troposheric and stratospheric ozone, exhibit relativeerrors between 40%-70%.
The indirect GHGs have contributed around 30-40% toFOGHG in the last decade.
We capture the uncertainty by the intervalFOGHG∈ [0.8 W/m2, 1.2 W/m2].

We link the uncertainty in the time-dependent paths of atmospheric CO2 con-
centrationCCO2(t), future changes in the radiative forcing of the OGHGh(t), and
anthropogenic aerosol emissionsEAer(t) directly to the socio-economic sphere.
Thereby, we neglect any uncertainty about the response of the biogeochemical
cycles to anthropogenic emissions. In a special report on emissions scenarios
(SRES) [9], the IPCC has formulated a range of scenarios describing future path-
ways of society and economy on a global scale. The major branching points of
these scenarios are globalization vs. regionalization andsustainability orienta-
tion vs. growth orientation. In this analysis, we specify just two parametersG
(“Growth”) and S (“Shift”), with CCO2(t) , h(t) ∼ eGt−St2 . We restrictS≤
G/200, so that the growth in atmospheric CO2 concentration and radiative forcing
of OGHGs can be dampened, but not reversed by a “shift”S in the 21st century.

As the future socio-economic development is entirely uncertain, it is appropri-
ate to specify interval uncertainties forG∈ [0.004/a, 0.012/a] andS∈ [0,G/200].
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Growth rates from 0.4% to 1.2% per year lead to atmospheric CO2 concentrations
from 480 ppmv to 1230 ppmv in 2100 (present day: 370 ppmv), andto a forcing
contribution of the OGHG from 1 W/m2 to 4 W/m2. This covers the full range of
the SRES scenarios including uncertainty in the biogeochemical cycles [3].

3.3 Combining the Random Set Information

Most parameter pairs are physically and epistemically independent. Present day
warmingTo depends physically on climate sensitivity and ocean heat capacity,
but knowledge ofTo alone does not constrain the assessment ofT2x andCe. A
more critical issue is the epistemic dependence ofFAer andT2x. Although physi-
cally independent, comparisons of model results with historical data will have a
tendency to produce high estimates ofT2x for a large negative radiative forcing
FAer of aerosols, and vice versa [6]. Neglecting this dependencewill yield a more
imprecise estimate of future GMT change, since the probability weight of com-
binations with large negativeFAer and lowT2x leading to a weak GMT increase,
and with small negativeFAer and highT2x leading to a strong rise of GMT, will be
overestimated. This issue needs to be investigated in further studies. For the time
being, we use equation (2) based on random set independence to combine the ran-
dom sets for all eight parameterspar := (∆T0, T2x, C̄, γc, FAer, FOGHG, G, S) to a
joint random set(Fpar,m).

4 Estimation of Global Mean Temperature Change

Differential equation (4) and radiative forcing model (5) generate a continuous
transfer function that maps the uncertain model parametersto an increase∆T
in GMT since 1860. The extension principle for random sets ([5], equation 3)
transfers the random set(Fpar,m) for the uncertain parameters to a random set
(F∆T ,m) for GMT increase. In our specific case, the imagesf (Ei,par) =
[∆T i(t),∆T i(t)] can be calculated with standard gradient-based optimization meth-
ods. After discretizing time in sufficiently small time steps ∆t, the boundaries of
the range at timetk = k∆t + to are found by solving

∆T i(tk) = min
(∆T0,T2x,C̄,γc,FAer,FOGHG,G,S) ∈ Ei,par

∆T(tk) (6)

subject to ∆T(tl ) = ∆T(tl−1)+ ∆t ·
(

F(tl−1)

Ce
− F2x

Ce
· ∆T(tl−1)

T2x

)
1≤ l ≤ k

∆T i(tk) = max
(∆T0,T2x,C̄,γc,FAer,FOGHG,G,S) ∈ Ei,par

∆T(tk) (7)

subject to ∆T(tl ) = ∆T(tl−1)+ ∆t ·
(

F(tl−1)

Ce
− F2x

Ce
· ∆T(tl−1)

T2x

)
1≤ l ≤ k
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Figure 3:Image[∆T(t),∆T(t)] of a single focal elementE∗ = [1.8 K, 6.0 K]× [-1.37 W/m2,-0.62
W/m2] ×(∆To,C̄,γc,FOGHG,G,S) ∈Fpar for the years 2025, 2050, 2075 and 2100. Shown are also the
cases with solely socio-economic or solely forcing and climate uncertainty.

It can be checked that∆T(t) is monotone in∆To,C̄,γc,FAer,FOGHG,G,S and
convex inT2x. The latter is due to the fact thatT2x influences∆T both directly
and indirectly through its connection to effective ocean heat capacity. Thus, pro-
gram (7) is a well-defined convex optimization problem. Carehas to be taken with
program (6). The solution will be a boundary point of the focal elementEi,par, and
we have to check both for the lower and upper bound ofT2x.

Fig. 3 shows the image[∆T(t),∆T(t)] of a single focal element. The range
of the image grows considerably in time. We performed a sensitivity analysis
with partly resolved uncertainty. Uncertainty in the radiative forcing and climate
parameters dominates the overall uncertainty in the first half of the 21st century,
but socio-economic uncertainty becomes equally importantin the second half of
the 21st century. Most strikingly, the uncertainties on thesubspaces combine in a
nonlinear way. A much larger overall uncertainty is found inparticular for cases
where the natural systems and socio-economic uncertainties are of similar size.

The projected random set(F∆T ,m) for GMT increase can be used to construct
the lower CDFF∆T and upper CDFF∆T . It is important to note that the corre-
sponding imprecise CDF modelM∆T(F ,F) := {P|∀ x∈R F∆T(x)≤P(−∞,x]≤
F∆T(x)} can be more imprecise thanM∆T(BelF∆T ) := {P|∀ A∈A BelF∆T (A)≤
P(A)}, i.e.M∆T(F ,F)⊇M∆T(BelF∆T ). This is due to the fact, that after applying
the extension principle, the focal elementsEi,∆T = [∆T i(t),∆T i(t)] ∈ F∆T might
violate condition (II) of proposition 1. In this case, the lower envelopeP∆T of
M∆T(F ,F) is strictly smaller thanBelF∆T for someA ∈ A . Recalling proposi-
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a. Full uncertainty b. Forcing and climate uncertainty only

c. Climate uncertainty only d. Forcing uncertainty only

Figure 4:Lower and upper CDFs for GMT increase∆T in the years 2025, 2050, 2075, 2100

tion 2, it can be seen thatM∆T(F ,F) does not contain more information than
(Fpar,m), which captures the uncertainty in the model parameters, would allow.

M∆T(F ,F)⊇M∆T(BelF∆T )⊇Mpar(BelFpar)

Fig. 4 shows the lower and upper CDFs that are generated by therandom set
(F∆T ,m). We consider the area between lower and upper CDF as an indicator for
the imprecisionin the uncertainty. It can be seen that the imprecision in theGMT
estimate for the case of full uncertainty in the model parameters is enormous.
This is partly due to the large number of uncertain parameters, as a comparison
with the other cases shows. However, the cases (4.b) and (4.c) also exhibit large
imprecision. This reflects the fact that the underlying imprecise CDF models for
the climate parameters are already very imprecise. Certainly, they are conservative
estimates, as the results of different studies were not weighed against each other.
Some imprecision is also induced by the combination of the uncertainty for single
parameters using random set independence (sec. 3.3).

The results can be compared with the IPCC estimate [1.8 K, 6.6K] for GMT
increase in 2100 relative to 1860 [3]. The probability for∆T ∈ [1.8 K, 6.6 K] lies
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in the interval[0,1], for ∆T < 1.8 K in [0,0.95], and for∆T > 6.6 K in [0,0.965].
Despite the large range of the IPCC estimate, the uncertainty in GMT increase
is too imprecise to discriminate against values outside this range. The probability
mass allocated to values smaller than 1.8 K stems from randomsets allowing for
climate sensitivity values that are below the IPCC estimatefor climate sensitivity.
Similarly, the probability mass allocated to GMT increaseshigher than 6.6 K
is due to climate sensitivity values above the IPCC estimate. As a comparison
of (4.c) and (4.d) underlines, the uncertainty in climate parameters is the most
influential factor on the uncertainty in GMT increase.

5 Conclusion

Imprecise probability concepts carry the potential to consistently capture the dif-
ferent types of uncertainties and different degrees of knowledge that are encoun-
tered in climate change analysis. However, they need to be applicable to dynam-
ical problems with a large number of continuous uncertain variables. We suggest
that imprecise CDF models are conceptually flexible and mathematically tractable
enough to fulfil these competing requirements to some extent. When the impre-
cise CDF model is bounded by lower and upper step functions onthe real line, the
information about the encompassed set of additive probabilities can be condensed
in a random set(F ,m). The corresponding belief functionBelF is the lower en-
velope of the imprecise CDF model on the algebra generated bythe half-closed
intervals of the real line. Moreover, if the random set extension principle is used
to project a random set onto the range of a measurable function, no information is
added in the sense that every additive probability dominatingBelF is transferred
into a probability dominating the “extended” belief function.

We have constructed a random set for a simple climate model, and projected it
onto an estimate for global mean temperature increase. The resulting estimate is
very imprecise, with uncertainties about socio-economic development, radiative
forcing and climate characteristics combining in a nonlinear way. The large im-
precision of the estimate has different reasons and implications. Firstly, we incor-
porated a very broad range of factors in the analysis. Imprecision will be reduced
if the range of factors is limited by formulating more specific questions. Secondly,
we combined the random sets of single uncertain factors by assuming random set
independence. This has increased the imprecision in the overall estimate, since
aerosol forcing and climate sensitivity are not epistemically independent, when
estimated from the present day climate change signal. Thirdly, the CDF models
for the single parameters should be considered conservative estimates, which can
be improved upon, when more comparisons of model results with historical data
become available. Imprecision can be reduced in particular, if it is discriminated
between the reliability of different models and methods.

Nevertheless, the results show that uncertainty is a key issue in the integrated
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assessment of climate change. Random set methods provide new insights into the
structure of the uncertainty, particularly into its imprecision. The link to imprecise
CDF models seems to be an important yardstick for assessing information losses
when combining random sets, and applying the extension principle. More theo-
retical work is needed here to enhance the applicability of random sets to climate
change analysis. In addition, methods need to be developed to determine impre-
cise CDF models directly from a comparison of model results with historical data.
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Abstract

For many problems there is only sufficient prior informationfor a Bayesian
decision maker to identify a class of possible prior distributions. In such cases
it is of interest to find the range of possible values for the prior expectation
for some real valued function of the parameter of interest. Here we show
how this can be done when the imprecise prior assessment is based on linear
constraints. In particular we find the joint range of possible values for a pair
of such functions. We also study the joint range of the posterior expectation
for a pair of functions.

Keywords

linear constraints, probability assessment, Bayesian inference, Metropolis-Hastings
algorithm

1 Introduction

Consider the usual statistical inference problem where a subjective Bayesian must
select a prior probability distribution which reflects their prior knowledge and be-
liefs about the unknown state of nature. Often one is unable to actually choose a
single prior even though some prior information is present.When this occurs the
Bayesian often selects a family of possible prior distributions. In such cases one
could be interested in the range of possible values for some function defined on
the the family of possible priors. More generally one could be interested in the set
of possible values for a pair of functions. By judiciously selecting different pairs
of functions such a graphical representation could help theBayesian assess how
sensible their initial choice for the family of priors really is. These graphical rep-
resentations could help a pair of experts resolve possible conflicting prior beliefs.
It could be used to check for areas of disagreement and to see how adjustments of
some of their beliefs could lead to a merging of opinions.

361
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In section two we assume that the parameter space contains only a finite num-
ber of points, sayk. If p = (p1, . . . , pk) denotes a typical prior distribution we
assume that the prior information can be expressed through linear equalities and
inequalities involving thepi ’s. This restricts the class of possible priors to a con-
vex subset,C say, of thek−1 dimensional simplex of possible probability vectors
of lengthk. NoteC must be a convex polytope generated by a finite number of
extreme points or vertices. Letφ denote a real valued function defined on the pa-
rameter space. Then its prior expectation is a linear function onC . Dickey (see
Dickey (2003)) has developed an interactive computing environment which com-
putes the minimum and maximum of its expectation overC . This programs allows
the statistician to incorporated their prior information in stages and see how the
range ofφ changes. Here we are interested in finding the range of a pair of such
functions. Because the prior expectations of the two functions are linear functions
of p the range of possible values must be a convex set. Moreover, its extreme
points must be contained in set of points which are images of the extreme points
of C . Hence, this problem is easily solved if one knows the extreme points ofC .
But these can be found using a program that developed by Fuduka. See Fuduka
(2003).

When considering the posterior expectation of such functions our problem
becomes much more difficult analytically since the posterior expectation is no
longer a linear function overC . However, knowing the extreme points ofC lets
one find an approximate solution quite easily. Using these points one can generate
random values inC by assigning random weights to them. Then one finds the
values of the two functions at each of the realizations and plots these pairs of
values.

In section three we consider the situation where the parameter is ar dimen-
sional vector. We assume that it belongs to a convex polytopein r-dimensional
Euclidean space defined by some known linear equalities and inequalities which
reflect some of prior information of the statistician. A Bayesian needs to select
a prior or possibly a family of prior distributions over thisset to further reflect
their uncertainty. For a given prior one is interested in computing prior and pos-
terior expectations of some function of the parameter. In practice, it is usually not
possible to make independent draws from a probability density defined on such a
set. In such cases statisticians often employ Markov chain Monte Carlo methods
to generate dependent samples from the posterior from whichexpectations can be
computed approximately. Here, we use the Metropolis-Hastings algorithm to con-
struct dependent samples drawn from a prior of interest. If the statistician selects
as their family of priors all possible convex combinations of some finite collection
of priors defined on the parameter space then for any pair of functions defined on
the parameter space one can find the range of all possible values of their prior or
posterior expectations.

As far as we know statisticians have not really addressed problems where
imprecise knowledge is expressed through linear constraints. In section four we
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will note examples of somewhat similar problems that have been studied in the
operations research literature. Finally, we will point outsome of the difficulties
when either the dimension ofC or the parameter space gets too large.

2 The parameter space is finite

We begin by assuming that the parameter space contains only finitely many points,
sayk. In k-dimensional Euclidean space letΛ denote thek−1 dimensional sim-
plex of p vectors withpi ≥ 0 and∑k

i=1 pi = 1. We assume that the known relations
among thepi ’s can be expressed by

Ap= a (1)

whereA is a knownr×k matrix anda is a known vector of lengthr and

Bp≤ b (2)

p≥ 0 (3)

whereB is a knowns× k matrix andb is a known vector of lengths. The set of
p∈ Λ which satisfy the above equations form a closed convex subset of Λ which
we will denote byC .

Note that the interior ofC is empty but we assume that properly considered
C will have a nonempty interior in some smaller dimensional Euclidean space
with a dimension of at least two. Ifφ1 andφ2 are two functions defined on the
parameter space we letC (φ1,φ2) denote their range of possible values overC . Our
problem is to find this set. To see what could happen in practice we considered
the following simple example.

Example 1 We let k= 10and imposed two equality constraints and two inequal-
ity constraints. The equality constraints were p5 = p6 and∑10

i=1 ipi = 5.5 while the
inequality constraints were p1 ≤ p2 and∑4

i=1 pi ≤ 0.5. When doing the posterior
calculations we assumed that the probabilities of seeing the observed data under
the 10 possible parameter values were 0.1, 0.15, 0.09, 0.2, 0.3, 0.2, 0.1, 0.05, 0.07
and 0.02.

As we noted in the introductionC (φ1,φ2) is a convex set whose extreme points
are contained in the image of all the extreme points ofC . Hence, this becomes an
easy problem once we know the extreme points ofC .

Fortunately for many problems the extreme points ofC can be found easily
using a program that is available over the Internet. See Fuduka (2003). It turns out
for our example thatC has 28 extreme points.

For definiteness we letφ1(i) = (i−5.5)2 for i = 1, . . . ,10 andφ2 be the indi-
cator function of the set{2,3,4,5}.
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Plotting φ1 andφ2 at the extreme points ofC we found the seven extreme
points ofC (φ1,φ2).

Since we know the extreme points ofC we can use the Dirichlet family of
distributions to generate a fairly flexible class of distributions which take values in
C and from which one can simulate directly. Ifq1, . . . ,qm are the extreme points of
C andW is Dirichlet(α) whereα = (α1, . . . ,αm) then∑M

i=1Wiqi defines a random
distribution onC . In some cases one may be able to make a judicious choice of
α if some partial information about theφ’s are available. For our example we
generated 1,000 random values using the Dirichlet distribution with each of the
10 parameter values set equal to 0.1.

In the upper plot of Figure 1 we plotted the posterior expectations of the
φ’s for these 1,000 pairs of values along with the seven extreme points for the
prior expectations. The prior expectations are darker and four of these points are
clearly visible. They form the lower boundary ofC (φ1,φ2). Another, (14.03,0.56),
is clearly visible as well but maybe hard to identify becausethe plot is quite small.
The other two, (3.82,0.64) and (4.58,0.67), are totally obscured by the posterior
expectations. As to be expected the posterior expectationsform a smaller set than
the prior expectations.

Being able to find the extreme points ofC is a powerful tool. In our somewhat
limited experience the program we used seems quite good. In one constrained
problem we considered in a different context it found over 28,000 extreme points.
Using the Dirichlet distribution on the set of weights associated with the extreme
points is a convenient distribution to sample from. These distributions are known
as multivariate B-splines and are well studied. See for example Dahmen and Mic-
chelli (1983). If one had a closed form expression for their densities then one
could use importance sampling to approximate expectationsunder other densi-
ties. Unfortunately this can only be done in practice for very small problems. See
for example Choudhuri (2003).

In practice one would use a much larger sample that 1,000 whenstudying the
posterior expectations. But if the dimension ofC gets to large one may not be
able to take a large enough sample to get a reasonable approximation. In such
cases one can find the minimum or maximum of the posterior expectation of a
particularφ using a random search. The basic idea underlying random searches is
well know and is quite simple. See for example Swann (1974).

3 The parameter space is a convex polytope

Here we will consider cases where the parameter space is no longer finite. We
will assume that the parameter is am dimensional vector,θ and that any possible
choice forθ must satisfy

Aθ = a (4)
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whereA is a knownr×m matrix anda is a known vector of lengthr and

Bθ≤ b (5)

whereB is a knowns×mmatrix andb is a known vector of lengths.
These constraints represent some of the statistician’s prior information about

θ. The parameter space,Θ, is the set of allθ which satisfy the above two equations.
It is a convex polytope inm dimensional Euclidean space with an empty interior.

We begin by assuming that the statistician can select a priordensity f over
the parameter space to reflect the rest of their prior information. After discussing
this case we will consider the situation where the statistician can only determine
a family of possible prior densities.

Let φ denote some function defined onΘ. Then we are interested in finding

µ=
Z

Θ
φ(θ)h(θ)dθ (6)

approximately. Interesting choices ofh include f and the posterior density ofθ
under f given the data.

For most cases of interest this means employing Markov chainMonte Carlo
methods. Here we will use the Metropolis-Hastings algorithm. With the Metropolis-
Hastings algorithm one generates dependent observations,Y1,Y2, . . . from a suit-
able chosen Markov chain with values inΘ and then calculates

µ̂n =
1
n

n

∑
i=1

φ(Yi)

In nice situations ˆµn→ µ almost surely.
If the current value of the chain isθ∗ then one selects a proposal value for the

next possible value in the sequence,θ′, according to some probability distribution.
Whether or not this new value is used depends on this probability distribution and
the value ofh at the two points. Ifq(u,v) denotes the probability of selectingv as
the proposal point whenu is the current value we let

R=
h(v)q(v,u)

h(u)q(u,v)
(7)

and accept the proposal with probability min(1,R). From this equation we see that
the densityh needs to be know only up to a constant since the value ofRdoes not
depend on this value.

We now explain how this can be done for our problem. Supposeθ∗ is our
current state which is assumed to lie in the relative interior of Θ. In particular,
this means that it yields a strict inequality in all the equations in 5. There is an
intuitive two step process by which we can choose the proposal. First, we select a
random direction,d, in Θ. Remember that even thoughd is a vector of lengthm
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it must remain inΘ which is essentially a lower dimensional set. The distribution
for choosingd will not depend on the valueθ∗ Next, we find the set of points in
Θ which lie either in the directiond or −d from θ∗ and choose the proposal at
random from this set.

It is important to note that for this scheme ifθ′ is the proposal then

q(θ∗,θ′) = q(θ′,θ∗)

This follows because ifd is the direction fromθ∗ to θ′ then the only way to move
from θ∗ to θ′ is if the directionsd or−d were selected in the first step. Of course
the same is true if we are moving fromθ′ to θ∗. Clearly, the second step has
the same distribution no matter which of the two points was chosen as the initial
point.

To implement this scheme we proceed as follows. To get our directiond we
choose at random a vector fromS , the unit sphere inm dimensional Euclidean
space and then project it onto the null space ofA. Next, we normalize this vector
so that its length is one and denote it byd. Remember thatd∈ S . LetS(A) denote
the the subsetS consisting of all vectors which can be generated in this way.Since
we use the uniform distribution on the surface ofS to choose the first vector,
the distribution ofd must be uniform onS(A). This follows by symmetry. The
probability ofd falling in any region of some fixed shape is independent of the
location of the region inS(A).

Let θ∗ denote a point which lies in the relative interior ofΘ and consider
vectors of the form

θ∗+ αd (8)

whereα is a real number. Note ifd does not belong to the null space ofA this
point cannot belong toΘ wheneverα 6= 0. On the other hand ifAd = 0 andα
is sufficiently close to zero then this point will belong toΘ. Hence,α should be
selected from the set of possible values that satisfy all theconstraints of equation
5. This is a total ofs constraints. Each constraint will result in either an upperor
lower bound forα. Consider the interval formed by the maximum of these lower
bounds to the minimum of these upper bounds. This is the rangeof possible values
for α for which the vector in equation 8 will belong toΘ. Given aθ∗ and ad in
this equation then one just selects a value forα from the uniform distribution on
its interval of possible values resulting in the proposal

θ′ = θ∗+ αd

To recap, this is essentially a very simple procedure. Givena current value in
the interior ofΘ we first pick a random direction inΘ and then find how far we can
move either in this or the opposite direction and still remain in Θ. Note that this
method of selecting a proposal point does not depend in any way on the function
h although from equation 7 the probability of it being accepted does depend onh.
Whenh is the uniform distribution then the proposal is always accepted.
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Suppose now the statistician does not have enough prior information to select
a single prior density overΘ but can only specify a family of possible priors on
Θ. A convenient and often sensible choice for such a family is all possible convex
combinations of some finite set of densities. Letf1, . . . , fn denote such a finite set
of densities andΠ the be the family of all possible convex combinations of the
fi ’s. For a functionφ define onΘ let Π(φ) be the range of possible values of the
prior expectation ofφ as the prior ranges over all members ofΠ. Since for eachfi
we can find itsφ expectation approximately we can findΠ(φ) approximately. It is
just the interval from the minimum to the maximum of thesen prior expectations.
Suppose instead we wished to find the joint range of the prior expectations of two
functions as the prior ranged overΠ, sayΠ(φ1,φ2). This is easily done since it
is just the convex hull of all points of the form(

R

φ1 fi ,
R

φ2 fi) for i = 1, . . . ,n.
Posterior calculations are handled in exactly the same way since for any prior
in Π the posterior is just a convex combination of then posteriors. Finally, we
emphasize the importance of only needing to know any probability density up to
a constant since for most of these kind of problems the normalizing constant will
be unknown.

Example 2 We let m= 5 and supposedθ is the parameter for the multinomial
distribution. We imposed the constraintsθ1≤ θ2, (θ1 +θ2)/2≤ (θ3 +θ4+θ5)/3
andθ4≤ θ5 to get the parameter spaceΘ. We assumed the class of possible priors
is all possible convex combinations of three Dirichlet distributions restricted to
Θ. These were taken to be Dirichlet(2,2,2,2,2), Dirichlet(0.5,0.5,0.5,0.5,0.5) and
Dirichlet(0.5,1.0,1.5,2,2.5). The two functions of interest wereφ(θ) = θ4−θ3 and
φ2(θ) = θ5− θ3. To compare the prior and posterior expectations we assumed
that a random sample of size 20 had been observed with the observed counts of
states 1, 2, 3, 4 and 5 being 2, 3, 4, 3 and 8 respectively.

Using our methods we found approximately the three extreme points ofΠ(φ1,φ2)
and the corresponding extreme points for the posterior problem. As we noted be-
fore it is crucial that the densities onΘ need only be known up to a constant to find
these integrals approximately. The results are given in thelower plot of Figure 1.
The prior expectations are marked by 0 and the posterior expectations are marked
by x. As to be expected the posterior range is much smaller than the prior range.
Using our approach and considering various sets of constraints, families of priors,
choices ofφ1 andφ2 and hypothetical samples can be useful in helping one select
a sensible representation of their prior beliefs for a particular problem.

We end this section by noting that our method of picking a proposal point can
be adapted to the random search method we mentioned in section 2. Formally, the
two spacesC andΘ are essentially the same. In the random search algorithm given
a point in the interior ofC one needs to be able to choose a point at random from
a small neighborhood that contains it. Hence after a direction has been selected
at random rather than allowing a move that is as far as possible in either direction
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Figure 1: The upper plot contains the seven extreme points for the prior expecta-
tions and the plot of 1,000 posterior expectations for the functionsφ1 andφ2 in
Example 1. The lower plot gives the extreme points for prior (marked by 0) and
posterior (marked byx) expectations of(φ1,φ2) for Example 2. In both cases the
horizonal and vertical axes are theφ1 andφ2 expectations respectively.
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one restricts the new point to be no more thanε away in either direction from the
current point whereε > 0 is fixed.

4 Discussion

Although constraints seem a natural way to incorporate prior information into an
inference problem they have not been widely considered in the statistical litera-
ture. The main reason seems to be that they are difficult to deal with both theo-
retically and practically. Betrò and Guglielmi (2000) considered robust Bayesian
analysis under moment constraints in a fairly abstract setting and concluded that
none of the current algorithms were good enough to be adoptedfor routine use.
Generating random samples from distributions defined over bounded subsets ofm
dimensional Euclidean has been considered in a variety of contexts. Smith (1984)
considers the problem of generating independent uniform observations from a
bounded region while Belisle, Romeijin and Smith (1993) considers algorithms
for generating observations from a general multivariate distribution. They assume
that the region of interest is open with a nonempty interior which will not work
here. Boender et al. (1991) and Chen and Schmeiser (1993) consider somewhat
related problems.

At the present time Markov chain Monte Carlo methods seem to be the best
way to handle the types of problems considered in section 3. They come with no
guarantees however. If run long enough they will converge tothe correct answer
but in a given example it can be very difficult to know when to stop. Whenm is
large it is impossible to visualizeΘ. From our experience, it seems one should
select a starting value forθ that is somewhere in the “center” ofΘ. In some cases
it seems that it is possible for the chain to spend long periods trapped in a corner
near the boundary ofΘ. If you start in the center then any region ofΘ you even-
tually reach you will also eventually leave. When trying to compute equation 6
approximately it is not necessary to visit every niche and corner ofΘ especially
those whereh puts little weight. But in examples we have studied we have seen
that it can take a very long time to reach certain regions verynear the boundary.
As be noted by many authors whenm increases we must deal with the “curse of
dimensionality”. For a helpful discussion on the convergence of Markov chain
Monte Carlo simulations see Geyer (1992) and Gelman and Rubin (1992).

The methods discussed here not only can help a single statistician evaluate
the consequences of their prior assessments but could help apair of experts re-
solve possibly conflicting prior beliefs. It can be used to check how areas of dis-
agreement will effect their inferences. It could help them study how adjustments
of some of their beliefs could lead to a merging of opinions. Clearly this is not
a theory of how to readjust one beliefs when face with new information but a
way to explore the consequences of readjustments of linear constraints. Here we
have emphasized exploring jointly the prior or posterior expectations for a pair of
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functions. The methods work for jointly exploring three andeven more functions
however convenient graphical representations are no longer possible.

Our simulations were done usingR. We are preparing a small package that
would make it easy for others to implement these methods. Once it is finished we
will submit it to theR archives for public distribution. We hope to complete this
sometime this year.

Finally, the authors wish to thank Charles Geyer for many helpful discussions.
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Continuous Linear Representation of
Coherent Lower Previsions
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Universiẗat Bremen, Germany

Abstract

This paper studies the possibility of representing lower previsions by con-
tinuous linear functionals. We prove the existence of a linear isomorphism
between the linear space spanned by the coherent lower previsions and that
of an appropriate space of continuous linear functionals. Moreover, we show
that a lower prevision is coherent if and only if its transform is monotone. We
also discuss the interpretation of these results and the newlight they shed on
the theory of imprecise probabilities.

Keywords

coherent lower previsions, Möbius transform, Choquet’s theorem, Bishop-de Leeuw
theorem, Dempster-Shafer-Shapley representation theorem

1 Introduction

The theory of imprecise probabilities especially that of coherent lower previsions
has been designed to mathematically cope with subjective behavior in decision
situations (cf. Walley [11]). It has evolved so extensivelythat coherent lower pre-
visions have been repeatedly reinvented under different names like e.g. “coherent
risk measures” (cf. Delbaen [4]) or “maxmin expected utility” (cf. Gilboa and
Schmeidler [7]).

From an applicational and often also mathematical point of view nonlinear
functionals like coherent lower previsions cannot as nice be handled as (mono-
tone) continuous linear functionals. So, in this paper, we are interested in repre-
senting the former functionals by the latter. For nonadditive set functions such a
representation is well-known as Dempster-Shafer-ShapleyRepresentation Theo-
rem in the discrete case or as Möbius transform in the general case (cf. Denneberg
[5], Gilboa and Schmeidler [6] and Marinacci [10]).

The main steps of constructing such a transformed set function run as follows.
First, given a totally monotone set functionν on an algebraA , to every setA∈ A
is assigned a functioñA on the extreme points of the convex set of normalized
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totally monotone set functions and defined byÃ(η) := η(A). Since the extreme
points are the filter games and therefore{0,1}-valued (cf. Choquet [3] p. 260 f.)
all Ã can be interpreted as characteristic functions of the sets{η | η(A) = 1}.
Then, by different methods, it can be shown that there existsa bijective mapping
from the set of totally monotone set functions to the set of (positive) measures on
the σ-algebra generated by thẽA, A ∈ A . Finally, this bijective mapping can be
extended to the linear spaces each spanned by the respectiveclass of set functions.

In this paper we will show that the main results of these theorems do not
presuppose the functions being totally monotone set functions. Even a structured
domain like an algebra is not necessary to obtain analogous results for coherent
lower previsions. In our main theorem (Theorem 2) we providea representation
theorem for coherent lower previsions which contains results analogously to those
sketched in the preceding paragraph for totally monotone set functions.

2 Preliminaries

Let Ω be a nonempty set,B(2Ω) the linear space of bounded (w.r.t. the supremum
norm) real-valued functions onΩ andK⊂B(2Ω) be nonempty. To avoid laborious
considerations of special cases, we will assume that there is at least one nonzero
function inK. A lower previsionon K is a real-valued functionalP : K → R. A
lower previsionP is calledcoherent, if P( f ) ≥ ∑n

i=1 λiP( fi)+ λ0 wheneverf ≥
∑n

i=1 λi fi +λ0 with f , fi ∈K, λi > 0,λ0∈R, n∈N. This definition is not the usual
one (cf. Walley [11, Definition 2.5.1]) but it follows immediately from Proposition
3.1.2 (d) and Lemma 3.1.3 (b) in Walley’s book and it will be ofuse to prove a
functional beingnotcoherent. Furthermore, this characterization of coherence can
nicely be interpreted in the following way. As usual,Ω denotes a possibility space,
K a set ofgambles, i.e. positive or negative rewards depending on the uncertain
stateω ∈ Ω. A lower previsionP of a gamblef is then the supremum buying
price for f one is willing to pay. Since the system of buying prices have to fulfill
some justified consistency properties, Walley introduced the notion of coherence
which, using the characterization given above, means that,whenever a gamblef
is dominating a portfolio of other gambles (possibly including a sure gain or loss
λ0) independently of the stateω, one should be willing to pay at least as much for
f as one is willing to pay for the individual gambles included in the portfolio (not
for the portfolio as whole - this would be considered as one gamble).

If K consists of characteristic functions thenP can be interpreted as a set func-
tion and then is called acoherent lower probability. We have shown in [8] that the
normalized exact games in cooperative game theory are the coherent lower proba-
bilities. Simple examples of coherent lower probabilitiesare unanimity games, i.e.
set functionsuA on an algebraA with A∈A anduA(B) = 1 if B⊃ A and 0 else. If
K is a linear space containing constant functions thenP is a coherent lower previ-
sion if and only if it is monotone, positively homogeneous, superadditive, normal-
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ized (i.e.P(1) = 1) and constant additive (i.e.P( f +c) = P( f )+P(c)). This char-
acterization is almost equivalent to that of “coherent riskmeasures” (cf. Delbaen
[4] and Maaß [9]). It is well-known (cf. Walley [11], Chapter3) that every coher-
ent lower prevision can be extended coherently to the linearspace of all bounded
real-valued functions. The minimum of all such extensions exists and is called the
natural extension. Since coherence implies that every functionf ∈ K is mapped
into the bounded interval inff ,supf , CLP(K) is contained inBLP(K). Denote by
BLP(K) the linear space of all lower previsions onK which are bounded w.r.t. the

operator norm‖ ·‖, ‖P‖ := supf∈K, f 6=0
|P( f )|
‖ f‖∞

, and byCLP(K) the convex set of all
coherent lower previsions onK.

The linear spaceBLP(K) will additionally be considered as a topological
space endowed with the topologyT having as subbase the setsB(P, f ,ε) := {P′ ∈
BLP(K) | |P′( f )−P( f )|< ε}, with P∈BLP(K), f ∈K, ε > 0. The definition ofT
is similar to that of the weak∗ topology and it is the smallest making all functions

f̃ : BLP(K)→ R, f̃ (P) := P( f )

continuous for allf ∈ K. The set of all such̃f will be denoted byK̃, the linear
space spanned bỹK will be denoted by span(K̃). The topologyT is also known as
the topology of pointwise convergence and, by definition of the product topology,
T is identical with the relative topology ofBLP(K) as a subset of the product
spaceΠ f∈KR f , R f := R for all f ∈ K.

We start with some topological results that will serve as technical basis for the
following analysis.

Proposition 1 Under the topologyT the linear space BLP(K) is a locally convex
and Hausdorff topological linear space.

Proof. We have to show thatT possesses a base consisting of convex sets. Since
convexity is preserved under forming intersections it suffices to show that the
given subbase ofT consists of convex sets. Therefore, supposeP1,P2∈B(P, f ,ε)
with P∈ BLP(K), f ∈ K andε > 0 and letλ ∈ [0,1]. Then

|λP1( f )+ (1−λ)P2( f )−P( f )| ≤ λ|P1( f )−P( f )|+(1−λ)|P2( f )−P( f )| < ε,

i.e. B(P, f ,ε) is convex sinceP1,P2 and λ were chosen arbitrarily. Hence, all
elements of the subbase are convex sinceP, f andε were chosen arbitrarily. ✷

Proposition 2 The unit ball in(BLP(K),‖ · ‖), B := {P∈ BLP(K) | ‖P‖ ≤ 1}, is
T -compact.

Proof. Let I := Π f∈K [−1,1]. By Tychonoff’s Theorem,I is compact w.r.t. the

product topology. Letτ : B→ I be the injective mappingτ(P) := Π f∈K
P( f )
‖ f‖∞

. Since
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the setsB(P, f ,ε) := {P′ ∈ B | |P′( f )−P( f )|< ε} with P∈ B, f ∈ K, ε > 0 form
a subbase for the relative topologyTB of B generated byT and since{Π f∈KU f |
U f = R ∀ f ∈ K \ { f ′},U f ′ =]x− ε,x+ ε[, f ′ ∈ K,x ∈ R,ε > 0[} is a subbase of
the product topology inRK , the images of theTB-subbase elements ofTB form
a subbase of the relative product topology inτ(B). Thusτ is a homeomorphism
betweenB endowed with the relativeT -topology, andτ(B) endowed with the
relative product topology. Therefore, to prove thatB is T -compact, it suffices
to show thatB is T -closed. This is easily done since for anyP ∈ BLP(K) with
‖P‖> 1 there exist af ∈K and aε > 0 with |P( f )|> ‖ f‖∞ +ε such thatB(P, f ,ε)
is an open neighborhood ofP disjoint fromB, i.e.B is T -closed. ✷

Proposition 3 The set CLP(K) is T -compact in BLP(K).

Proof. Obviously,CLP(K) is a subset of theT -compact setB. So, it remains
to prove thatCLP(K) is T -closed. SupposeP is a noncoherent lower previ-
sion. Then there existf , fi ∈ K, λi > 0, λ0 ∈ R, i ∈ {1, . . . ,n} andε > 0 with
f ≥ ∑n

i=1 λi fi + λ0 andP( f )+ ε < ∑n
i=1 λiP( fi)+ λ0. Settingεi := ε/(2∑n

k=1 λk),
the setB(P, f , 1

2ε)∩Tn
i=1B(P, fi ,εi) is an open neighborhood ofP which is dis-

joint fromCLP(K). Hence,CLP(K) is T -compact. ✷

The main result of this paper will heavily base on the Bishop-de Leeuw
Theorem (cf. Alfsen [1, Theorem I.4.14]) which, like Choquet’s Theorem, be-
longs to a group of results generalizing the famous Krein-Milman Theorem. We
recall that the Baireσ-algebra is the smallestσ-algebra for which all continuous
real-valued functions are measurable, with, as usual, the Borel σ-algebra on the
range spaceR. Furthermore, denote by ex(X) the set of extreme points ofX.

Theorem 1 (Bishop-de Leeuw)Suppose E is a locally convex Hausdorff space
overR and X a nonempty compact convex subset of E. Denote by A(X) the linear
space of continuous real-valued functions a: X→ R which are affine, i.e. a(λx+
(1−λ)y) = λa(x)+ (1−λ)a(y) for x,y ∈ X, 0≤ λ ≤ 1 and byB0 the Baireσ-
algebra on X. Then for every x∈ X there exists a probability measure µx on the
σ-algebraex(X)∩B0, such that

a(x) =

Z

adµx for all a ∈ A(X). (1)

Generally, it is not possible to replace the Baireσ-algebra by the more usual
Borelσ-algebra (cf. Alfsen [1, p. 39 f.]).

3 Main Results

In this section, we present the announced isomorphism between the linear space
spanned byCLP(K) and a linear space of continuous linear functionals and char-
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acterize the previsions inCLP(K) by monotonicity of their transform. As a prepa-
ration, we start with a simple application of the Bishop-de Leeuw Theorem.

Lemma 1 For every coherent lower prevision Pon K there exists a probability
measure µP on theσ-algebraex(CLP(K))∩B0, such that

P( f ) =

Z

f̃ dµP for all f ∈ K. (2)

Proof. The assertion made in the lemma follows directly from Theorem 1 using
Proposition 1 and 3 and from̃f ∈ A(CLP(K)) for all f ∈ K. ✷

We obviously have found that the continuous linear functional
R·dµP repre-

sents the coherent lower previsionP via the nonlinear applicationf 7→ f̃ . Un-
fortunately, the representing measureµP needs not to be unique as the following
example shows.

Example 1 Let Ω = {1,2,3} andν : 2Ω → R be the coherent lower probability
defined byν(A) := 1

2 iff |A| = 2 andν(A) := 0 iff |A| < 2. Thenν is an extreme
point of the set of coherent lower probabilities on2Ω, CLP(2Ω)1. Supposeν is
a convex combination of two coherent lower probabilitiesν1 and ν2 Obviously,
ν1(A) = ν2(A) = ν(A) for all A with ν(A)∈ {0,1}, i.e.|A| 6= 2. Therefore, suppose
ν1({1,2}) > ν({1,2}) = 1

2. By coherence ofν1, 1{1} ≥ 1{1,2}+1{1,3}−1 implies

ν1({1})≥ ν1({1,2})+ ν1({1,3})−1 such thatν1({1,3}) < 1
2. Analogously, we

concludeν1({2,3}) < 1
2. The same argument applied toν2 implies that bothν1

andν2 are at least for two of three sets A with|A| = 2 smaller than or equal to
ν(A). Hence,ν1 = ν2 = ν.
Further on, it is easy to see that all unanimity games on2Ω are extreme points of
CLP(2Ω).
The coherent lower probabilityν′ : 2Ω→ R defined byν′(A) := 1

3 iff |A|= 2 and
ν′(A) := 0 iff |A| < 2 can be obtained by two different convex combinations of
extreme points of CLP(2Ω), ν′ = 1

3u{1,2}+
1
3u{1,3}+

1
3u{2,3} andν′ = 2

3ν+ 1
3uΩ.

Since the coefficients of the extreme points used in the convex combinations are
the masses of the transform µν′ of ν′, we obtain that uniqueness of the representing
measure cannot be guaranteed.

To obtain uniqueness, we have to draw our attention to the integrals because
for two representing measuresµP andµ′P of P we have, by Lemma 1,

Z

f̃ dµP =
Z

f̃ dµ′P for all f ∈ K. (3)

So, if we just restrict the continuous linear functional
R·dµP to the linear space

span(K̃) we get the desired uniqueness.

1It can be shown thatν is the only non-unanimity game in the set of extreme points ofCLP(2Ω).
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The subsequent lemma (cf. Maaß [9, Proposition 6]) is mainlyfor technical
use in the proof of the following theorem. As will be discussed after Lemma 3, it
can be of practical use.

Lemma 2 Let{Pi}i∈I be a nonempty indexed set of coherent lower previsions on
K⊂B(2Ω) and the lower prevision P: B(2I )→R be coherent. Then the functional

K→R, f 7→ P(i 7→ Pi( f )) (4)

is a coherent lower prevision.

Proof. The functional defined in (4) is well defined since coherence of thePi im-
plies−∞ < inf f ≤Pi( f )≤ supf < ∞ such that the functioni 7→Pi( f ) is bounded
for every f ∈ K. By considering the natural extensionsEi of Pi , coherence is eas-
ily verified for the functionalB(2Ω)→ R, f 7→ P(i 7→ Ei( f )) by using the char-
acterization of coherence on linear spaces, and therefore for its restriction toK as
defined in (4). ✷

This rather abstract lemma can be used to prove results whichwere formulated
as individual theorems in Walley’s book (cf. Walley [11, 2.6.3 - 2.6.7] and Maaß
[8, Corollary 4.2]). The following lemma generalizes one ofthese results, namely
that convex combinations of coherent lower previsions are again coherent.

Lemma 3 Let X⊂CLP(K), A be aσ-algebra over X making all̃f measurable
and µ be a probability measure onA . Then the lower prevision

P : K→ R, P( f ) :=
Z

f̃ dµ (5)

is coherent.

Proof. The integral
R·dµ is of course coherent and applies to functionsX→ R,

P′ 7→ f̃ (P′) = P′( f ). Applying Lemma 2 yields the desired result. ✷

Before proceeding with the main issue of this paper, a possible application of
Lemma 2 should be sketched. SupposeI is a nonempty set of persons assigning
values in a coherent way to all gamblesf ∈ K, i.e. {Pi}i∈I is an indexed set of
coherent lower previsions. Furthermore, suppose we also want to assign values
coherently to allf ∈ K just by incorporating thePi . Using the already cited well-
known theorems (cf. Walley [11, 2.6.3 - 2.6.7]), we could take the lower envelope
of all Pi , infi∈I Pi , as our coherent lower prevision if we were very cautious. Ifwe
had certain opinions on the coherent lower previsions of allpersons we also could
assign weightsλi to everyPi and take∑i∈I λiPi as our coherent lower prevision
(cf. Lemma 3). But using Lemma 2 we can go even further. We can assign weights
µ(J) to “coalitions” J ⊂ I in order to express that if certain persons agree on the
evaluation of some gamblef this should count more than the evaluations of other
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persons. If this set functionµ is supermodular then the Choquet integral
R·dµ is

coherent and, by Lemma 2, so is the lower previsionf 7→ R

(i 7→ Pi)dµ
By merely collecting the results from Lemma 1, the remarks following Exam-

ple 1 (especially Equation (3)) and Lemma 3, we obtain the subsequent proposi-
tion which contains the essential mathematical part of the main theorem of this
paper (Theorem 2).

Proposition 4 The mapping

CLP(K) →
{(Z

·dµ
)
|span(K̃)

| µ : ex(CLP(K))∩B0→R probability measure
}
,

P 7→
(Z

·dµP
)
|span(K̃)

(6)

with P( f ) =
R

f̃ dµP for all f ∈ K is bijective.

We now expand this first result to the linear spaces spanned bythe respective
sets used in Proposition 4. Thus, denote by

V1 :=
{

λ1P1−λ2P2 | λ1,λ2≥ 0,P1,P2 ∈CLP(K)
}

(7)

the linear space of functionals spanned byCLP(K) and by

V2 :=
{(Z

·dµ
)
|span(K̃)

| µ : ex(CLP(K))∩B0→ R of bounded variation
}
. (8)

the linear space of restricted integrals w.r.t. signed measures on ex(CLP(K))∩B0

of bounded variation. LetV1 be endowed withTV1, the relative topology ofV1

generated byT , i.e. the smallest topology making allf̃ restricted toV1 continuous
and letV2 be endowed withTV2, the weak∗ topology, i.e. the smallest topology

making all natural embeddings̃̃f :V2→R, ˜̃f ((
R·dµ)|span(K̃)) :=

R

f̃ dµcontinuous.
Further on, let the norm‖ · ‖V1 be defined by

‖P‖V1 := inf{λ1+ λ2 | P = λ1P1−λ2P2,λ1,λ2≥ 0,P1,P2 ∈CLP(K)} (9)

and the norm‖ · ‖V2 be analogously to‖ · ‖V1 defined by

‖
(Z

·dµ
)
|span(K̃)

‖V2

:= inf
{

λ1 + λ2 |
(Z

·dµ
)
|span(K̃)

= λ1
(Z

·dµ1
)
|span(K̃)

−λ2
(Z

·dµ2
)
|span(K̃)

,

λ1,λ2≥ 0,µ1,µ2 probability measures
}
. (10)

We defer the easy but technical proof of‖ · ‖V1 and‖ · ‖V2 really being norms
to the end of this section and just proceed with the main result.
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Theorem 2 There is a linear isomorphism J∗ between the linear spaces V1 and
V2. The isomorphism is determined by the identity

P( f ) =

Z

f̃ dµ for all f ∈ K. (11)

The isomorphism J∗ is topological, i.e. a homeomorphism, between the topolog-
ical spaces(V1,TV1) and(V2,TV2). The isomorphism J∗ is isometric between the
normed spaces(V1,‖ ·‖V1) and(V2,‖ ·‖V2). Moreover, Pis coherent if and only if
its transformed is monotone.

Proof. To prove thatJ∗ is well defined, it suffices to show that for everyP∈V1

there is a measureµ : ex(CLP(K))∩B0→ R of bounded variation withP( f ) =
R

f̃ dµ for all f ∈ K because uniqueness of the image is guaranteed by Equation
(11). SupposeP = λ1P1−λ2P2 with λ1,λ2 ≥ 0 andP1,P2 ∈CLP(K). Then, by
Proposition 4, there exist probability measuresµ1,µ2 on ex(CLP(K))∩B0 satis-
fying P1( f ) =

R

f̃ dµ1 andP2( f ) =
R

f̃ dµ2 for all f ∈ K. Thus,

P( f ) = λ1P1( f )−λ2P2( f ) = λ1

Z

f̃ dµ1−λ2

Z

f̃ dµ2 =

Z

f̃ d(λ1µ1−λ2µ2) (12)

for all f ∈ K, i.e.J∗ is well defined. Injectivity ofJ∗ directly follows from Equa-
tion (11) sinceP1 6= P2, P1,P2 ∈V1, implies

R

f̃ dµ1 6=
R

f̃ dµ2 for all f ∈ K with
P1( f ) 6= P2( f ) andµ1 resp.µ2 satisfying Equation (11) forP1 resp.P1. Since,
by the Hahn-Jordan Decomposition Theorem, every measureµ of bounded varia-
tion can be decomposed into a differenceµ = λ1µ1−λ2µ2, λi ≥ 0, µi probability
measures,i ∈ {1,2}, we obtain surjectivity ofJ∗ simply by reading Equation (12)
from right to left, again using Proposition 4. Linearity ofJ∗ is rather obvious. So,
we have shown thatJ∗ is a linear isomorphism between the linear spacesV1 and
V2.
By settingX := K andV := V1 in the subsequent Proposition 5, it follows imme-
diately thatJ∗ also is a homeomorphism between the topological spaces(V1,TV1)
and(V2,TV2).
For proving isometry ofJ∗, we observe that any decomposition ofJ∗(P),
J∗(P) = λ1

(
R·dµ1

)
|span(K̃)

− λ2
(

R·dµ2
)
|span(K̃)

, with λ1,λ2 ≥ 0, µ1,µ2 probabil-
ity measures, directly corresponds to a decomposition ofP by Proposition 4,
P = λ1Pµ1

− λ2Pµ2
. Therefore, the infima in the respective definitions of‖ · ‖V1

and‖ · ‖V2 are taken over the same sets, i.e.‖J∗(P)‖V2 = ‖P‖V1 for all P∈V1. ✷

We now provide the deferred, fairly general proposition used in Theorem 2.2

2This proposition can also be used to prove that the isomorphism between the linear spaces re-
spectively spanned by the totally monotone set functions and the signed bounded Borel measures
(cf. Marinacci [10, Theorem 3]) is a homeomorphism. Marinacci proved homeomorphy only for the
respective unit balls (w.r.t. the norm which is not compatible to the topology) instead of the whole
spaces.
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Proposition 5 Let X be a nonempty set and V a linear space of real-valued func-
tions on X. Define

X̃ := {x̃ : V→R | x̃(v) := v(x),x∈ X}, (13)

Ṽ := {ṽ : X̃→R | ṽ(x̃) := x̃(v),v∈V}, (14)
˜̃X := { ˜̃x : Ṽ→R | ˜̃x(ṽ) := ṽ(x̃), x̃∈ X̃.} (15)

EndowTV with the smallest topology on V making allx̃ ∈ X̃ continuous and
endowTṼ with the smallest topology oñV making all ˜̃x∈ ˜̃X continuous.
Then J: V→ Ṽ , v 7→ ṽ is a linear topological isomorphism.

Proof. Linearity and injectivity ofJ is easily verified by successively applying
the definitions ofṼ andX̃. Additionally, by definition ofṼ, J is surjective. For
proving J being a homeomorphism it suffices to show that the elements ofthe
respective subbase ofTV , {x̃−1(O) |O ⊂R open} andTṼ , { ˜̃x−1(O) |O ⊂R open},
are mapped onto each other as preimages underJ andJ−1. This follows almost
directly from the above definitions since

J−1( ˜̃x−1(O)) = J−1({ṽ | ˜̃x(ṽ) ∈ O})
= J−1({ṽ | x̃(v) ∈ O})
= J−1({ṽ | v∈ x̃−1(O)})
= x̃−1(O)

and analogouslyJ(x̃−1(O)) = ˜̃x−1(O). ✷

We end this section with a lemma proving the function‖ · ‖V1 and‖ · ‖V2 in
fact being norms.

Lemma 4 The functions‖ · ‖V1 and‖ · ‖V2 are norms on the respective spaces.

Proof. Obviously,‖0‖V1 = 0. Now suppose‖P‖= 0 for aP∈V1. Since allf ∈ K
are bounded and since every coherent lower prevision mapsf into the bounded
interval[inf f ,supf ], we obtain|P( f )| < ε for everyε > 0, i.e.P = 0. Further on,
for all P∈V1 andc∈ R, c 6= 0,

‖cP‖ = inf
{

λ1 + λ2 | cP= λ1P1−λ2P2,λ1,λ2≥ 0,P1,P2 ∈CLP(K)
}

= inf
{
|c|λ1+λ2

|c| | P = λ1
c P1− λ2

c P2,λ1,λ2≥ 0,P1,P2 ∈CLP(K)
}

= |c| inf
{λ1
|c| +

λ2
|c| | P = λ1

|c|P1− λ2
|c|P2,λ1,λ2≥ 0,P1,P2 ∈CLP(K)

}

= |c| · ‖P‖.

Finally, the triangle inequality holds because wheneverP = P1 + P2 with
P,P1,P2 ∈ V1, P1 = λ1,1P1,1−λ1,2P1,2, P2 = λ2,1P2,1−λ2,2P2,2, Pi, j ∈CLP(K)
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andλi, j ≥ 0 with i, j ∈ {1,2} thenP= (λ1,1P1,1+λ2,1P2,1)−(λ1,2P1,2+λ2,2P2,2)
holds whereat(λ1,1P1,1 + λ2,1P2,1),(λ1,2P1,2 + λ2,2P2,2) ∈ CLP(K). Therefore,
‖P1 +P2‖ ≤ ‖P′‖+‖P′′‖. ✷

4 Summary, Outlook and Open Problems

In this paper we have presented a linear isomorphism betweenthe linear space
V1, spanned by the coherent lower previsions on an arbitrary nonempty setK and
an appropriate linear spaceV2 of continuous linear functionals. Thereby, we have
shown that the famous representation theorems for totally monotone set functions
do not depend on this special class, not even on the structureof the domain.

For applications, we are heavily interested in transformations of coherent
lower previsions that can practically be handled. It is well-known that the set of
extreme points of the set of normalized totally monotone setfunctions on a finite
algebra is finite and consists of all unanimity games which isa finite set. There-
fore, every totally monotone set function on a finite domain can be represented
as a convex combination of unanimity games. It remains as an open problem to
determine the set of extreme points ofCLP(K) for a givenK. Additionally, for
possible application of Theorem 2, it remains as an open problem what condition
K has to meet in order to make ex(CLP(K)) finite.

Theorem 2 can be used to construct coherent lower previsionsin the following
way. After determining the extreme points of the convex set of coherent lower
previsions any coherent lower prevision can be obtained by assigning weights to
all extreme points. There is an analogous situation in Dempster-Shafer Theory
where these weights are called “basic probability assignments”. So, by working
on the set of extreme points ofCLP(K) with linear functionals, things are getting
easier and often more applicable.

Finally, we will outline why the transform given in Theorem 2should not be
called “Möbius transform” like in the case of totally monotone set functions. On
an algebraA the zeta function can be expressed in terms of unanimity games,
ζ(A,B) := uA(B). In the case of considering totally monotone set functions on a
finite algebra instead of coherent lower previsions (cf. Denneberg [5], Gilboa and
Schmeidler [6] and Marinacci [10]), the integrand of Equation (11) is always a
zeta function because the set of extreme points of the set of normalized totally
monotone set functions consists of all unanimity games. This gives rise to call
the two set functions appearing in the transformation equation the zeta transform
resp., since the zeta function and the Möbius function are mutually inverse, the
Möbius transform of the respective other set function. Since we have seen in Ex-
ample 1 that the set of extreme points ofCLP(A) contains more than unanimity
games the interpretation of using zeta functions can not be preserved such that the
term “Möbius transform” can not be justified in our case.
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Abstract

Given a random set coming from the imprecise observation of arandom
variable, we study how to model the information about the distribution of this
random variable. Specifically, we investigate whether the information given
by the upper and lower probabilities induced by the random set is equivalent
to the one given by the class of the distributions of the measurable selections;
together with sufficient conditions for this, we also give examples showing
that they are not equivalent in all cases.

Keywords

random sets, upper and lower probabilities, measurable selections, Choquet integral

1 Introduction

Random sets have been successfully applied in such different fields as economy
([11]) or stochastic geometry ([14]), and they have been studied under different
interpretations, like the behavioral ([19]) or the evidential one ([7]). In this pa-
per, we will interpret a random set as the result of the imprecise observation of a
random variable ([13]). Under this interpretation, our information about the prob-
ability distribution of the random variable is given by the class of distributions
of the measurable selectionsof the random set. This class of distributions is a
subset of the class of probability measures bounded betweentheupperandlower
probabilities ([7]) of the random set. These functions satisfy Walley’s axioms of

∗This paper has been partially funded by FEDER-MCYT, grant number BFM2001-3515, and Fun-
dación Banco Herrero.

383



384 ISIPTA ’03

coherence ([21]), and are moreover∞-alternating and∞-monotone, respectively
([20]).

Although working with the upper and lower probabilities leads to a number of
mathematical simplifications ([20, 21]), the information they provide is in general
more imprecise than the one given by the set of distributionsof the measurable se-
lections ([16, 18]). In this paper, we will investigate under which conditions these
two models are equivalent. The results we obtain will show when it is advisable
to model our information through the upper and lower probabilities and when this
produces a loss of precision.

In Section 2, we introduce some concepts and notations that we will use in the
rest of the paper, and recall some previous works on the subject. In Section 3, we
investigate the information that the upper and lower probabilities give about the
distribution of the original random variable, and about thevalue of this distribu-
tion on an arbitrary set. Finally, in Section 4 we give some additional comments
and remarks.

2 Preliminary concepts

We will consider a probability space(Ω,A ,P), a measurable space(X,A ′) and a
multi-valued mappingΓ : Ω→ P (X). If X is a topological space, we will denote
βX its Borelσ-field. A topological space is said to bePolishwhen it is separable
and complete for some compatible metricd, and it is calledSouslinif it is the
bijective image of a Polish space. The multi-valued mappingwill be called open
(resp. complete, closed, compact) ifΓ(ω) is an open (resp. complete, closed, com-
pact) subset ofX for everyω ∈Ω.

Formally, a random set is a multi-valued mapping satisfyingsome measura-
bility condition. There are different conditions, such as the weak, the strong, or
the graph-measurability ([12]). Most of them are based on the notion of upper and
lower inverse:

Definition 1 Let(Ω,A ,P) be a probability space,(X,A ′) be a measurable space
andΓ : Ω→ P (X) a multi-valued mapping. Given A∈ A ′, its upper inverse is
Γ∗(A) = {ω ∈Ω | Γ(ω)∩A 6= /0}, and itslower inverse is Γ∗(A) = {ω ∈Ω | /0 6=
Γ(ω)⊆ A}.

When there is no possible confusion about the multi-valued mapping we are
working with, we will use the notationA∗ := Γ∗(A) andA∗ := Γ∗(A). By a ran-
dom setwe will mean throughout a strongly measurable multi-valuedmapping.
The strong measurability is necessary for the upper and lower probabilities of the
random set to be defined onA ′.

Definition 2 A multi-valued mapping is calledstrongly measurableif A∗ ∈ A
∀A∈ A ′.
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Note thatA∗ = X∗∩((Ac)∗)c ∀A∈A ′, whence ifΓ is strongly measurable, we
also haveA∗ ∈A ∀A∈A ′. The concepts of upper and lower probabilities induced
by a random set were introduced by Dempster in [7]:

Definition 3 Given a random setΓ : Ω→ P (X), theupper probability of A∈A ′
is P∗Γ(A) = P(A∗)

P(X∗) , and itslower probability is P∗Γ(A) = P(A∗)
P(X∗) .

When there is no ambiguity about which random set is inducingthe upper and
lower probability, we will denoteP∗ := P∗Γ andP∗ := P∗Γ.

As we said in the introduction, we will regard a random set as the result of
the imprecise observation of a random variableU0 : Ω→ X (which we will call
original random variable), in the sense that for everyω in the initial space all
we know aboutU0(ω) is that it belongs to the setΓ(ω). As a consequence,Γ(ω)
will be assumed to be non-empty for everyω, and henceP∗(A) = P(A∗) and
P∗(A) = P(A∗) for all A ∈ A ′. The upper and lower probabilities induced by a
random set are conjugate functions, and they are moreover∞-alternating and∞-
monotone capacities, respectively ([20]). This means in particular that they satisfy
Walley’s axioms of coherence ([21]).

If Γ is the imprecise observation ofU0, all we know about this variable is that
it belongs to the class ofmeasurable selections(or selectors) of Γ,

S(Γ) := {U : Ω→ X measurable|U(ω) ∈ Γ(ω) ∀ω}.

The probability distribution ofU0 belongs to

P(Γ) := {PU |U ∈ S(Γ)},

and our information aboutPU0(A) is given by the set of values

P(Γ)(A) := {PU(A) |U ∈ S(Γ)}.

There are two other classes of probabilities that may be useful in some situations.
The first one is

∆(Γ) := {Q probability|Q(A) ∈ P(Γ)(A) ∀A∈ A ′}.

This is the set of distributions whose values are compatiblewith the information
given by the random set. It is clear thatP(Γ) ⊆ ∆(Γ). If they coincide, the infor-
mation about the distribution of the original random variable is equivalent to the
information about the values it takes. On the other hand, we can also consider the
class

M(P∗) := {Q probability|Q(A)≤ P∗(A) ∀A∈ A ′}
of distributions dominated byP∗, or credal set generated byP∗. This class is
convex and easier to handle in practice thanP(Γ). Using the inequalitiesP∗(A)≤
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PU(A) ≤ P∗(A), valid for anyU ∈ S(Γ), A∈ A ′, we deduce that∆(Γ) ⊆M(P∗).
We see then thatP(Γ) ⊆ ∆(Γ) ⊆M(P∗). As we showed in [16], both inclusions
can be strict, and in some cases the use of the upper and lower probabilities can
produce a loss of precision, which in turn can cause some misjudgements. It is
therefore interesting to see in which cases it is reasonableto useP∗ andP∗.

Although the class of the distributions of the selectors of arandom set ([1, 9])
and the upper probability it induces ([14, 20]) have been thoroughly studied in
the literature, the connection between them has not received much attention. It
was investigated for the case ofX finite in [16], and for some particular infinite
spaces in [3, 6, 10, 15, 18]. Our goal in this paper is to somewhat fill this gap.
Specifically, we will study two different problems:

• First, we will investigate the relationship between∆(Γ) andM(P∗), which
tells us if the upper and the lower probabilities are informative enough about
the valuePU0(A) for some arbitraryA∈ A ′.
• Then, we will study whenP(Γ) = M(P∗), i.e., under which conditions the

upper probability keeps all the information aboutPU0.

3 Study of the probabilistic models forPU0

3.1 P∗(A),P∗(A) as a model forPU0(A)

Let us start investigating the relationship between∆(Γ) andM(P∗). As we men-
tioned before,∆(Γ) models the information thatΓ gives about the probability
values of the elements inA ′. Therefore, by investigating its equality withM(P∗)
we will see whetherP∗ andP∗ are informative enough about the ‘true’ probability
of an arbitrary setA. This is formally stated in the following proposition.

Proposition 1 Let (Ω,A ,P) be a probability space,(X,A ′) a measurable space
andΓ : Ω→ P (X) a random set. Then,

∆(Γ) = M(P∗)⇔ P(Γ)(A) = [P∗(A),P∗(A)] ∀A∈ A ′.
Let us consider then some arbitraryA∈ A ′, and let us study the relationship

betweenP(Γ)(A) and [P∗(A),P∗(A)]. It is clear that the latter is a superset of
the former. In order to give conditions for the equality, we must see if the maxi-
mum and minimum values ofP(Γ)(A) coincide withP∗(A) andP∗(A), and also if
P(Γ)(A) is convex.

This problem was studied in [18]. We showed there thatP(Γ)(A) has a max-
imum and a minimum value (it is indeed a closed subset of[0,1]), and that these
values do not coincide in all cases withP∗(A),P∗(A), even in the non-trivial
case ofS(Γ) 6= /0. Moreover,P(Γ)(A) is not convex in general. The following
theorem gives sufficient conditions for the equalitiesP∗(A) = maxP(Γ)(A) and
P∗(A) = minP(Γ)(A). It generalizes previous results from [6].
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Theorem 1 [18] Consider (Ω,A ,P) a probability space,(X,τ) a topological
space andΓ : Ω→ P (X) a random set. Under any of the following conditions:

1. Ω is complete, X is Souslin and Gr(Γ) ∈ A⊗βX,

2. X is a separable metric space andΓ is compact,

3. X is a separable metric space andΓ is open,

4. X is a Polish space andΓ is closed,

5. X is aσ-compact metric space andΓ is closed,

we have P∗(A) = maxP(Γ)(A) and P∗(A) = minP(Γ)(A) ∀A∈ βX. Moreover, if

6. X is a separable metric space andΓ is complete,

then P∗(A)= maxP(Γ)(A),P∗(A)= minP(Γ)(A) ∀A∈Q ({Bn}n), where{Bn}n =
{B(xi;q j) | i ∈ N,q j ∈ Q} is a countable basis ofτ(d) associated to a countable
dense set{xn}n andQ ({Bn}n) is the field generated by{Bn}n.

This theorem gives sufficient conditions for the equalitiesP∗ = maxP(Γ) and
P∗ = minP(Γ). The coherence ofP∗ implies ([21]) that it is the upper envelope
of the set of the finitely additive probabilities it dominates. We have proven that,
under conditions (1) to (5) from Theorem 1, it is indeed the upper envelope of
the class ofcountablyadditive probabilities induced by the selectors. A similar
(symmetrical) remark can be made forP∗.

Let us remark in passing that results established in Theorem1 guarantee the
existence of a selector ofΓ whose distribution coincides withP∗ on a finite chain.
Indeed, in [5] Couso showed that the equalityP∗(A) = supP(Γ)(A) ∀A∈ A ′ im-
plies the equality between the Choquet integral of a boundedrandom variable
respect to the upper probability of a random set ([8]) and thesupremum of class
of the integrals respect to the distributions of the measurable selections. This al-
lows us to deduce the following result, which generalizes theorem 1 from [3].

Theorem 2 Let Γ : Ω→ P (X) be a random set and V: X→ R a bounded ran-
dom variable. Under any of the conditions (1) to (5) from the previous theo-
rem,(C)

R

VdP∗ = sup{R VdPU |U ∈ S(Γ)} and(C)
R

VdP∗ = inf{R VdPU |U ∈
S(Γ)}.

On the other hand, we have already remarked that the equalitybetween∆(Γ)
andM(P∗) relies on the equalitiesP∗(A) = maxP(Γ)(A) and on the convexity of
P(Γ)(A) for everyA∈ A ′. Concerning the latter, we have proven the following:

Proposition 2 [18] Let Γ : Ω→ P (X) be a random set, and consider A∈A ′. Let
U1,U2 ∈ S(Γ) satisfy PU1(A) = maxP(Γ)(A), PU2(A) = minP(Γ)(A). Then,
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P(Γ)(A) is convex⇔U−1
1 (A)\U−1

2 (A) is not an atom1.

In particular,P(Γ)(A) is convex∀A ∈ A ′ if the initial space is non-atomic;
this condition holds for instance if we have some additionalinformation stating
thatPU0 is continuous. Nevertheless, the non-atomicity of(Ω,A ,P) is not neces-
sary forP(Γ)(A) to be convex, as we showed in [16]. If we join Theorem 1 and
Proposition 2, we derive the following corollary:

Corollary 1 Let Γ : Ω→ P (X) be a random set satisfying any of the conditions
(1) to (5) from Theorem 1. If A∗ \A∗ is not an atom for any A∈ βX, ∆(Γ) = M(P∗).

3.2 P∗,P∗ as a model forPU0

Let us study now the equality betweenP(Γ) andM(P∗), which tells whether the
upper probability keeps all the available information about the distribution of the
original random variable,PU0. The class of the distributions of the selectors has
been studied for some types of random sets (see for instance [1, 9, 10]). However,
its relationship with the credal set generated by the upper probability has not been
investigated in detail. In [16], we studied this problem forthe case ofX finite, and
in [15] the attention was focused on random intervals. On theother hand, Castaldo
and Marinacci proved in [3] a result for compact random sets on Polish spaces.

The equality between∆(Γ) andM(P∗) does not guarantee thatP(Γ) = M(P∗),
and neither does the equality betweenP(Γ) and ∆(Γ) ([16]). Then, a possible
approach for our problem would be determining sufficient conditions forP(Γ) =
∆(Γ), and join them with the ones stated in Corollary 1. Unfortunately, it does
not seem easy (except in trivial situations) to characterize this last equality. We
are going to show that a reasoning based on the extreme pointsof M(P∗) will
be more fruitful in our context: it allows us to easily characterize the equality
betweenP(Γ) andM(P∗) in the finite case, and we can use this to derive some
results for the case ofX separable metric. WhenX is finite, the extreme points
of M(P∗) are in correspondence with the permutations onX, in the following
manner2:

Theorem 3 [4] Consider X= {x1, . . . ,xn} finite and µ a 2-alternating capacity
onP (X). For anyπ ∈ Sn, define a probability Qπ onP (X) satisfying

Qπ({xπ(1), . . . ,xπ( j)}) = µ({xπ(1), . . . ,xπ( j)})∀ j = 1, . . . ,n.

Then, Ext(M(µ)) = {Qπ | π ∈ Sn} and M(µ) = Conv({Qπ | π ∈ Sn}).
1By this we mean that for everyα ∈ (0,1) there is some measurableB⊆U−1

1 (A) \U−1
2 (A) with

P(B) = αP(U−1
1 (A)\U−1

2 (A)).
2This theorem is an extension, for 2-alternating capacities, of a result given by Dempster ([7]) for

random sets on finite spaces.



Miranda et al.: Probabilistic Information of a Random Set 389

We can see ([16]) that givenX finite andΓ : Ω→ P (X) a random set, it is
Ext(M(P∗)) ⊆ P(Γ), and as a consequenceP(Γ) = M(P∗)⇔ P(Γ) is convex.
This equivalence does not hold for the case of X infinite, as the following example
shows:

Example 1 (sketch)Let Γ : (0,1)→ P ([0,1]) be defined between the probabil-
ity space((0,1),β(0,1),λ(0,1)) and the measurable space([0,1],β[0,1]) by Γ(ω) =
(0,ω) ∀ω ∈ (0,1). It is easy to see that this mapping is strongly measurable.

• Given U∈ S(Γ), it can be checked that PU({0}) = 0,PU([0,x])≥ x ∀x, and
λ(0,1)({x∈ (0,1) | PU([0,x]) = x}) = 0.

• Conversely, consider a probability measure Q: β[0,1]→ [0,1] satisfying the
three previous properties. This implies that it also satisfies Q([0,x)) ≥ x
and Q([0,x)) > x for all but a null subset of(0,1), that we will denote NQ.
The quantile function U of Q is a measurable mapping satisfying PU =
Q,U(ω) ∈ Γ(ω) ∀ω /∈ NQ. We can modify U on NQ without affecting its
measurability so that all its values are included in those ofΓ, whence we
deduce that Q∈ P(Γ).

• We deduce that P(Γ) is the class of probability measures with Q({0}) =
0,Q([0,x]) ≥ x ∀x and Q([0,x]) > x for all but a null subset of[0,1], and
we can easily check that this class is convex.

• The Lebesgue measureλ[0,1] onβ[0,1] satisfiesλ[0,1](A)≤P∗(A) ∀A∈ β[0,1];
hence, it belongs to M(P∗), and clearly it does not satisfyλ[0,1]([0,x]) > x
with probability 1. As a consequence, P(Γ) ( M(P∗).

In [17], we investigated the form of the extreme points ofM(µ) for the case of
µ2-alternating and upper continuous, and for(X,d) a separable metric space. The
idea in that paper was to approximate a distributionQ : βX→ [0,1] by distributions
coinciding withQ on some finite fields. We will use a similar reasoning in our
next theorem, where we consider the upper probabilityP∗ induced by a random
set (and hence not necessarily upper continuous). We will work in this paper with
the topology of the weak convergence, whose main propertiescan be found in
[2]. Together with the well-known Portmanteau’s theorem, we will also use the
following result:

Proposition 3 [2] Let (X,d) be a separable metric space, and consider a class
U ⊆ βX such that (i) it is closed under finite intersections and (ii)every open
set is a finite or countable union of elements fromU. Let{Pn}n,P be a family of
probability measures onβX such that Pn(A)→ P(A) ∀A∈U. Then, the sequence
{Pn}n converges weakly to P.

Let {xn}n be a countable set dense on(X,d), and define{Bn}n := {B(xi;q j) |
i ∈N,q j ∈Q} a countable basis ofτ(d). Let us denoteQ ({Bn}n) the field gener-
ated by{Bn}n, Qn the field generated by{B1, . . . ,Bn}. Then,Q ({Bn}n) = ∪nQn,
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and it can easily be checked thatQ ({Bn}n) satisfies the hypotheses (i) and (ii)
stated in the previous proposition. Any element ofQn is a (finite and disjoint)
union of elements fromDn := {C1∩C2∩·· ·∩Cn |Ci ∈ {Bi,Bc

i }∀i : 1, . . . ,n}. Let
us denote this classDn := {En

1, . . . ,En
kn
}.

Theorem 4 Let(Ω,A ,P) be a probability space,(X,d) a separable metric space
andΓ : Ω→ P (X) a random set such that P∗(A) = maxP(Γ)(A) ∀A∈Q ({Bn}n).
Then,

1. M(P∗) = Conv(P(Γ)).

2. P(Γ) = M(P∗)⇔ P(Γ) is convex.

Proof.

1. It is clear thatConv(P(Γ)) ⊆ M(P∗). Conversely, considerQ1 ∈ M(P∗),
and fixn∈N. Consider the finite measurable space(Dn,P (Dn)), and let us
define the multi-valued mapping

Γn : Ω → P (Dn)

ω →֒ {En
i | Γ(ω)∩En

i 6= /0}.

• GivenI ⊆ {1, . . . ,kn},Γ∗n({En
i }i∈I ) = {ω | ∃i ∈ I ,En

i ∈ Γn(ω)}= {ω |
∃i ∈ I ,Γ(ω)∩En

i 6= /0} = Γ∗(∪i∈I En
i ) ∈ A ⇒ Γn is strongly measur-

able.

• Define a probability measureQ : P (Dn) → [0,1] by Q({En
i }) =

Q1(En
i ) ∀i. Then, givenI ⊆ {1, . . . ,kn},

Q({En
i }i∈I ) = Q1(∪i∈I E

n
i )≤ P∗Γ(∪i∈I E

n
i ) = P∗Γn

({En
i }i∈I ),

whenceQ∈M(P∗Γn
).

Now, from Theorem 3M(P∗Γn
) = Conv({Qπ | π ∈ Skn}), where the proba-

bility measureQπ : P (Dn)→ [0,1] is defined byQπ({En
π(1), . . . ,E

n
π( j)}) =

P∗Γn
({En

π(1), . . . ,E
n
π( j)}) = P∗Γ(∪ j

i=1En
π( j)) ∀ j = 1, . . . ,kn.

For any of these extreme points, there is somePπ ∈ P(Γ) with Pπ(En
j ) =

Qπ({En
j }) ∀ j = 1, . . . ,kn: it suffices to take into account that, as we have

seen in Theorem 2, we can approximateP∗Γ on a finite chain. As a conse-
quence, for the probabilityQ∈Conv({Qπ | π ∈ Sn}) defined above, there
is somePn ∈ Conv(P(Γ)) such thatPn(En

j ) = Q({En
j }) = Q1(En

j ) ∀ j =
1, . . . ,kn. The sequence{Pn}n ⊆Conv(P(Γ)) satisfiesPn(A)→ Q1(A) for
all A ∈ Q ({Bn}n). Applying Proposition 3, we conclude that{Pn}n con-
verges weakly toQ1, whenceM(P∗)⊆Conv(P(Γ)) and we deduce the de-
sired equality.
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2. For the direct implication, it suffices to see thatM(P∗) is convex. Con-
siderP1,P2 ∈M(P∗),α ∈ (0,1); then, there are{P1

n}n,{P2
n}n⊂M(P∗) con-

verging weakly toP1,P2, respectively. LetA∈ βX be a(αP1 +(1−α)P2)-
continuity set. It is 0= (αP1 + (1− α)P2)(δ(A))3 = αP1(δ(A)) + (1−
α)P2(δ(A)), and thereforeA is also aP1,P2-continuity set. From Portman-
teau’s theorem (see for instance [2]),P1

n(A)→ P1(A) andP2
n(A)→ P2(A),

whence(αP1
n + (1−α)P2

n)(A)→ (αP1 + (1−α)P2)(A), and again using
Portmanteau’s theorem we deduce that the sequence{αP1

n +(1−α)P2
n}n⊂

M(P∗) converges weakly toαP1 + (1−α)P2. Hence, this probability be-
longs toM(P∗).

For the converse implication, assume thatP(Γ) is convex. Then, applying
the first point of this theorem, it is

M(P∗) = Conv(P(Γ))⊆Conv(P(Γ)) = P(Γ) = P(Γ)⇒ P(Γ) = M(P∗).

✷

The second part of this theorem extends a result mentioned before for the
finite case (it can be checked that in that case bothP(Γ) andM(P∗) are closed).
We deduce that a way to determine conditions for the equalityM(P∗) = P(Γ) is
to give sufficient conditions for the convexity ofP(Γ). We have done this in our
next theorem. It uses the following supporting result.

Lemma 1 Let (Ω,A ,P) be a non-atomic probability space,(X,d) a separable
metric space andΓ : Ω → P (X) a random set. Then, the class of probabili-
ties Hn := {Q : P (Dn) → [0,1] probability | ∃Q′ ∈ P(Γ) such that Q({En

i }) =
Q′(En

i ) ∀En
i ∈Dn} is convex for every n.

Proof. Fix n ∈ N, and considerP1,P2 ∈ Hn,α ∈ (0,1). Then, there exist
U1,U2 ∈ S(Γ) with PU1(E

n
i ) = P1({En

i }),PU2(E
n
i ) = P2({En

i }) ∀i = 1, . . . ,kn. Let
us consider the measurable partition ofΩ given by{Ci j | i, j = 1, . . . ,kn} with
Ci j =U−1

1 (En
i )∩U−1

2 (En
j ); from the non-atomicity of(Ω,A ,P), there is, for every

i, j, some measurableDi j ⊆Ci j such thatP(Di j ) = αP(Ci j ). DefineC = ∪i, jCi j ,
and

U := U1IC +U2ICc.

Then, U is a measurable combination of selectors ofΓ, whenceU ∈ S(Γ).
Moreover,

3δ(A) denotes here the boundary of the setA.
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PU(En
l ) = P(U−1

1 (En
l )∩C)+P(U−1

2 (En
l )∩Cc)

=
kn

∑
i=1

P(Dli )+
kn

∑
j=1

(P(Cjl )−P(D jl ))

=
kn

∑
i=1

αP(Cli )+
kn

∑
j=1

(1−α)P(Cjl )

= αPU1(E
n
l )+ (1−α)PU2(E

n
l ) ∀l = 1, . . . ,kn,

and we deduce thatαP1 +(1−α)P2 ∈Hn. ✷

Theorem 5 Let (Ω,A ,P) be a non-atomic probability space,(X,d) a separable
metric space andΓ : Ω→ P (X) a random set. Then,P(Γ) is convex.

Proof. Let us show first thatConv(P(Γ)) ⊆ P(Γ). ConsiderP1,P2 ∈ P(Γ),α ∈
(0,1). Applying the previous lemma, for everyn there isQn ∈P(Γ) with Qn(A) =
(αP1 +(1−α)P2)(A) ∀A∈ Qn, whereQn is the field generated by{B1, . . . ,Bn}.
Now, applying Proposition 3 we deduce that{Qn}n converges weakly toαP1 +
(1−α)P2 and this probability belongs toP(Γ). From this, we deduce in particular
the equalityConv(P(Γ)) = P(Γ). The first set in this equality is the closure of
a convex set of probabilities defined on a separable metric space. Following the
course of reasoning from the proof of point 2 from Theorem 4, we can deduce
thatConv(P(Γ)) (and henceP(Γ)) is convex. ✷

A similar proof would allow us to deduce that∆(Γ) is convex when(Ω,A ,P)
is non-atomic and(X,d) separable. Now, using Theorems 1, 4 and 5, we derive
the following result:

Corollary 2 Let (Ω,A ,P) be a probability space,(X,d) be a separable metric
space, andΓ : Ω→ P (X) a random set. Under any of the following conditions:

1. Γ is open,

2. Γ is complete,

3. X isσ-compact andΓ is closed,

M(P∗) =Conv(P(Γ)). If in addition(Ω,A ,P) is non-atomic, thenM(P∗) = P(Γ).

Proof. The first part follows from Theorem 1 and the first point of Theorem
4. For the second part, it suffices to apply the second point ofTheorem 4 and
Theorem 5. ✷
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This corollary extends results from [3, 16], and tells us that under fairly gen-
eral conditions, the upper probability can be used to model the available infor-
mation without producing a (big) loss of precision. It also extends some results
from [10]: it is proven there that given two closed random setsΓ1,Γ2 on a separa-
ble Banach space, the equality betweenP∗Γ1

andP∗Γ2
implies thatConv(P(Γ1)) is

equal toConv(P(Γ2)). Similar results can be seen in [1, 9]. We have proven that
it is indeedP∗Γ1

= P∗Γ2
⇒Conv(P(Γ1)) = Conv(P(Γ2)) = M(P∗Γ1

) = M(P∗Γ2
), and

only requiringΓi to be complete on a separable metric space∀i = 1,2. On the
other hand, we deduce that under the hypotheses of the secondpart of Corollary
2, if P(Γ) is weakly closed, it is also convex, andM(P∗) is closed. The converses
are not true in general. The following example shows thatP(Γ) is not necessarily
closed whenM(P∗) is closed:

Example 2 [15] ConsiderΓ : [0,1]→ P ([0,1]) defined byΓ(ω) = [−ω,ω] ∀ω ∈
[0,1]. Then, it can be proven that M(P∗) is closed (indeed, this holds for any
compact random set on a Polish space). However, given the selectors A,B∈ S(Γ)
defined by A(ω) = −ω,B(ω) = ω ∀ω, it can be checked thatPA+PB

2 /∈ P(Γ). This
shows that P(Γ) is not convex. As a consequence, it is not closed either: if itwere,
it would be P(Γ) = P(Γ) = M(P∗) = M(P∗) convex, a contradiction.

On the other hand, Example 1 shows thatP(Γ) is not closed either if it is
convex. Indeed, that implication does not hold even ifP(Γ) = M(P∗):

Example 3 Consider(Ω,A ,P) = ((0,1),β(0,1),λ(0,1)) a non-atomic probability
space, and letΓ : Ω→ P (R) be constant on(0,1). Then, M(P∗) = {Q : βR →
[0,1] probability | Q((0,1)) = 1}. Given a probability measure Q∈ M(P∗), its
quantile function U: (0,1)→ R is a selector ofΓ and satisfies PU = Q, whence
P(Γ) = M(P∗) convex. However, the sequence of degenerate probability measures
on 1

n, {δ 1
n
}n⊆ P(Γ), converges weakly toδ0 /∈ P(Γ). Hence, this set is not closed.

4 Conclusions and open problems

In this paper, we have compared the different models of the probabilistic informa-
tion given by a random set, when this random set is the imprecise observation of a
random variable. We have considered three different sets ofprobability measures,
and through them we have investigated whether an imprecise probability model
in terms of the upper and lower probabilities is useful in this context.

The results we have established allow us to conclude that under fairly general
conditions, the upper and lower probabilities induced by a random set can be used
to summarize the information on the distribution of the original random variable
without a substantial loss of precision. Nevertheless, there are still a number of
particular cases of random sets which are worth a detailed study. We would also
like to study the topological structure ofP(Γ) andM(P∗) under other than the
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topology of the weak convergence, and derive other sufficient conditions for the
equalities∆(Γ) = M(P∗) andP(Γ) = M(P∗). Finally, it would also be interesting
(though we are not very optimistic in this respect) to obtainsufficient conditions
for the equalityP(Γ) = M(P∗) in terms of the images of the random set, as it was
done in [15] for the particular case of random intervals.
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An Extended Set-valued Kalman Filter
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Arizona State University, USA

W. C. STIRLING
Brigham Young University, USA

Abstract

Set-valued estimation offers a way to account for impreciseknowledge of the
prior distribution of a Bayesian statistical inference problem. The set-valued
Kalman filter, which propagates a set of conditional means corresponding to
a convex set of conditional probability distributions of the state of a linear
dynamic system, is a general solution for linear Gaussian dynamic systems.
In this paper, the set-valued Kalman filter is extended to thenon-linear case
by approximating the non-linear model with a linear model that is chosen to
minimize the error between the non-linear dynamics and observation models
and the linear approximation. An application is presented to illustrate and
interpret the estimator results.

Keywords

imprecise probabilities, statistical inference, dynamicsystems, convex sets of probability
measures, set-valued estimation

1 Introduction

In this paper we address the statistical inference problem of estimating a set
of time-varying parameters of a discrete-time dynamical system that is moni-
tored with discrete-time observations of its behavior. Such a real-time estimator
is called afilter. For example, consider an aircraft flight for which radar data are
collected as functions of its kinematic parameters (position and velocity). The
filtering problem is to obtain instantaneous estimates of its trajectory.

A reasonable model structure for this class of problems is for the system dy-
namics to be modeled as a finite-dimensional Markov process that is characterized
by a stochastic difference equation of the form

xk+1 = f (xk)+wk (1)

for k = 0,1, . . ., where thep-dimensional vectorxk is thestateof the system at
time k, and is the time-varying parameter set to be estimated. Thep-dimensional

396



Morrell & Stirling: An Extended Set-valued Kalman Filter 397

vector functionf is the dynamical model for the system, and thep-dimensional
vectorwk is an uncorrelated process termed theprocess noise, with covariance
matrixQk. The process noise represents random disturbances to the system.

The observation model for this system is of the form

yk = h(xk)+vk (2)

for k = 1,2, . . ., where theq-dimensional vector functionh models the observa-
tions as a function of the state. Theq-dimensional vectorvk is an uncorrelated
process, termed theobservation noise, with covariance matrixR. The observation
noise represents random measurement errors.

The general filtering problem for this class of systems is to determine the
conditional distribution of{xk,k > 0}, given{y j , j ≤ k}. This problem is easily
solved formally: densities are propagated forward via the Chapman-Kolmogorov
equation and observations are incorporated using Bayes theorem. However, there
are very few system models that lead to closed form solutions. An important spe-
cial case for which the solution is well known is the linear Gaussian system with
precise probability distributions. According to this model, the dynamical and ob-
servational equations are linear functions of the state,i.e. ,

xk+1 = Fkxk +wk (3)

and
yk = Hkxk +vk, (4)

where the processeswk andvk and the initial statex0 are all assumed to be jointly
normally distributed and mutually uncorrelated. For this special case, the sub-
sequent statesxk, being linear combinations of normally distributed randomvari-
ables, are also normally distributed, and the problem is solved by directly comput-
ing the conditional expectation and covariance of the state. The stationary linear
filtering problem (that is, whenFk andHk are constant matrices) was solved by
Wiener [14, 4], and the nonstationary case was solved by Kalman [5], Kalman
and Bucy [7], and Kalman [6], resulting in the well-known Kalman filter.

Since the normal distribution is not preserved under non-linear transforma-
tions, it is not straightforward to compute the conditionalmean and variance for
non-linear systems. The set-valued estimation problem wasaddressed for the non-
linear case by Kenney and Stirling [8], who provide an approximate solution for
the propagation for a set of conditional densities of the state based upon Galerkin
approximations to Kolmogorov’s equations. Unfortunately, however, this latter
approach, although theoretically elegant, is very computationally intensive and
has not yet proven to be a practical solution. Practical non-linear estimation tech-
niques include linearization approaches such as the extended Kalman filter [3],
Monte Carlo particle filters [2], and interacting multiple-model filtering [1]. Al-
though our approach is essentially Kalman filter based, alternative approaches to
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set-valued filtering are possible topics of future research. Our preliminary assess-
ment, however, is that extending a particle filter to the imprecise case would be
computationally very demanding.

Kalman filter-based approaches (both linear and extended) typically employ
a precise prior distribution for the initial state. This is astrict Bayesian approach
that is often assumed out of convenience. If this assumptionis unwarranted, the
precision attributed to the resulting state estimates willnot be a realistic indica-
tion of their accuracy. Of course, if the system is observable, the influence of the
initial conditions will become asymptotically negligibleas more and more data
are processed. But, for systems with limited data, or if accuracy assessments after
a few observations are of interest, then the effect of the initial conditions will be
critical.

Imprecise probability theory [13] has emerged as a way to account for igno-
rance as well as uncertainty in decision making. For the problem here considered,
we are concerned with situations where we are unable to specify with confidence
the prior distribution ofx0. One way to approach this problem is to character-
ize the prior as a convex set of distributions, rather than a singleton. This convex
Bayesian approach is advocated by Levi [9, 10] as a way of suspending judgment
between choices when there is insufficient information to choose a single distri-
bution. Thus, ifp1(x) and p2(x) are possible prior distributions forx0, then so
is every convex combinationαp1(x)+ (1−α)p2(x), whereα ∈ [0,1]. The filter-
ing problem is then to propagate and update this convex set ofdistributions. This
problem was solved for the linear case by Morrell and Stirling [12], resulting in
theset-valued Kalman filter.

This paper presents an alternative approach to set-valued non-linear filtering.
In Section 2 we review linear set-valued Kalman filtering, which we then extend
to deal with non-linear systems in Section 3. Finally, we provide an example in
Section 4, and we finish with a discussion in Section 5.

2 Linear Set-Valued Filtering

Consider the system dynamics and observation equations presented in (3) and
(4). The set-valued Kalman filter computes a sequence of estimate sets and a
corresponding sequence of estimate covariances [12]. An estimate set is denoted
Xk| j , the set of estimates of the system state at timek given the observationsy1

throughy j , and is represented in terms of thep-dimensional vectorck| j and the
p× p matrixK k| j as

Xk| j =
{

x:
(
x−ck| j

)TS−1
k| j
(
x−ck| j

)
≤ 1
}

, (5)

whereSk| j = K k| jK k| j
T . The set-valued Kalman filtering equations provide a two-

stage recursion for computingck| j , K k| j , and the estimation error covariancePk| j
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for j = k−1 (prediction between observations) andj = k (updating new observa-
tions, or filtering).

Initialization: We assume that the initial state of the dynamic system is charac-
terized by a distribution that lies in the set

X =
{

x∼N
(
m,P0|0

)
: m ∈ X0|0

}
,

whereN
(
m,P0|0

)
denotes the normal distribution with meanm and positive-

definite covariance matrixP0|0, andX0|0 denotes a hyper-ellipsoid defined
by

X0|0 =
{

x:
(
x−c0|0

)TS−1
0|0
(
x−c0|0

)
≤ 1
}

, (6)

whereS0|0 = K0|0K0|0
T .

Prediction Step:
ck|k−1 = Fk−1ck−1|k−1 (7)

Pk|k−1 = Fk−1Pk−1|k−1Fk−1
T +Qk−1 (8)

K k|k−1 = Fk−1K k−1|k−1 (9)

The predicted set-valued state estimate is given by

Xk|k−1 =
{

x:
(
x−ck|k−1

)TS−1
k|k−1

(
x−ck|k−1

)
≤ 1
}

, (10)

with Sk|k−1 = K k|k−1K k|k−1
T .

Filter Step:
ck|k = ck|k−1 +Wk

[
yk−Hkck|k−1

]
(11)

Pk|k = [I −WkHk]Pk|k−1 (12)

K k|k = [I −WkHk]K k|k−1, (13)

whereWk is the Kalman gain:

Wk = Pk|k−1Hk
T [HkPk|k−1Hk

T +R
]−1

. (14)

The filtered set-valued estimate is then given by

Xk|k =
{

x:
(
x−ck|k

)TS−1
k|k
(
x−ck|k

)
≤ 1
}

(15)

It is shown in [12] that, if the linear system defined by (3) and(4) is uniformly
observable and controllable (e.g., see [3]), thenK k|k→ 0 ask→ ∞. Thus, in the
limit, the set-valued estimates converge to a point, and theimprecise probability
distributions converge to a precise distribution. For systems that are not uniformly
observable and controllable, or if the time sequence is not infinite, then impreci-
sion cannot be eliminated. Observability and controllability guarantee only that
Pk|k will be bounded [3]. This doesnot mean, however, that the estimation error
covariancePk|k tends to zero ask→ ∞.
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Figure 1: Approximation points for the extended set-valuedKalman filter.

3 Extension to Non-linear System Models

We desire to apply the set-valued Kalman filter to non-linearsystems using a
linear approximation to the system model. In an extended Kalman filter, such an
approximation is made by computing a first-order Taylor series expansion of the
non-linear functions about a point-valued state estimate.Unfortunately, because
we have a set of state estimates, the set-valued Kalman filtercannot be extended
in the same way, and we instead choose approximations that best fit the non-linear
functions over the estimate set.

We propose the following approach to finding approximationsof the system
dynamic and observation functions over the entire estimateset. A set ofapprox-
imation pointsis chosen; the parameters of affine approximations to the dynam-
ics and observation functions are computed to minimize the weighted squared
errors between the function values and approximation values evaluated at the ap-
proximation points. Our method of choosing approximation points relies on the
hyper-ellipsoidal shape of the estimation sets. Figure 1 illustrates our method for a
two-dimensional estimate set (i.e.,p= 2). Specifically, we form the set of approx-
imation points from the centroid of the estimate set, each point where an axis of
the hyper-ellipse intersects the ellipse, and all points equidistant from the centroid
and boundary points. Since the estimate set is ap-dimensional hyper-ellipse, the
set of approximation points will require 4p+1 elements. The set-valued Kalman
filter requires (approximate) linear dynamics and observation models in which the
approximations are good over the entire estimate set.
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3.1 Approximating the Dynamics and Observation Functions

We choose approximations of the following form:

f (xk)≈ Fkxk + f0
k (16)

and
h(xk)≈ Hkxk +h0

k. (17)

The linearizations are obtained by solving the following problems forFk and

f0
k and forHk andh0

k. Letx(0)
k|k throughx(N−1)

k|k be values inXk|k, denoted thefiltered

approximation points, and letx(0)
k|k−1 throughx(N−1)

k|k−1 be values inXk|k−1, denoted

thepredicted approximation points. Let d(n)
k be the error between the actual dy-

namics function and the linear approximation evaluated atx(n)
k|k:

d(n)
k = f

(
x(n)

k|k

)
−Fkx

(n)
k|k− f0

k.

Also, let e(n)
k be the error between the actual observation function and thelinear

approximation evaluated atx(n)
k|k−1:

e(n)
k = h

(
x(n)

k|k−1

)
−Hkx

(n)
k|k−1−h0

k.

We chooseFk, f0
k and Hk, h0

k to minimize the sums, respectively, of weighted
squared dynamics and observation errors evaluated at the approximation points:

Fk, f0
k = argmin

F,f0

N−1

∑
n=0

ℓ
(n)
k

[
d(n)

k

]T [
d(n)

k

]

and

Hk,h0
k = argmin

H,h0

N−1

∑
n=0

ℓ
(n)
k

[
e(n)

k

]T [
e(n)

k

]
,

whereℓ
(n)
k is a weight associated with thenth approximation point.

This is a simple weighted least squares problem [11]. We define the following
matrices:

Lk = diag
(
ℓ
(0)
k , . . . , ℓ

(N−1)
k

)

Ak =

[
x(0)

k|k . . . x(N−1)
k|k

1 . . . 1

]
, Bk =

[
x(0)

k|k−1 . . . x(N−1)
k|k−1

1 . . . 1

]
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Ck =





fT
(

x(0)
k|k

)

...

fT
(

x(N−1)
k|k

)




, Dk =





hT
(

x(0)
k|k−1

)

...

hT
(

x(N−1)
k|k−1

)




.

The solution to the weighted least squares problem is

[
Fk

T

f0
k

T

]
=
(
AkLkAk

T)−1
AkLkCk

and [
Hk

T

h0
k

T

]
=
(
BkLkBk

T)−1
BkLkDk.

An example of choosing approximation points is given in Section 4 in the
context of a target tracking problem. Once these quantitiesare defined, the set-
valued Kalman filter is applied to the equations

xk+1 = Fkxk + f0
k +wk (18)

and
yk = Hkxk +h0

k +vk. (19)

Initialization: The extended set-valued Kalman filter is initialized in the same
way the set-valued Kalman filter is initialized.

Prediction Step:
ck|k−1 = f(ck−1|k−1) (20)

Pk|k−1 = Fk−1Pk−1|k−1Fk−1
T +Qk−1 (21)

K k|k−1 = Fk−1K k−1|k−1 (22)

Filter Step:
ck|k = ck|k−1 +Wk

[
yk−h(ck|k−1)

]
(23)

Pk|k = [I −WkHk]Pk|k−1 (24)

K k|k = [I −WkHk]K k|k−1, (25)

whereWk is the Kalman gain as given by (14). The filtered set estimate is
then given by (15).
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Figure 2: The tracking scenario for application of the set-valued Kalman filter.
The target moves in a straight line from left to right. Sensors 1 and 2 measure
their range to the target at each time.

4 Example: Target Tracking using Range Measure-
ments

In this section, we present an example of this linearizationtechnique for the set-
valued filter. We track a moving target using measured range from one or two fixed
sensors; one or both sensors may operate at any point in time.The target moves
in a two-dimensional Cartesian coordinate system. Figure 2illustrates the target
motion, sensor locations, and range measurements. The set-valued filter estimates
the target position and velocity in both dimensions as a function of time from the
range measurements.

We use a linear model of the form (3) for the target dynamics. The target state
xk consists of four elements: the target position in the x and y directions, denoted
xk(0) andxk(1), and the target velocity in the x and y directions, denotedxk(2)
andxk(3). The system dynamics matrix is the following:

F=





1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1



 ,

where∆t is the time between observations. The process noise covariance matrix
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is

Qk = σ2





∆t3
3 0 ∆t2

2 0

0 ∆t3
3 0 ∆t2

2
∆t2
2 0 ∆t 0

0 ∆t2
2 0 ∆t




,

whereσ2 is the intensity of a white continuous-time Gaussian noise process mod-
eling the target acceleration.

For this example, we locate Sensor 1 at coordinates(0,20) and Sensor 2 at
coordinates(20,0). The ranges from the sensors to the target at timek are denoted
asrk(1) andrk(2). These ranges are computed as

rk(1) =

√
(xk(0)−0)2 +(xk(1)−20)2

rk(2) =

√
(xk(0)−20)2 +(xk(1)−0)2.

Since one or both sensors may be in use at any givenk, the observation func-
tion h(xk) will be either a one- or two- dimensional vector function of the state
xk. When only Sensor 1 is in use,h(xk) = rk(1).When both sensors are in use,

h(xk) =

[
rk(1)
rk(2)

]
.

In this problem, the system dynamics are linear; thus, we need to approximate

only the observation function. We select the predicted approximation pointsx(n)
k|k−1

as follows. The observations depend only on the target position and not on its
velocity, so we select approximation points to cover the range of position values
in the estimate setXk|k−1. These position values lie in an ellipse defined by the
upper left sub-matrix ofSk|k−1. We use the centroid of the ellipse, the four points
at the intersection of the boundary of the ellipse with its axes, and the four points
equidistant between the centroid and boundary points. We use weights of 1.0 for
the centroid point, 0.5 for the midpoints, and 0.1 for the boundary points.

In the example scenario, the target starts at the point (10,10) with a velocity
of one unit/second to the right. The time∆t between observations is 2 seconds.
Only Sensor 1 provides range measurements from timek = 1 to k = 4; afterk =
4, both sensors provide range measurements. Figure 3 shows the set estimates
of the target position for this scenario. The initial estimate set is circular. The
range observations from Sensor 1 quickly reduce the size of the estimate set in the
direction of the target from the sensor, but do not provide information about the
target location along the perpendicular direction. When range information from
Sensor 2 becomes available at timek = 5, the set of estimates becomes much
smaller, since now there is enough information in the observations to locate the
target. In other words, during the first 4 time units, when thesystem is not fully
observable, the set of estimates does not shrink in the unobservable direction, but
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Figure 3: Estimate sets.

thereafter, the system is fully observable and the set of means shrinks in both
directions.

It must be emphasized that the ellipses in Figure 3 donot correspond to like-
lihood contours (contours of constant value of probabilitydensity); rather, they
define a set of position estimates, each of which has a legitimate claim to being a
valid assessment of the true state of the system. If time wereto increase without
bound with both sets of observations available, the system would be observable
and, in the limit, it would converge to a singleton representing the mean value
of a unique limiting distribution (a precise probability).The covariance of this
distribution, however, would converge to a steady-state, but non-zero, level, such
that no increase in the accuracy of the (now point-valued) state estimates can be
achieved.

5 Discussion

For time-varying estimation scenarios that are either not uniformly observable and
controllable or, even if they are observable and controllable, are of such short du-
ration that transients in the estimator dynamics do not havetime to damp out, set-
valued estimation provides a realistic means of accountingfor imprecise knowl-
edge of the mean of the prior distribution.

Non-linear filtering requires the propagation of the entiredistribution, in con-
trast to the need to propagate only the first two moments with linear filtering. This
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accounts for the difficulty associated with non-linear estimation. The conventional
extended Kalman filter is a well-accepted and practical solution for point-valued
estimates, but it does not apply to the set-valued case. The extended set-valued
Kalman filter provides an approximate solution to the non-linear set-valued dy-
namic state estimation problem that is computationally feasible. As with the con-
ventional extended Kalman filter, however, it is not possible to prove global con-
vergence of the extended set-valued Kalman filter.
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The Shape of Incomplete Preferences∗

ROBERT NAU
Duke University, USA

Abstract

The emergence of robustness as an important consideration in Bayesian sta-
tistical models has led to a renewed interest in normative models of incom-
plete preferences represented by imprecise (set-valued) probabilities and util-
ities. This paper presents a simple axiomatization of incomplete preferences
and characterizes the shape of their representing sets of probabilities and
utilities. Deletion of the completeness assumption from the axiom system of
Anscombe and Aumann yields preferences represented by a convex set of
state-dependent expected utilities, of which at least one must be a probabil-
ity/utility pair. A strengthening of the state-independence axiom is needed to
obtain a representation purely in terms of a set of probability/utility pairs.

Keywords

axioms of decision theory, Bayesian robustness, state-dependent utility, coherence, partial
order, imprecise probabilities and utilities

1 Introduction

In the Bayesian theory of choice under uncertainty, a decision maker holds ra-
tional preferences among acts, which are mappings from states of nature{s} to
consequences{c}. It is typically assumed that rational preferences arecomplete,
meaning that for any two actsX andY, eitherX ≻∼ Y (“X is weakly preferred to
Y) or elseY ≻∼X, or both. This assumption, together with other rationalityaxioms
such as transitivity and independence, leads to a representation of preferences by
a unique subjective probability distribution on statesp(s) and a unique utility
functionu(c) on consequences, such thatX ≻∼ Y if and only if the subjective ex-
pected utility ofX is greater than or equal to that ofY (Savage 1954, Anscombe
and Aumann 1963, Fishburn 1982). However, the completenessassumption may
be inappropriate if we have only partial information about the decision maker’s
preferences, or if realistic limits on her powers of discrimination are assumed, or
if there are actually many decision makers whose preferences may disagree.

∗This research was supported by the Fuqua School of Business and by the National Science Foun-
dation. The author is grateful to David Rios Insua, Teddy Seidenfeld, Jim Smith, and Peter Wakker
for comments on earlier drafts.

408
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Incomplete preferences are generally represented by indeterminate (i.e., set-
valued) probabilities and/or utilities. Varying degrees of such indeterminacy have
been modeled previously in the literature of statistical decision theory and rational
choice:

i. If probabilities alone are considered to be indeterminate, then preferences
can be represented by a set of probability distributions{p(s)} and a unique
(perhaps linear) utility functionu(c). The set of probability distributions
is typically convex, so the representation can be derived byseparating hy-
perplane arguments (e.g., Smith (1961), Suppes (1974), Williams (1976),
Giron and Rios (1980), Nau (1992).) Representations of thiskind are are
widely used in robust Bayesian statistics; an extensive treatment is given by
Walley (1991).

ii. If utilities alone are considered to be indeterminate, preferences can be rep-
resented by a set of utility functions{u(c)} and a unique (perhaps objec-
tively specified) probability distributionp(s), a representation that has been
axiomatized and applied to economic models by Aumann (1962). The set
of utility functions in this case is also typically convex, so that separating
hyperplane arguments are again applicable.

iii. If both probabilities and utilities are allowed to be indeterminate, they can
be represented by separate sets of probability distributions{p(s)} and util-
ity functions{u(c)} whose elements are paired up arbitrarily. This repre-
sentation of preferences preserves the traditional separation of information
about beliefsfrom information aboutvalueswhen both are indeterminate
(Rios Insua 1990, 1992), but lacks a natural axiomatic basis. Rather, it arises
only as a special case of more general representations when probability and
utility assessments are carried out independently.

iv. More generally, we can represent incomplete preferences by sets of prob-
ability distributions paired with state-independent utility functions{(p(s),
u(c))}, a.k.a. “probability/utility pairs.” This representation has an appeal-
ing multi-Bayesian interpretation and provides a normative basis for tech-
niques of robust decision analysis (Moskowitz, Preckel andYang, 1993)
and asset pricing in incomplete financial markets (Staum 2002). It has been
axiomatized by Seidenfeld, Schervish, and Kadane (1995, henceforth SSK),
starting from the “horse lottery” formalization of decision theory intro-
duced by Anscombe and Aumann (1963). However, as pointed outby SSK,
the set of probability/utility pairs is typically nonconvex and may even be
unconnected, so that separating hyperplane arguments are not directly ap-
plicable. Instead, SSK rely on methods of transfinite induction and indirect
reasoning to obtain their results.



410 ISIPTA ’03

The objective of this paper is to derive a simple representation of incomplete
preferences for the elementary case of finite state and reward spaces, and to char-
acterize the shape of the resulting sets of probabilities and utilities. We begin by
deleting both completeness and state-independence from the horse-lottery axiom
system of Anscombe and Aumann, showing that this leads immediately to a repre-
sentation of preferences by a set of probabilities paired with state-dependentutil-
ity functions{(p(s),u(s,c))}. Such pairs will be calledstate-dependent expected
utility (s.d.e.u.) functions. State-dependent utilities have been used in economic
models by Karni (1985) and Drèze (1987) and are also discussed by Schervish et
al. (1990). A set of s.d.e.u. functions is typically convex—unlike a set of prob-
ability/utility pairs—so that separating-hyperplane methods are still applicable
at this stage. We then re-introduce Anscombe and Aumann’s state-independence
assumption and show that it imposes (only) the further requirement that the rep-
resenting set should containat least oneprobability/utility pair. Finally, we con-
sider the additional assumptions that must be imposed in order to shrink the rep-
resentation to (the convex hull of) a set of probability/utility pairs, and present
a constructive alternative to SSK’s indirect reasoning method. We show that al-
though the representing set of probability/utility pairs is nonconvex, it nonetheless
has a simple configuration: it is merely the intersection of aconvex set of s.d.e.u.
functions with the nonconvex surface of state-independentutilities.

The organization of the paper is as follows. Section 2 introduces basic nota-
tion and derives a representation of preferences by convex sets of s.d.e.u. functions
when neither completeness nor state-independence is assumed. Section 3 incorpo-
rates Anscombe and Aumann’s state-independence assumption and shows that it
requires (only) the existence of at least one agreeing state-independent utility. Sec-
tion 4 discusses an example of SSK to highlight the implications of different con-
tinuity and strictness conditions. Section 5 gives the additional constructive axiom
that is needed to obtain a representation purely in terms of probability/utility pairs,
illustrated by another example. Section 6 briefly discussesthe results.

2 Representation of incomplete preferences

Let S denote a finite set of states and letC denote a finite set of consequences.
Let B = {B : S×C 7→ ℜ}. An elementX ∈ B is a horse lotteryif X ≥ 0 and
∀s, ∑cX(s,c) = 1, with the interpretation thatX(s,c) is the objective probability
of receiving consequencec when states occurs. Henceforth, the symbolsW, X,
Y, Z, andH will be used to denote horse lotteries; the symbolB will denote an el-
ement ofB that is not necessarily a horse lottery (e.g.,B may represent the differ-
ence between two horse lotteries). A horse lotteryX is constantif the probabili-
ties it assigns to consequences are constant across states—i.e., if X(s,c) = X(s′,c)
for all s,s′,c. The symbol≻∼ will denote non-strict preference between horse lot-
teries:X ≻∼ Y means thatX is preferred or indifferent toY, which is considered
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as the behavioral primitive. The domain of≻∼ is the set of all horse lotteries. The
asymmetric part of≻∼ will be denoted by≻.

An eventis a subset ofS. The symbolE will be used interchangeably as the
name for an event and for its indicator function onS×C. That is,E(s,c) = 1[0] for
all c if the eventE includes [does not include] states. Es will denote the indicator
vector for states. That is,Es(s′,c) = 1 for all c if s= s′ and zero otherwise. Ifα
is a scalar between 0 and 1, thenαX +(1−α)Y is an objective mixtureof X and
Y: it yields consequencec in states with probability αX(s,c) + (1−α)Y(s,c).
If E is an event, thenEX + (1−E)Y is a subjective mixtureof X and Y: it
yields consequencec in states with probabilityX(s,c) if E(s,c) = 1, and with
probabilityY(s,c) otherwise.

Assume thatC contains a “worst” and a “best” consequence, labeled 0 and 1
respectively.1 Other consequences are labeled 2,3, . . . ,K. The symbolsHc, for c∈
{0,1,2, . . . ,K}, andHu, for u∈ (0,1), will be used to denote special “reference”
horse lotteries. First, for allc ∈ {0,1,2, . . . ,K}, let Hc denote the horse lottery
that yields consequencec with probability 1 in every state. That is,Hc(s,c′) = 1
if c = c′ andHc(s,c′) = 0 otherwise. For example,H2 is the horse lottery that
yields consequence 2 with probability 1 in every state. Next, for all u ∈ (0,1),
let Hu denote the horse lottery that yields the best and worst consequences with
probabilitiesu and 1−u in every state, which is the objective mixture:

Hu≡ uH1 +(1−u)H0.

For example,H0.5 is the horse lottery that yields consequences 0 and 1 with equal
probability. Later on, consequences 0 and 1 will be assignedutilities of 0 and 1,
respectively, so thatHu will have an expected utility ofu by definition.

The reference-lottery notation can be stretched further todefineHE as the
horse lottery that yields the best consequence if eventE occurs and the worst
consequence otherwise, i.e., the subjective mixture:

HE ≡ EH1 +(1−E)H0.

Bounds on subjective probabilities are expressible as preferences between subjec-
tive and objective mixtures ofH0 andH1. For example, a preference of the form
HE

≻∼ H p for some eventE and p∈ (0,1) means that “the probability ofE is at
leastp,” i.e., thatp is a lower probabilityfor E. Upper probabilities are defined
analogously. IfX is a horse lottery andu is a scalar between 0 and 1, a preference

1Our assumption ofa priori best and worst consequences follows Luce and Raiffa (1957) and
Anscombe and Aumman (1963), and it is technically without loss of generality in the sense that the
preference order can always be extended to a larger domain that includes two additional consequences
which by construction are better and worse, respectively, than all the original consequences. (Such an
extension is demonstrated by SSK, Theorem 2.) The best and worst consequences ultimately serve
to calibrate the definition and measurement of subjective probabilities, but even so the probabilities
remain somewhat arbitrary, as will be shown.
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of the formX ≻∼ Hu means that “the expected utility ofX is at leastu.” Equiva-
lently, we will say thatu is a lower expected utilityfor X. Upper expected utilities
are defined analogously. Using the terms defined above, we nowintroduce the first
group of axioms that are assumed to govern rational preference:
A1 (Quasi order):≻∼ is transitive and reflexive.
A2 (Mixture-independence):X ≻∼ Y⇔ αX +(1−α)Z ≻∼ αY +(1−α)Z ∀α ∈
(0,1).
A3 (Continuity in probability): If{Xn} and{Yn} are convergent sequences such
thatXn

≻∼ Yn, then limXn
≻∼ lim Yn.

A4 (Existence of best and worst): For allc > 1, H1
≻∼ Hc

≻∼ H0.
A5 (Coherence, or non-triviality):H1≻ H0 (i.e.,not H0

≻∼ H1).
A1 and A2 are von Neumann and Morgenstern’s first two axioms ofexpected

utility, minus completeness2, as applied to horse lotteries by Anscombe and Au-
mann (1963); see also Fishburn (1982). A3 is a strong continuity condition used
by Garcia del Amo and Rios Insua (2002) that also works in infinite-dimensional
spaces. A4 and A5 ensure non-triviality and provide reference points for proba-
bility measurement, as noted earlier.
DEFINITION : A collection of preferences{Xn

≻∼ Yn} is a basis3 for ≻∼ under
an axiom system if every preferenceX ≻∼ Y can be deduced from{Xn

≻∼ Yn} by
direct application of those axioms.

The primal geometric representation of≻∼ is now given by:

Theorem 1 ≻∼ satisfies A1–A5 if and only if there exists a closed convex cone
B∗ ⊂ B , receding from the origin, such that for any horse lotteriesX andY:

X ≻∼ Y⇔ X−Y ∈ B∗.

In particular, if {Xn
≻∼ Yn} is a basis for ≻∼ under A1–A5, then the coneB∗ is the

closed convex hull of the rays whose directions are{Xn−Yn} for all n together
with {H1−Hc} and{Hc−H0} for all c.4

Because the direction of preference between two horse lotteriesX andY depends
only on the direction of the vectorX−Y, it follows that ifEX+(1−E)Z ≻∼ EY+
(1−E)Z whereE is an event, thenEX +(1−E)Z′ ≻∼ EY + (1−E)Z′ for any
Z′. Consequently, we will simply writeEX ≻∼ EY to indicate thatEX + (1−
E)Z ≻∼ EY+(1−E)Z for all Z, or in other words, “X is preferred toY conditional
on the eventE.” This result enables us to give a simple definition of conditional
probability or expected utility: ifE is an event andX is a horse lottery, then the
preferenceEX ≻∼ EHu means that “the conditional expected utility ofX givenE
is at leastu.”

2The completeness assumption asserts that for anyX andY, eitherX ≻∼ Y or Y ≻∼ X, or both. Here,
it is permitted that neither of these conditions holds—i.e., X andY may be incomparable.

3Use of the term “basis” in this context is due to SSK.
4Proofs have been suppressed in the conference version of thepaper but are available in the com-

plete version on the author’s web site at http://www.duke.edu/∼rnau.
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Now let a state dependent expected utility (s.d.e.u.) function be defined as a
functionv : S×C 7→ ℜ, with the interpretation thatv(s,c) is the expected utility
of receiving consequencec with probability 1 if states obtains and receiving
consequence 0 with probability 1 otherwise. LetUv(X) denote the expected utility
assigned to a horse lotteryX by the s.d.e.u. functionv:

Uv(X)≡ ∑
s∈S,c∈C

X(s,c)v(s,c).

DEFINITIONS : A s.d.e.u. functionv is a probability/utility pair if it can be
expressed as the product of a probability distribution onSand a state-independent
utility function onC—i.e., if v(s,c) = p(s)u(c) for some functionsp andu. A
s.d.e.u. functionv agrees(one way) with ≻∼ if X ≻∼ Y⇒Uv(X) ≥Uv(Y). A set
V of s.d.e.u. functionsrepresents≻∼ if X ≻∼ Y⇔Uv(X)−Uv(Y)≥ 0 ∀ v∈ V .

We now have, as the dual to Theorem 1:

Theorem 2 ≻∼ satisfies A1–A5 if and only if it is represented by a non-empty
closed convex setV ∗ of s.d.e.u. functions satisfying (w.l.o.g.) Uv(H0) = 0 and
Uv(H1) = 1.

(The proof relies on a separating hyperplane argument. For asimilar result on a
more general space, see Rios 1992.) If{Xn

≻∼ Yn} is a basis for≻∼ , thenV ∗ is
merely the intersection of the linear constraints{Uv(Xn)≥Uv(Yn)}, Uv(H0) = 0,
Uv(H1) = 1, and 0≤Uv(Hc) ≤ 1 for all c≥ 2. If the basis is finite, thenV ∗ is a
convex polytope, whose elements need not be probability/utility pairs. Subsequent
sections of the paper will discuss the additional assumptions needed to ensure that
some points ofV ∗—especially its extreme points—are probability/utility pairs.

3 The state-independence axiom

We now explore the implications, in the context of incompleteness, of the addi-
tional axiom introduced by Anscombe and Aumann5 to provide the usual sep-
aration of subjective probability from utility. First, define the concept of a not-
potentially-null event:
DEFINITION : An eventE is not potentially nullif HE

≻∼ H p for somep > 0.
Thus, an event that is not potentially null is precluded fromhaving zero as an

upper probability in any extension of≻∼ satisfying A1–A5. The final axiom is
then:
A6 (State-independence): IfX andY are constant andE is not potentially null,

thenEX ≻∼ EY ⇒ E′X ≻∼ E′Y for every other eventE′.
An immediate contribution of A6, in light of A4, is to guarantee that conse-

quences 0 and 1 are best and worstin every state. Thus, if A6 holds, any s.d.e.u.

5Anscombe-Aumann refer to this assumption as “monotonicityin the prizes” or “substitutability.”
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function agreeing with≻∼ may be considered to belong to the setV + ⊂ V de-
fined by:

V + ≡ {v : 0 = v(s,0) ≤ v(s,c) ≤ v(s,1) ≤ 1 ∀ s∈ S, c≥ 2; ∑
s∈S

v(s,1) = 1}.

Henceforth it will be assumed (arbitrarily but w.l.o.g.) that consequences 0 and
1 have the same numerical utilities, namely 0 and 1, in every state as well as
unconditionally. Then, regardless of whetherv is a probability/utility pair, define

pv(s)≡ v(s,1)

as “the” probability assigned to states by v, since it is the expected utility of a
horse lottery that yields a utility of 1 if states obtains and 0 otherwise.6 Corre-
spondingly, ifE is an event,

pv(E)≡Uv(HE) = ∑
s∈E

pv(s)

is the probability assigned toE by v. Next define:

uv(s,c) ≡ v(s,c)/v(s,1) if v(s,1) > 0,

as the utility assigned to consequencec in states by v. This utility is state-
independent ifv is a probability/utility pair, otherwise it is state-dependent. In
these terms, the expected utility assigned toX by v can be rewritten as:

Uv(X) = ∑
s

pv(s)∑
c

uv(s,c)X(s,c).

We can now give a dual definition of conditional expected utility in terms ofv in
the obvious way:

Uv(X|E) = Uv(XE)/pv(E).

If the conditional expected utility ofX givenE is at leastuby our primal definition—
i.e., if EX ≻∼ EHu—then dually we haveUv(X|E)≥ u for anyv agreeing with≻∼
and satisfyingpv(E) > 0, because for any agreeingv:

EX ≻∼ EHu⇒Uv(EX)≥Uv(EHu) = upv(E)⇔Uv(X|E)≥ u or else pv(E) = 0.

Another consequence of A6, in light of Theorem 1, is the property of stochas-
tic dominance. In particular, ifX is obtained fromY by shifting probability mass

6The same method of defining probabilities is used by Karni (1993). Since this definition is based
on the arbitrary assignment of equal utilities to the best and worst outcomes in all states, it should not
be interpreted as the “true” probability of a hypothetical decision maker whose preferences are rep-
resented byv. The classic definitions of subjective probability given bySavage, Anscombe-Aumann,
and others, are all afflicted with the same arbitrariness. The intrinsic impossibility of inferring “true”
probabilities from material preferences is discussed by Kadane and Winkler (1988), Schervish et al.
(1990), Karni and Mongin (2000) and Nau (1995, 2002).
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to consequence 1 from any other consequence, and/or from consequence 0 to
any other consequence, in any state, thenX ≻∼ Y. To see this, note that A6 to-
gether with A4 implies thatEsH1

≻∼ EsHc andEsHc
≻∼ EsH0 for states and any

c > 1. HenceB∗ contains all vectors of the formEs(H1−Hc) andEs(Hc−H0).
If X−Y can be expressed as a non-negative linear combination of these vectors,
thenX−Y ∈B∗ and henceX ≻∼Y. To make this result more precise, let the[ . ]min

(“minimum s.d.e.u.”) operation be defined onB as follows:

[B]min ≡ min
v∈V +

Uv(B) = min
s∈S

[B(s,1)+ ∑
c≥2

min{0,B(s,c)}].

This quantity is the minimum possible state-dependent expected utility that could
be assigned toB: it is achieved by assigning, within each state, a utility of0 to
those consequencesc≥ 2 for whichB is positive and a utility of 1 to those conse-
quencesc≥ 2 for whichB is negative, then assigning a subjective probability of 1
to the state in which the conditional expected utility ofB is minimized. Stochastic
dominance and the negative orthant inB can now be defined in a natural way:
DEFINITIONS : X ≥∗ [>∗] Y (“X [strictly] dominatesY”) if [X−Y]min≥ [>] 0.
The open negative orthantB− consists of thoseB that are strictly dominated by
the zero vector, i.e.,B− = {B ∈ B : 0 >∗ B}.

A6 in conjunction with A1–A5 then implies thatX ≥∗ [>∗] Y⇒ X ≻∼ [≻] Y.
If preferences are complete (i.e., if for any horse lotteries X andY, eitherX ≻∼ Y
or Y ≻∼ X or both), then the primal representationB∗ is a half-space, the dual
representationV ∗ consists of a unique s.d.e.u. functionv∗, and axiom A6 re-
quires the latter to be a probability/utility pair, which isthe same result obtained
by Anscombe and Aumann (1963). (A6 implies thatUv∗(Hc|Es) = Uv∗(Hc) inde-
pendent of the states.) In the absence of completeness, the contribution of A6 to
the separation of probability and utility is weaker, as summarized by:

Theorem 3 . ≻∼ satisfies A1–A6 if and only if it is represented by a nonempty
convex setV ∗∗ ⊆ V + of s.d.e.u. functions of which at least one element is a
probability/utility pair.

If {Xn
≻∼ Yn} is a basis for≻∼ under axioms A1–A6, then any probability/utility

pair v that satisfiesUv(Xn) ≥Uv(Yn) for all n, v∈ V +, belongs to the setV ∗∗.
Apart from this fact, it is not easy to characterize the setV ∗∗ in terms of proba-
bility/utility pairs, as will be illustrated in the sequel.

4 Strict vs. non-strict preference: an example

The results of the preceding section establish that a preference relation satisfying
A1–A6 is represented by a closed set of s.d.e.u. functions ofwhich at least one is
a probability/utility pair. The closedness of the representing set is attributable to
the use of non-strict preference as the behavioral primitive, together with a strong
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continuity assumption. In contrast, SSK use strict preference as the behavioral
primitive, together with a weaker continuity assumption, to explicitly allow for
the representation of incomplete preferences by open sets that may fail to contain
probability/utility pairs.

The differences in these approaches are illustrated by an example of SSK
(Example 4.1) comprising two states and three consequences, i.e.,S= {1,2} and
C = {0,1,2}. Consequences 0 and 1 have state-independent utilities of 0and 1 by
assumption, so that a probability/utility pair is completely parameterized by the
probability assigned to state 1 and the utility assigned to consequence 2. Consider,
then, the two probability/utility pairs(pi ,ui) in which p0(1) = 0.1 andp1(1) =
0.3, andu0(2) = 0.1 andu1(2) = 0.4. Let v0 andv1 denote the corresponding
s.d.e.u. functions—i.e.,vi(s,c) = pi(s)ui(c) for i = 0,1. ThenUvi (X) denotes the
expected utility assigned to horse lotteryX by (pi ,ui). In particular,Uv0(H2)= 0.1
andUv1(H2) = 0.4. Now let≻ be defined as the preference relation that satisfies
a weak Pareto condition with respect to these two probability/utility pairs—i.e.,
X ≻Y⇔{Uv0(X) >Uv0(Y) and Uv1(X) >Uv1(Y)}. Any s.d.e.u. function that is
a convex combination ofv0 andv1 also agrees with≻, so the representing setV ∗∗

is the closed line segment whose endpoints arev0 andv1, but none of its interior
points are probability/utility pairs.

Next SSK extend≻ to obtain a new preference relation≻′′ by imposing the
additional strict preferencesH0.4 ≻′′ H2 ≻′′ H0.1. The effect of this extension is
to chop off the two endpoints of the representing set of s.d.e.u. functions, so that
≻′′ is represented by theopenline segment connectingv0 with v1. SSK point out
that, although≻′′ satisfies all their axioms, there is no agreeing probability/utility
pair for it, since the only two candidates have been deliberately excluded. They
proceed to axiomatize the concept of “almost state- independent” utilities, which
agree with a strict preference relation and are “withinε” of being state- inde-
pendent. Clearly,≻′′ has an almost-state-independent representation, containing
points arbitrarily close tov0 andv1.

In our framework, where the language of preference is non-strict, there is
no way to implement a constraint such asH2 ≻ H0.1 (i.e., to chop offv0) ex-
cept by asserting thatH2

≻∼ H0.1+ε for a specific positiveε. And if this asser-
tion is made, an interesting thing happens: axiom A6 begins to nibble on the
v0 end of the line segment and continues nibbling until the representation col-
lapses to thev1 end. To illustrate this process, let the non-zero elements of each
v be written out asv = ({v(s,c)}) = (v(1,1),v(2,1);v(1,2),v(2,2)). Thus,v0 =
(0.1,0.9;0.01,0.09) andv1 = (0.3,0.7;0.12,0.28). (Note that because these are
probability/utility pairs, the first two numbers in parentheses are the probabilities
of states 1 and 2, and the last two numbers are the same probabilities multiplied
by the utility of consequence 2.) Next, let the line segment from v0 to v1 be pa-
rameterized byvα ≡ (1−α)v0+ αv1 for α ∈ (0,1). In these terms we obtain:

vα = (0.1+0.2α,0.9−0.2α;0.01+0.11α,0.09+0.19α),
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whence:
Uvα(H2) = vα(1,2)+vα(2,2) = 0.1+0.3α (4.1)

Uvα(H2|E1) =
vα(1,2)

vα(1,1)
=

0.01+0.11α
0.1+0.2α

(4.2)

Uvα(H2|E2) =
vα(2,2)

vα(2,1)
=

0.09+0.19α
0.9−0.2α

(4.3)

These are all monotone functions ofα for α between 0 and 1, and they all are
equal to 0.1 atα = 0 and 0.4 atα = 1. However, for intermediate values ofα,
(4.1) is greater than (4.3) and less than (4.2), and by invoking axiom A6, we can
play the last two off against each other. In particular, it follows from monotonicity
of (4.2) that

α≥ α∗⇒Uvα(H2|E1)≥
0.01+0.11α∗

0.1+0.2α∗
, (4.4)

whereas it follows from monotonicity of (4.3) that

Uvα(H2|E2)≥ u∗⇒ α≥ 0.9u∗−0.09
0.2u∗+0.19

(4.5)

Let the setV ∗∗ representing the original relation≻ henceforth be parameterized
asV ∗∗ = {vα|α∈ [0,1]}. Suppose that we now increase the lower utility ofH2 by
ε = 0.01 by adding the preference assertionH2

≻∼ H0.11 to the basis for≻. This
additional assertion imposes the constraintUvα(H2) ≥ 0.11 for all vα agreeing
with the extended relation, thus excludingv0 as an agreeing s.d.e.u. function. By
application of A6, we may conclude thatUvα(H2|E2)≥ 0.11 as well. Substituting
u∗= 0.11 in (4.5), it follows that the representing set must consist only of thosevα
satisfyingα≥ 0.042453. But now, substitutingα∗ = 0.042453 back into (4.4), we
find that it must also satisfyUvα(H2|E1) ≥ 0.135217. SinceE1 is not potentially
null, A6 may be applied again to obtainUvα(H2)≥ 0.135217. Thus, if we take one
bite out of the line segment by imposing the constraintUvα(H2) ≥ 0.11, we end
up concluding that a larger biteUvα(H2)≥ 0.135217 may be taken! If we now re-
peat the process by substitutingu∗= 0.135217 in (4.5), we obtainα∗ = 0.146034,
which yieldsUvα(H2|E1)≥ 0.201721 when substituted in (4.4). Successive itera-
tions yieldu∗ values of 0.299288, 0.365247, 0.390144, 0.397381, 0.399317, and
so on with rapid convergence to 0.4, which is realized (only)atv1. The continuity
axiom then allows us to assert thatH2

≻∼ H0.4, which together with the original
constraintH0.4

≻∼H2, establishes that the utility of consequence 2 is precisely0.4.
If instead we start at the other endpoint, adding the constraint H0.4−ε ≻∼ H2

for ε > 0, the collapse occurs to the 0.1 value. If both constraints are added—i.e.,
if both endpoints are chopped off by finite margins, the entire interval is annihi-
lated, yielding incoherence (a violation of A5). Hence, this example is unstable
in the sense that anyfinite extension of the original preference relation leads to
a collapse to one or the other of the original probability/utility pairs, or else to
incoherence.
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5 The need for stronger state-independence

The original preference relation in SSK’s example is represented by a set of
s.d.e.u. functions whose extreme points are both probability/utility pairs. In our
framework, if either of these points is excluded, then the intervening points must
be excluded as well. Thus, in extending that relation, it is impossible to retain any
agreeing state-dependent utilities that are not convex combinations of agreeing
state-independent utilities. A second example shows that this is not always the
case under axioms A1–A6. In other words, a preference relation can satisfy these
axioms and yet not be represented by utilities that are state-independent or even
“almost” state-independent.

Let there be three states and three consequences, and letX denote the horse
lottery that satisfiesX(1,0) = X(2,2) = X(3,1) = 1. That is,X yields conse-
quences 0, 2, and 1 with certainty in states 1, 2, and 3 respectively. Suppose that
all states are judged to have probability at least 0.1, andX is judged to have an
unconditional expected utility of at least 0.5. Furthermore, a coin flip betweenX
and{consequence 2 if state 1, otherwiseZ} is preferred to a coin flip between
utility 0.5 and{utility 0.9 if state 1, otherwiseZ}, but also a coin flip betweenX
and{utility 0.1 if state 2, otherwiseZ} is preferred to a coin flip between utility
0.5 and{consequence 2 given state 2, otherwiseZ}. (The common alternativeZ
is arbitrary by Theorem 1.) Thus, the basis for≻∼ is as follows:

HE
≻∼ H0.1 for E = E1,E2,E3, (5.1)

1
2

X +
1
2

Z ≻∼
1
2

H0.5 +
1
2

Z, (5.2)

1
2

X +
1
2
(E1H2 +(1−E1)Z) ≻∼

1
2

H0.5 +
1
2
(E1H0.9+(1−E1)Z), (5.3)

1
2

X +
1
2
(E2H0.1 +(1−E2)Z) ≻∼

1
2

H0.5+
1
2
(E2H2 +(1−E2)Z), (5.4)

Notice that (5.3) and (5.4) are obtained from (5.2) by replacing Z by subjective
mixtures ofZ with different constant lotteries on the LHS and RHS. These last
two preferences imply that the lower bound on the expected utility of X among
all probability/utility pairs agreeing with ≻∼ must be strictly greater than 0.5.
To understand this implication, note that under any s.d.e.u. function that agrees
with ≻∼ , the differences in expected utility between the LHS’s and RHS’s of
(5.2), (5.3), and (5.4), must all be non-negative. Moreover, if the s.d.e.u. function
is a probability/utility pair, then in at least one of the twocomparisons (5.3) and
(5.4), the difference in expected utility between LHS and RHS must be strictly
less than it is in (5.2), a situation that occurs when consequence 2 has a utility
strictly greater than 0.1 and/or strictly less than 0.9. If the difference in expected
utility between LHS and RHS is non-negative in all cases, then the difference can
never be zero in (5.2)—i.e.,X cannot have a lower expected utility as small as



Nau: The Shape of Incomplete Preferences 419

0.5. In fact, the minimum expected utility ofX among all probability/utility pairs
agreeing with (5.1–5.4) is 0.564314.

The question is whether, by direct application of axioms A1–A6, we can infer
that the expected utility ofX is strictly greater than 0.5. The answer is: we cannot.
The problem is that axiom A6 is useless here because of the common nonconstant
termX in (5.2)–(5.4). In order to apply A6, we must first find non- negative lin-
ear combinations of the differences between the LHS’s and RHS’s of (5.1)–(5.4)
that are conditionally constant—i.e., of the formEB, whereE is an event andB
is constant across states. But the search for such conditionally constant terms is
constrained here by the presence of a common nonconstant term X−H0.5 in the
differences between LHS’s and RHS’s of (5.2)–(5.4). Furthermore, in order for
A6 to “bite,” B needs to have a negative lower expected utility when conditioned
on some other eventE′. The effect of applying A6 will then be to raise this lower
expected utility to zero, which shrinks the set of s.d.e.u. functions representing
≻∼ . In the example, the few conditionally-constant lottery differencesEB that

can be constructed from (5.1)–(5.4) all turn out to satisfyB ≥∗ 0, which is com-
pletely uninformative. The lower expected utility ofX therefore remains at 0.5
despite the fact that this value is not realized,or even closely approached, by any
probability/utility pair agreeing with≻∼ .

This example shows that when preferences are incomplete, axiom A6 is insuf-
ficient to guarantee that they are represented by a set of probability/utility pairs
(or their convex hull). Evidently, an additional state-independence condition is
needed, such as:
A7 (Stochastic substitution): If

αX +(1−α)(EX′+(1−E)Z) ≻∼ αY +(1−α)(EY′+(1−E)Z)

for someα ∈ (0,1) whereX′ andY′ andZ are constant lotteries andE is not
potentially null, then

αX +(1−α)(pX′+(1− p)Z) ≻∼ αY +(1−α)(pY′+(1− p)Z)

for somep∈ (0,1].
In other words, the subjective mixtures of the constant lotteriesX′ andY′ with

Z can be replaced with objective mixturesagainst the backgroundof a compari-
son between the nonconstant lotteriesX andY. In terms of the primal representa-
tionB∗, this assumption means that ifB+EB′ ∈ B∗, whereB′ is constant across
states andE is not potentially null, thenB+ pB′ ∈ B∗ for somep > 0.7 Note that
if a collection of preferences{Xn

≻∼ Yn} satisfies A1–A6, then the imposition of
A7 cannot produce a contradiction. A1–A6 require the existence of at least one
probability/utility pair agreeing with{Xn

≻∼ Yn}, and any probability/utility pair
that agrees with the original preferences will also agree with any new preferences
generated from them by A7.

7A2 andA6 imply only that this substitution may be performed in the nonstochastic caseB = 0.
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The new axiomdoesaffect the counterexample discussed above. (5.3) and
(5.4) can now be replaced by

1
2

X +
1
2
(pH2 +(1− p)Z) ≻∼

1
2

H0.5 +
1
2
(pH0.9 +(1− p)Z),

1
2

X +
1
2
(p′H0.1 +(1− p′)Z) ≻∼

1
2

H0.5 +
1
2
(p′H2 +(1− p′)Z),

for somep, p′ > 0. A mixture of these two comparisons in a ratio ofp′ to p yields:

1
2

X +
1
2
(αH0.1 + αH2 +(1−2α)Z) ≻∼

1
2

H0.5 +
1
2
(αH0.9 + αH2+(1−2α)Z),

whereα = pp′/(p+ p′). The LHS must have greater-or-equal expected utility
than the RHS, which (because of theH0.1 term on the left and theH0.9 term on
the right, and cancellation of the common termsH2 andZ) means thatX must
have strictly greater expected utility than 0.5.

The main result, which generalizes this example, can now be stated as:

Theorem 4 ≻∼ satisfies A1–A7 if and only if it is represented by a nonempty set
V ∗∗∗ of s.d.e.u. functions that is the convex hull of a set of probability/utility pairs.

If {Xn
≻∼ Yn} is a basis for ≻∼ under A1–A7, thenV ∗∗∗ is merely the con-

vex hull of the set of probability/utility pairs that satisfy {Uv(Xn) ≥ Uv(Yn)}.
If the basis is finite, the construction ofV ∗∗∗ can be carried out as follows.
First, form the convex polyhedron consisting of the intersection of the constraints
{Uv(Xn)≥Uv(Yn)}, v ∈ V +. Now take the intersection of this polyhedron with
the nonconvex surface consisting of all probability/utility pairs. (If the latter in-
tersection is empty, the preferences do not satisfy A1–A7: they are incoherent.)
Finally, take the convex hull of what remains: this is the setV ∗∗∗.

6 Discussion

It has been shown that, in order to obtain a convenient representation of incom-
plete preferences by sets of probability/utility pairs, itdoes not suffice merely to
delete the completeness axiom from the standard axiomatic framework of Anscombe
and Aumann. This finding is not due to technical problems withlimits or null
events, but rather to a fundamental weakness of the traditional state-independence
axiom in the absence of completeness. Our approach is to introduce an additional
state-independence postulate (A7) that has “bite” in the absence of completeness.
SSK follow a different approach in their axiomatization of incomplete strict pref-
erences. Instead of directly strengthening the state-independence property, they
“fill in the missing preferences” by indirect reasoning, namely, they assume the
preference relation has the property that¬(X ≻∼ Y)⇒ Y ≻ X, where “¬” stands
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for “it is precluded that,” meaning that there is no extension of ≻∼ satisfying
the other axioms in whichX ≻∼ Y (p. 2204 ff.). SSK’s assumption requires that
wherever a weak preference is precluded, the opposite strict preference must be
affirmed. In our framework, this property of≻∼ is not implied by axioms A1–A6,
hence it amounts to an additional axiom of rationality. The lack of this property is
illustrated by the example of the preceding section, in which it is precluded that
Hu

≻∼ X for anyu < 0.5643...., yet it is not implied by A1–A6 thatX ≻ Hu for
anyu > 0.5. If the “axiom” of indirect reasoning is added to A1–A6, in lieu of
A7, the representation of Theorem 4 follows immediately from Theorem 3.
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Abstract

In this paper we study two classes of imprecise previsions, which we termed
convex and centered convex previsions, in the framework of Walley’s the-
ory of imprecise previsions. We show that convex previsionsare related with
a concept of convex natural estension, which is useful in correcting a large
class of inconsistent imprecise probability assessments.This class is char-
acterised by a condition of avoiding unbounded sure loss. Convexity further
provides a conceptual framework for some uncertainty models and devices,
like unnormalised supremum preserving functions. Centered convex previ-
sions are intermediate between coherent previsions and previsions avoiding
sure loss, and their not requiring positive homogeneity is arelevant feature
for potential applications. Finally, we show how these concepts can be ap-
plied in (financial) risk measurement.

Keywords

imprecise previsions, convex imprecise previsions, convex natural extension, risk
measures

1 Introduction

Imprecise probability theory is developed by P. Walley in [14] in terms of two
major classes of (unconditional) imprecise previsions, relying upon reasonable
consistency requirements:avoiding sure lossandcoherentprevisions. The condi-
tion of avoiding sure loss is less restrictive than coherence but is often too weak.

Coherent imprecise previsions have been studied more extensively, while im-
precise previsions that avoid sure loss received less attention, and it is an interest-
ing problem to state whether some special class of previsions avoiding sure loss
can be identified, which is such that
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(a) its properties are not too far from those of coherent previsions;

(b) it gives further insight into the theory of imprecise previsions or generalises
some of its basic aspects;

(c) it may express beliefs which do not match with coherence but which are
useful in formalising and dependably modelling certain kinds of problems.

The main aim of this paper is to discuss the properties and some applications of
two classes of imprecise previsions, which we termed convexand centered convex
previsions and which let us provide some answers to points (a), (b), (c). The paper
partly summarises and complements [12], where proofs may befound for those
results which are stated without proof here.

After recalling some basic notions in Section 2, we study thelarger class of
convex lower previsions in Section 3.1. Although our conclusion is that convex-
ity is an unsatisfactory consistency requirement – for instance, convex previsions
do not necessarily avoid sure loss – it is however important as far as (b) is con-
cerned. That is seen in Section 3.2, where a notion of convex natural extension is
discussed which formally parallels the basic concept of natural extension in [14].
We characterise lower previsions whose convex natural extension is finite as those
complying with the (mild) requirement of avoiding unbounded sure loss. In this
case the convex natural extension indicates a canonical (least-committal) way of
correcting them into a convex assessment. As discussed in Section 3.2.1, it is then
easy to make a further correction to achieve the stronger (and more satisfactory)
property of centered convexity.

Centered convex previsions are discussed in Section 3.3, together with gener-
alisations of the important envelope theorem. Centered convex lower previsions
are a special class of previsions avoiding sure loss, retaining several properties of
coherent imprecise previsions, and hence they appear to fulfil requirement (a).

Section 4 gives some answers to point (c). Here convex previsions provide a
conceptual framework for certain kinds of uncertainty models, as shown in Ex-
amples 1 (overly prudential assessments) and 2 (supremum preserving functions).
These models are sometimes employed in practice, although they cannot usually
be regarded as satisfactory. Centered convex previsions donot require the positive
homogeneity conditionP(λX) = λP(X), ∀λ > 0, and hence seem appropriate to
capture risk aversion. In Section 4.1 we focus in particularon risk measurement
problems, showing that the results in Section 3 may be used todefine convex risk
measures (centered or not) for an arbitrary set of random variablesD. In particu-
lar, the definition of convex risk measure coincides, whenD is a linear space, with
the concept of convex risk measure recently introduced in the literature to consider
liquidity risks [4, 5, 7]. It appears here that results from the risk measurement area
can profitably contribute to the development of imprecise probability theory and
viceversa. Section 5 concludes the paper.



Pelessoni & Vicig: Convex Imprecise Previsions 425

2 Preliminaries

Unless otherwise specified, in the sequel we shall denote withD anarbitrary set
of bounded random variables (or gambles, in the notation of [14]) and withL
(⊃ D) the set of all bounded random variables (on a possibility space). A lower
prevision P(anupper previsionP, a prevision P) onD is a real-valued function
with domainD. In particular, ifD contains only indicator functions of events,P
(P, P) is termed lower probability (upper probability, probability).

Lower (and upper) previsions should satisfy some consistency requirements:
the condition ofavoiding sure lossand the strongercoherencecondition [14].

Definition 1 P : D → IR is a lower prevision onD that avoids sure lossiff, for
all n ∈ N+, ∀ X1, . . . ,Xn ∈ D, ∀ s1, . . . ,sn real and non-negative, defining G=
∑n

i=1si(Xi−P(Xi)), supG≥ 0.

Definition 2 P : D → IR is a coherent lower previsionon D if and only if, for
all n ∈ N+, ∀ X0,X1, . . . ,Xn ∈ D, ∀ s0,s1, . . . ,sn real and non-negative, defining
G = ∑n

i=1si(Xi−P(Xi))−s0(X0−P(X0)), supG≥ 0.

The condition of avoiding sure loss is too weak under many respects: for instance,
it does not require thatP(X) ≥ inf X, nor does it impose monotonicity. On the
other hand, it is simpler to assess and to check than coherence.

Behaviourally, a lower prevision assessmentP(X) may be viewed as a supre-
mum buying price forX [14], ands(X−P(X)) represents anelementary gain
from a bet onX, with stakes. We shall say that the bet isin favourof X if s≥ 0,
whilst−s(X−P(X)) (s≥ 0) is an elementary gain from a betagainst X. Defini-
tions 1 and 2 both require that no admissible linear combination G of elementary
gains originates a sure loss bounded away from zero. The difference is that the
concept of avoiding sure loss considers only bets in favour of theXi , while coher-
ence considers also (at most) one bet against a random variable inD.

We recall the following properties of coherent lower previsions, which hold
whenever the random variables involved are inD:

(a) P(λX) = λP(X), ∀λ > 0 (positive homogeneity)
(b) infX ≤ P(X)≤ supX (internality)
(c) P(X +Y)≥ P(X)+P(Y) (superlinearity).

Coherent preciseprevisions may be defined by modifying Definition 2 to allow
n≥ 0 bets in favour of andm≥ 0 bets against random variables inD (m,n∈ IN).
A coherent precise previsionP is necessarilylinear andhomogeneous: P(aX+
bY) = aP(X)+bP(Y), ∀a,b∈ IR. In particularP(0) = 0.

Coherent lower previsions may be characterised using precise previsions [14]:

Theorem 1 (Lower envelope theorem)A lower prevision PonD is coherent iff
P is the lower envelope of some setM of coherent precise previsions onD, i.e. iff

P(X) = inf
P∈M
{P(X)} ,∀X ∈D (inf is attained).
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Upper and lower previsions are customarily related by theconjugacyrelation
P(X) =−P(−X). An upper previsionP(X) may be viewed as an infimum selling
price forX and anelementary gainfrom a bet concerningX is written ass(P(X)−
X). The definitions of coherence and of the condition of avoiding sure loss are
modified accordingly.

3 Convex Lower Previsions

3.1 Convex Previsions

Definition 3 P : D → IR is a convex lower previsionon D iff, for all n ∈ N+,
∀ X0,X1, . . . ,Xn∈D, ∀ s1, . . . ,sn real and non-negative such that∑n

i=1si = 1 (con-
vexity condition), defining G= ∑n

i=1si(Xi−P(Xi))− (X0−P(X0)), supG≥ 0.1

Any coherent lower prevision is convex, since Definition 3 isobtained from
Definition 2 adding the constraint∑n

i=1si = s0 = 1 (note that we would get a
definition equivalent to Definition 3 requiring only∑n

i=1si = s0 > 0). Conversely,
a convex lower prevision does not even necessarily avoid sure loss:

Proposition 1 Let P be a convex lower prevision onD and let0 ∈ D. Then P
avoids sure loss iff P(0)≤ 0.

Convexity is characterised by a set of axioms ifD has a special structure:

Theorem 2 Let P: D→ IR.

(a) If D is a linear spacecontaining real constants, Pis a convex lower previ-
sion iff it satisfies the following axioms:2

(T) P(X +c) = P(X)+c,∀X ∈D,∀c∈ IR (translation invariance)

(M) ∀X,Y ∈D, if Y ≤ X then P(Y)≤ P(X) (monotonicity)

(C) P(λX + (1− λ)Y) ≥ λP(X) + (1− λ)P(Y),∀X,Y ∈ D,∀λ ∈ [0,1]
(concavity).

(b) If D is a convex cone, P is a convex lower prevision iff it satisfies (C) and

(M1) ∀µ∈ IR,∀X,Y ∈D, if X ≥Y+µ then P(X)≥ P(Y)+µ.

Proposition 2 Some properties of convex lower previsions.

1The term ‘convex’ in ‘convex prevision’ refers to the convexity condition ∑n
i=1 si = 1 (si ≥ 0),

which distinguishes convex lower (upper) previsions from coherent lower (upper) previsions (cf. Def-
initions 2, 3 and 7) and convex natural extensions from natural extensions (cf. Definition 4 and Sec-
tion 3.2.1). The term ‘convex prevision’ is therefore unrelated with convexity or concavity properties
of previsions as real functions.

2(T) and (M) can be replaced byP(X)−P(Y)≤ sup(X−Y),∀X,Y ∈D.
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(a) (Convergence theorem)Let {P j}+∞
j=1 be a sequence of lower previsions,

convex onD and such that∀X ∈ D there existslim j→+∞ Pj(X) = P(X).
Then Pis convex onD.

(b) (Convexity theorem)If P1 and P2 are convex lower previsions onD, so is
P(X) = λP1(X)+ (1−λ)P2(X), ∀λ ∈ [0,1].

Let Pbe a convex lower prevision onD. The following properties hold (whenever
all random variables involved are inD):

(c) If P(0)≥ 0, P(λX)≥ λP(X), ∀λ ∈ [0,1] and P(λX)≤ λP(X), ∀λ > 1

(d) P(0)+ inf X ≤ P(X)≤ P(0)+supX

(e) ∀µ∈ IR, P∗(X) = P(X)+µ is convex onD.

Properties (a) and (b), which are quite analogous to corresponding properties of
coherent previsions and previsions avoiding sure loss [14], point out ways of ob-
taining new convex lower previsions from given ones. Property (c) shows that
convexity is compatible with lack of positive homogeneity,but requires the con-
dition P(0)≥ 0. Property (d) highlights a sore point of convexity:P(X) need not
belong to the closed interval[inf X,supX] (internalitymay fail).3

Property (d) suggests that internality could be restored imposingP(0) = 0, if
0 /∈ D; by (e), if 0∈ D andP(0) 6= 0, thenP∗(X) = P(X)−P(0) is convex and
P∗(0) = 0. RequiringP(0) = 0 is also the only choice to makeP avoid sure loss
(Proposition 1), while assuring that (c) holds.

Thinking of the meaning of a lower prevision, it appears extremely reasonable
to add conditionP(0) = 0 to convexity: it would be at least weird to give an
estimate (even imprecise) of the non-random variable 0 which is other than zero.

3.2 Convex Natural Extension

Before considering the stronger class of centered convex previsions, we introduce
the notion of convex natural extension, which is strictly related to convexity.

Definition 4 Let P: D→ IR be a lower prevision, Z an arbitrary (bounded) ran-
dom variable. Define gh = sh(Xh−P(Xh)), L = {α : Z−α ≥ ∑n

i=1gi, for some
n≥ 1,Xi ∈ D,si ≥ 0, with ∑n

i=1si = 1}. Ec(Z) = supL is termedconvex natural
extension4 of Pon Z.

It is clear thatL is always non-empty (puttingn = 1, s1 = 1, X1 = X ∈ D in its
definition,α ∈ L for α ≤ inf Z− supX + P(X)), while Ec(Z) can in general be
infinite. This situation is characterised in the following Proposition 3.

3Non-internality cannot anyway be two-sided: if there exists X ∈ D such thatP(X) > supX
(P(X) < inf X), thenP(Y) > inf Y (P(Y) < supY), ∀Y ∈D. This is easily seen applying Definition 3,
with n = 2, {X0,X1}= {X,Y}.

4The reason whyEc is termed ‘extension’ appears from the later Theorem 3, especially (d).
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Definition 5 P : D→ IR is a lower prevision thatavoids unbounded sure losson
D iff there exists k∈ IR such that, for all n∈N+, ∀ X1, . . . ,Xn∈D, ∀ s1, . . . ,sn real
and non-negative with∑n

i=1si = 1, defining G= ∑n
i=1si(Xi−P(Xi)), supG≥ k.

Remark 1 Definition 5 generalises Definition 1: Pavoids unbounded sure loss
if and only if P+ k avoids sure loss for some k∈ IR, since the last inequality in
Definition 5 may be written assup∑n

i=1si(Xi−(P(Xi)+k))≥ 0 and the constraint
∑n

i=1si = 1 is not restrictive for Definition 1. Note also that if P+ k avoids sure
loss, then so does P+h, ∀h≤ k. Therefore, when Pavoids unbounded sure loss,
definingk= sup{k∈ IR : P+k avoids sure loss}, Pavoids sure loss too whenever
k≥ 0. As a further remark, it can be seen that the constraint∑n

i=1si = 1 is essential
in Definition 5: wiping it out would make Definition 5 equivalent to Definition 1.

Proposition 3 Ec(Z) is finite, whatever is Z, iff Pavoids unbounded sure loss.

Proof. Suppose first thatP avoids unbounded sure loss and for an arbitraryZ let
α∈ L. ThenZ−α≥∑n

i=1si(Xi−P(Xi)) for someX1, . . . ,Xn∈D ands1, . . . ,sn≥ 0
with ∑n

i=1si = 1, and hence supZ−α ≥ sup∑n
i=1si(Xi−P(Xi)) ≥ k, using Defi-

nition 5 at the last inequality. ThereforeEc(Z)≤ supZ−k.
Conversely, suppose now thatP does not avoid unbounded sure loss. There-

fore, for eachk ∈ IR there areX1, . . . ,Xn ∈ D ands1, . . . ,sn ≥ 0 with ∑n
i=1si = 1

such that∑n
i=1si(Xi −P(Xi)) < k ≤ Z− (−k+ inf Z). This implies, for anyZ,

−k+ inf Z ∈ L and, by the arbitrariness ofk, Ec(Z) = +∞. ✷

The condition of avoiding unbounded sure loss is rather mild. For instance, it
clearly holds wheneverD is finite. It is also implied by convexity, as shown by
the following proposition, while the converse implicationis generally not true.

Proposition 4 If P : D→ IR is convex, it avoids unbounded sure loss.

Proof. Choose arbitrarilyX1, . . . ,Xn ∈ D and s1, . . . ,sn ≥ 0 such that
∑n

i=1si = 1 in Definition 5. Given X0 ∈ D, use convexity to write 0≤
sup{∑n

i=1si(Xi−P(Xi))− (X0−P(X0))} ≤ sup{∑n
i=1si(Xi−P(Xi))}− (inf X0−

P(X0)), and hence sup{∑n
i=1si(Xi−P(Xi))} ≥ k = inf X0−P(X0). ✷

We state now some properties of the convex natural extension. An indirect char-
acterisation of the convex natural extension will be given in Theorem 5.

Theorem 3 Let P : D → IR be a lower prevision which avoids unbounded sure
loss and Ec its convex natural extension. Then

(a) Ec is a convex prevision onL and Ec(X)≥ P(X),∀X ∈D

(b) P is convex if and only if Ec = P onD

(c) If P∗ is a convex prevision onL such that P∗(X) ≥ P(X) ∀X ∈ D, then
P∗(Z)≥ Ec(Z),∀Z ∈ L
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(d) If P is convex, Ec is the minimal convex extension of Pto L

(e) Pavoids sure loss onD if and only if Ec avoids sure loss onL.

3.2.1 The Role of the Convex Natural Extension

The properties ofEc closely resemble those of thenatural extension E[14] of a
lower previsionP, whose definition differs from that ofEc only for the lack of
the constraint∑n

i=1si = 1. In particular, asE characterises coherence ofP (P is
coherent iffE coincides withP onD), Ec characterises convexity ofP.

Property (d) lets us extendP to anyD ′ ⊃D (maintaining convexity) by con-
sidering the restriction ofEc to D ′. Moreover, (e) guarantees thatEc inherits the
condition of avoiding sure loss whenP satisfies it.

It is well known that the natural extension is finite iffP avoids sure loss,
and when finite it can correctP into a coherent assessment in a canonical way.
Analogously, the convex natural extension is finite iffP avoids unbounded sure
loss, and can be used to correctP into a convex assessment, although property (e)
warns us thatEc will still incur sure loss ifP does so. This problem can be solved
using Proposition 2, (e):P∗(X) = Ec(X)−Ec(0) is a correction ofP which avoids
sure loss by Proposition 1, asP∗(0) = 0. This also means thatP∗ is a centered
convex prevision by Definition 6 in the next section.

Alternatively, the convex natural extension may be employed to correct an
assessmentP which avoids unbounded sure loss (but not sure loss) intoP′, which
avoids sure loss but is not necessarily convex. In fact,P+h avoids sure loss∀h≤
k < 0 (cf. Remark 1). Since it can be shown thatk =−Ec(0), it ensues thatEc(0)
is the minimumk to be subtracted fromP to makeP′ = P−k avoid sure loss.

Hence, the convex natural extension points out ways of correcting an assess-
ment incurring (bounded) sure loss into one avoiding sure loss, a problem which
cannot be answered using the natural extension. These corrections can be applied
in several interesting situations, including, as already noted, the case of a finiteD.

3.3 Centered Convex Previsions and Envelope Theorems

The considerations at the end of Section 3.1 lead us naturally to the following
stronger notion of centered convexity:

Definition 6 A lower prevision Pon domainD (0∈ D) is centered convex(C-
convex, in short) iff it is convex and P(0) = 0.5

Proposition 5 Let Pbe a centered convex lower prevision onD. Then

(a) Phas a convex natural extension (hence at least one centered convex exten-
sion) on anyD ′ ⊃D

5As shown in [12], we obtain an equivalent definition of centered convex lower prevision by re-
quiring P(0) = 0 and relaxing the convexity condition∑n

i=1 si = s0 > 0 to ∑n
i=1 si ≤ s0.
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(b) P(λX)≥ λP(X), ∀λ ∈ [0,1], P(λX)≤ λP(X), ∀λ ∈]−∞,0[ ∪ ]1,+∞[

(c) inf X ≤ P(X)≤ supX,∀X ∈D

(d) P avoids sure loss.

Besides, the convergence and convexity theorems hold for C-convex previsions too
(replacing ‘convex’ with ‘centered convex’ in Proposition2, (a) and (b)).

Properties (a)÷(d) show that centered convexity is significantly closer to co-
herence than convexity: C-convex lower previsions are a special class of previ-
sions avoiding sure loss, retaining several properties of coherence and the exten-
sion property of convexity, but not requiring positive homogeneity.

A convex previsionP which is not centered may still be avoiding sure loss, if
P(0) < 0 (Proposition 1), but in general it is only warranted by Proposition 4 that
it avoids unbounded sure loss, a very weak consistency requirement.

Remark 2 (Convexity and n-coherence)The consistency notion of n-coherence
is discussed in [14], Appendix B, illustrating how it can be appropriate for certain
‘bounded rationality’ models. If the model does not requirepositive homogeneity,
n-coherence alone is inadequate: 1-coherence is too weak, being equivalent to the
internality condition (c) in Proposition 5, 2-coherence istoo strong, as on linear
spaces it is equivalent to two axioms, one of which is positive homogeneity [14].
As a matter of fact, C-convex previsions are a special class of 1-coherent (but not
necessarily 2-coherent) previsions.

An indirect comparison among convexity, centered convexity and coherence is
given by their corresponding envelope theorems. We firstly recall that it was
proved in [14] that any lower envelope of coherent lower previsions is coherent.
Here is the parallel statement for convex lower previsions,while the generalisa-
tion of Theorem 1 (lower envelope theorem) comes next.

Proposition 6 Let P be a set of convex lower previsions all defined onD. If
P(X) = infQ∈P

{
Q(X)

}
is finite∀X ∈D, P is convex onD.

Theorem 4 (Generalised envelope theorem)P is convex onD iff there exist a set
P of coherent precise previsions onD and a functionα : P → IR such that:

(a) P(X) = infP∈P {P(X)+ α(P)}, ∀X ∈D (inf is attained).

Moreover, Pis centered convex iff (0∈D and) both (a) and the following (b) hold:

(b) infP∈P{α(P)}= 0 (inf is attained).

A result similar to Theorem 4 was proved in risk measurement theory [4], requir-
ingD to be a linear space. The proof of Theorem 4, given in [12] in the framework
of imprecise prevision theory, is simpler and imposes no structure onD.
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Remark 3 In particular, the constructive implication of the theorem(for convex
previsions) enables us to obtain convex previsions as lowerenvelopes of trans-
lated precise previsions. Its proof follows easily from Proposition 6 and Proposi-
tion 2, (e): every precise prevision P is convex and so is P+ α(P), by Proposi-
tion 2, (e);infP∈P {P(X)+ α(P)} is a convex prevision by Proposition 6.

Remark 4 Let Pbe a lower prevision andS the set of all coherent precise pre-
visions onL. Define alsoM (P) = {(Q, r) ∈ S × IR : Q(X)+ r ≥ P(X),∀X ∈D}.
It ensues from Theorem 4 that convexity of Pcan be equivalently characterised by
the condition P(X) = inf

{
Q(X)+ r : (Q, r) ∈M (P)

}
∀X ∈ D; C-convexity can

be characterised by adding the constraintinf
{

r : ∃Q∈ S : (Q, r) ∈M (P)
}

= 0
(cf. also the following Theorem 5, where the lower envelope concerns all X∈ L).

The envelope theorem characterisations of convexity, centered convexity and
coherence differ about the role of functionα, which is unconstrained with con-
vexity, non-negative and such that minα = 0 with centered convexity, identically
equal to zero with coherence (in this case Theorem 4 reduces to Theorem 1).

The result in the next theorem characterises the convex natural extension as
the lower envelope of a set of translated coherent precise previsions and can be
proved in a way similar to the natural extension theorem in [14], Section 3.4.

Theorem 5 Let Pbe a lower prevision onD which avoids unbounded sure loss
and defineS andM (P) as in Remark 4. Then,M (P) = M (Ec) and Ec(X) =
inf
{

Q(X)+ r : (Q, r) ∈M (P)
}

,∀X ∈ L.

4 Some Applications

We have seen so far that convexity may help in correcting several inconsistent
assessments. As noted in Section 3.2.1, its usefulness in this problem is essentially
instrumental: we may easily go further and arrive at a centered convex correction,
which guarantees a more satisfactory degree of consistency.

Turning to other problems, some uncertainty modelisationsgive rise to convex
previsions, as in the examples which follow. We emphasise that we do not main-
tain that these models are reasonable, but simply that they are sometimes adopted
in practice, and that convexity supplies a conceptual framework for them.

Example 1 (Overly prudential assessments)Persons or institutions which have
to evaluate the random variables in a setD are often unfamiliar with uncer-
tainty theories. In this case, a solution is to gather n experts and ask each of
them to formulate a precise prevision (or an expectation) for all X ∈D. Choosing
P(X) = mini=1,...,nPi(X),∀X (where Pi is expert i’s evaluation) as one’s own opin-
ion is an already prudential way of pooling the experts’opinions, and originates a
coherent lower prevision. Some more caution or lack of confidence toward some
experts may lead to replacing every Pi with P∗i = Pi −αi before performing the
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minimum, whereαi ≥ 0 measures in some way the final assessor’s personal cau-
tion or his/her (partially) distrusting expert i. By Theorem 4, P∗= mini=1,...,nP∗i is
convex (cf. Remark 3). More generally, P∗ is of course convex also when the sign
of theαi is unconstrained (αi < 0 if, for instance, expert i’s opinion is believed to
be biased and below the ‘real’ prevision). It is interestingto observe that ifαi ≥ 0
for at least one i, P∗ avoids sure loss too (since then Ec(0) ≤ 0 by Theorem 5,
hence Ec avoids sure loss by Proposition 1, and so does P∗ by Theorem 3, (e)).
In particular, the following situation may be not unusual with an unexperienced
assessor:αi > 0 for some i, and0 /∈D, because the assessor thinks that no expert
is needed to evaluate0, he himself can assign, of course, P∗(0) = 0. If such is
the case, the extension of P∗ onD ∪{0} keeps on avoiding sure loss, as is eas-
ily seen, but is generally not convex (to see this with a simple example, suppose
X ∈D, P∗(X) < inf X and use the result in footnote 3 to obtain that P∗(0) < 0 is
then necessary for convexity).

In the following example and in Section 4.1 we shall refer to upper previsions, to
which the theory developed so far extends with mirror-imagemodifications. We
report the conjugates of Definition 3 and Theorem 4.

Definition 7 P : D → IR is a convex upper previsionon D iff, for all n ∈ N+,
∀ X0,X1, . . . ,Xn∈D, ∀ s1, . . . ,sn real and non-negative such that∑n

i=1si = 1 (con-
vexity condition), definingG = ∑n

i=1si(P(Xi)−Xi)− (P(X0)−X0), supG≥ 0.

Theorem 6 P is convex on its domainD iff there exist a setP of coherent precise
previsions (all defined onD) and a functionα : P → IR such that:

(a) P(X) = supP∈P {P(X)+ α(P)}, ∀X ∈D (supis attained).

Moreover,P is centered convex iff (0∈D and) both (a) and the following (b) hold:

(b) supP∈P{α(P)}= 0 (supis attained).

Example 2 (Supremum preserving functions)Let IP= {ωi}i∈I be a (not neces-
sarily finite) set of exhaustive non-impossible elementaryevents oratoms, i.e.
ωi 6= ∅ ∀i ∈ I, ∪i∈I ωi = Ω, ωi ∩ω j = ∅ if i 6= j. Given a functionπ : IP→ [0,1],
defineΠ : 2IP−{∅}→ [0,1] (2IP is the powerset of IP) by

Π(A) = sup
ωi∈A
{π(ωi)} ,∀A∈ 2IP−{∅} . (1)

As well-known, ifπ is normalised (i.e.,supπ = 1) and extended to∅ putting
π(∅)(= Π(∅)) = 0, Π is a normalised possibility measure, a special case of co-
herent upper probability [3]. Without these additional assumptions,Π is a convex
upper probability. To see this, define for i∈ I, Pi(ωi) = 1, Pi(ω j ) = 0 ∀ j 6= i,
αi = π(ωi)−1, and extend (trivially) each Pi to 2IP. It is not difficult to see that
Π(A) = supi∈I {Pi(A)+ αi} , ∀A∈ 2IP and thereforeΠ is convex by Theorem 6. If
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supπ < 1, Π has the unpleasant property thatΠ(Ω) < 1, and alsoΠ(∅) < 0 (this
means thatΠ incurs sure loss and is not C-convex). Functions similar to these
kinds of unnormalised possibilities were considered in theliterature relating pos-
sibility and fuzzy set theories, and their unsatisfactory properties were already
pointed out (see e.g. [9], Section 2.6 and the references quoted therein).

4.1 Convex Risk Measures

Further applications of convex imprecise previsions are suggested by the fact that
they do not necessarily require positive homogeneity, as appears from Proposi-
tion 5, (b). Considering the well-known behavioural interpretation of lower (and
upper) previsions [14], it is intuitively clear that applications could be generally
related to situations of risk aversion, because of which an agent’s supremum buy-
ing price for the random quantityλX might be less thanλ times his/her supremum
buying price forX, whenλ > 1.

In this section we shall discuss an application to (financial) risk measurement.
The literature on risk measures is quite large, as this topicis very important in
many financial, banking or insurance applications. Formally, a risk measure is a
mappingρ from a setD of random variables intoIR. Thereforeρ associates a
real numberρ(X) to everyX ∈D, which should determine how ‘risky’X is, and
whether it is acceptable to buy or holdX. Intuitively, X should be acceptable (not
acceptable) ifρ(X)≤ 0 (if ρ(X) > 0), andρ(X) should determine the maximum
amount of money which could be subtracted fromX, keeping it acceptable (the
minimum amount of money to be added toX to make it acceptable).

Traditional risk measures, like Value-at-Risk (VaR) – probably the most wide-
spread – require assessing (at least) a distribution function for eachX ∈D; often,
a joint normal distribution is assumed [8]. Quite recently,other risk measures
were introduced, which do not require assessing exactly oneprecise probability
distribution for eachX ∈D, and are therefore appropriate also in situations where
conflicting or insufficient information is available. Precisely, coherent risk mea-
sures were defined in a series of papers (including [1, 2]) using a set of axioms
(among these positive homogeneity), and assuming thatD is a linear space. In
these papers, coherent risk measures were not related with imprecise previsions
theory, while this was done in [11, 13]; see also [10] for a general approach to
these and other theories. Convex risk measures were introduced in [4, 5, 7] as
a generalisation of coherent risk measures which does not require the positive
homogeneity axiom. We report the definition in [5]:

Definition 8 Let V be a linear space of random variables which contains real
constants.ρ :V → IR is aconvex risk measureiff it satisfies the following axioms:

(T1) ∀ X ∈ V , ∀ α ∈ IR, ρ(X + α) = ρ(X)−α (translation invariance)

(M2) ∀ X,Y ∈ V , if X ≤Y thenρ(Y)≤ ρ(X) (monotonicity)
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(C1) ρ(λX+(1−λ)Y)≤ λρ(X)+(1−λ)ρ(Y) ∀X,Y ∈V ,λ∈ [0,1] (convexity).

Convex risk measures are also discussed in [6] and their potential capability of
capturing risk aversion is pointed out in [5]. In a risk measurement environment,
a motivation for not assuming positive homogeneity is thatρ(λX) may be larger
thanλρ(X) for λ > 1 also because ofliquidity risks: if we were to sell immedi-
ately a large amountλX of a financial investment, we might be forced to accept a
smaller reward thanλ times the current selling price forX.

It was shown in [11] that risk measures can be encompassed into the theory of
imprecise previsions, because a risk measure forX can be interpreted as an upper
prevision for−X:6

ρ(X) = P(−X). (2)

This fact was used in [11, 13] to generalise the notion of coherent risk measures
to an arbitrary domainD. An analogue generalisation can be done for convex risk
measures [12], as we shall now illustrate.

Definition 9 ρ : D → IR is aconvex risk measureonD if and only if for all n∈
N+, ∀ X0,X1, . . . ,Xn ∈D, ∀ s1, . . . ,sn real and non-negative such that∑n

i=1si = 1,
definingG = ∑n

i=1si(Xi + ρ(Xi))− (X0 + ρ(X0)), supG≥ 0.

Note that Definition 9 may be obtained from Definition 7 referring to−X rather
thanX, for all X ∈D.

If D is a linear space containing real constants, the notion in Definition 9
reduces to that in [4, 5], by the next theorem (cf. also Theorem 2, (a)):

Theorem 7 Let V be a linear space of bounded random variables containing
real constants. A mappingρ fromV into IR is a convex risk measure according to
Definition 9 iff it is a convex risk measures according to Definition 8.

Definition 9 applies to any setD of random variables, unlike Definition 8, which,
if D is arbitrary, requires embedding it in a larger linear space.

Results specular to those presented in Section 3 apply to convex risk measures.
In particular, the convergence and convexity theorems (Proposition 2, (a) and (b))
hold; convex risk measures can be extended on anyD ′ ⊃D, preserving convexity;
they avoid sure loss iffρ(0)≥ 0 (we say thatρ avoids sure loss onD iff P(−X) =
ρ(X) avoids sure loss onD− = {−X : X ∈D}).

Like the general case in Section 3, it appears quite appropriate to putρ(0) = 0,
and hence to usecentered convexrisk measures: 0 is the unquestionably reason-
able selling or buying price forX = 0.

Definition 10 A mappingρ from D (0 ∈ D) into IR is a centered convex risk
measureonD iff ρ is convex andρ(0) = 0.

6We assume that the time gap between the buying and selling time of X is negligible (if not, we
should introduce a discounting factor in (2)). This simplifies the sequel, without substantially altering
the conclusions.
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Centered convex risk measures have further nice additionalproperties, corre-
sponding to those of centered convex lower previsions: theyalways avoid sure
loss, and are such that−supX ≤ ρ(X)≤− inf X,∀X ∈D.

This condition corresponds to internality ((c) of Proposition 5), and is a ra-
tionality requirement for risk measures: for instance,ρ(X) >− inf X would mean
that to makeX acceptable we require adding to it a sure number (ρ(X)) higher
than the maximum lossX may cause.

A centered convex risk measuresρ is not necessarily positively homogeneous:

ρ(λX)≥ λρ(X),∀λ≥ 1. (3)

A notion of convex natural extension may also be given for centered convex (or
convex) risk measures and its properties correspond to those listed in Theorem 3.
When finite, it gives in particular a standard way of ‘correcting’ other kinds of
risk measures into convex risk measures.7

The generalised envelope theorem is obtained from the statement of Theo-
rem 6 replacingP(X) andP(X) with, respectively,ρ(X) andP(−X).

Examples of convex risk measures may be found in [4, 5, 12].

5 Conclusions

In this paper we studied convex and centered convex previsions in the framework
of Walley’s theory of imprecise previsions. Convex previsions do not necessarily
satisfy minimal consistency requirements, but are useful in generalising natural
extension-like methods of correcting inconsistent assessments and in providing a
conceptual framework for some uncertainty models. Centered convex previsions
are in a sense intermediate between avoiding sure loss and coherence: their prop-
erties are closer to coherence than those of a generic prevision that avoids sure
loss, but are also compatible with lack of positive homogeneity. Because of this,
they are potentially useful at least in models which incorporate some forms of risk
aversion. We outlined a risk measurement application, where they lead to defining
convex risk measures, and believe that several applications of convex imprecise
previsions are still to be explored. It might also be interesting to investigate if and
how convex previsions can be generalised in a conditional environment, or when
allowing unbounded random variables.
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Abstract

The finite element method is widely used for solving various problems in
geotechnical engineering practice. The input parameters required for the cal-
culations are generally imprecise. The paper is devoted to acomparison of
probabilistic, stochastic and fuzzy set method for reliability analysis with re-
spect to its applicability for practical problems in geotechnical engineering.
Emphasis will be given by comparing the effects of modellinguncertainty
using different methods, with special reference to the roleof spatial correla-
tion. After introducing some basic notions about the approaches, this article
shows that the results obtained with the fuzzy set method fora simple bearing
capacity problem agree with the outcomes by a probabilisticand a stochas-
tic method. Advantages and shortcomings of either approachwith respect to
practical applications will be discussed.

Keywords

finite element method, probabilistic, fuzzy set, stochastic modelling, random field, spatial
correlation

1 Introduction

It is well known that material parameters of geomaterials may scatter within a
considerable range. Thus, a high degree of uncertainty may be introduced in any
type of analysis if material parameters are treated as deterministic values. There
is no agreement about what method should be used, to account for these uncer-
tainties especially in practical geotechnical problems where usually not sufficient
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information is available for a rigorous stochastic analysis, because site investiga-
tion and laboratory testing are restricted due to financial und time constraints.

It is still possible to use probabilistic methods in these problems by making
suitable assumptions on the statistics of the uncertainties, at least to some extent,
by combining different sources of information via Bayes’ theorem. However, the
numerical values obtained by probabilistic analysis (e.g.probability of failure) are
quite sensitive to changes in the input distribution parameters ([1, 13]), but play
an important rule in comparative and qualitative studies [14]. On the other hand,
Fuzzy set methods provide an appropriate mathematical model which can be used
for quantitative assessment.

In the developed methodology point estimate methods (PEM) for probabilis-
tic analyses and fuzzy set method for possibilistic analyses together with a finite
element model is used. Emphasis will be given to comparison with methods em-
ploying a stochastic model, which means that the parametersare described by spa-
tial random fields (e.g. [7]). This stochastic approach employs the Monte-Carlo
method and is used in this paper as a reference.

Both variability and spatial correlation lengths of material properties can af-
fect the reliability of geotechnical systems. In this article, elasto-plastic finite el-
ement analysis has been combined with theories mentioned above to investigate
the influence of material variability and spatial correlation lengths on the com-
putation of the bearing capacity of a smooth rigid strip footing on a weightless
soil with shear strength parameters c andϕ under plane strain conditions [14].
The soil stratum is compressed by incrementally displacingthe top surface verti-
cally downwards. Geometry and boundary conditions of the problem are shown
in figure 1.

Figure 1: Geometry and boundary conditions
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In the simulations, the mean cohesion (µc) and mean angle of friction (µϕ)
have been held constant at 100 kN/m2 and 25◦ while the coefficient of variation,
(COV=σc/µc), and the spatial correlation length, (Θ), are varied systematically.
For this investigation, it is assumed that when the variability in the cohesion is
large, the variability in the friction angle will also be large. The material param-
eters required for the model used are: Young’s modulus (E), Poisson’s ratio (ν),
dilatancy angle (ψ), cohesion (c), and friction angle (ϕ). In the present study,E,
ν andψ are held constant (at 100.000 kN/m2, 0.3, and 0, respectively) whilec
andϕ are basic variables. It has to be pointed out that the interaction and cross-
correlation between the shear strength parameters is neglected in this study.

The question is how the variability of the shear strength parametersc and
ϕ affects the response given by the dimensionlessbearing capacity factor, Nc,
and consequently the reliability of the structure. The bearing capacity factor is
traditionally defined byNc = qf / c whereqf is the computed bearing capacity
andc is the cohesion of the soil. The theoretical bearing capacity factor,Nc, for a
spatially constant friction angle is given by Sokolovski [19]:

Nc =
1

tanϕ

[
eπ tanϕ tan2

(
45+

ϕ
2

)
−1
]

2 Spatial variability of soil properties

In principle, the spatial variation of a soil layer can be characterized in detail, but
only if a large number of tests can be performed. Thus, for geotechnical purposes
a simplification is introduced in which spatial variabilityis subdivided into two
parts, i.e. a linear trend, and a residual variability (stochastic description) about
that trend [15]. Figure 2 depicts the value of the soil property, u, at a boring loca-
tion as a function of depth,z, whereµu(z) describes the trend which is represented
by a depth-dependent mean value. The stochastic description of the soil prop-
erty,u(z), consists of the standard deviation,σu(z), and the scale of fluctuation or
autocorrelation length,Θu, of u(z).

The spatial correlation length measures the distance within which the prop-
erty shows relatively strong correlation from point to point. The soil is modelled
as a random field ([21, 16]), which is a stochastic process defined by three co-
ordinates in space. This means that the properties of the soil in a specific point are
described as a random variable. Rather than a characterization of soil properties
at every point, data are used to estimate a smooth trend, and remaining variations
are described statistically because of the lack of data.

2.1 Spatial averaging

The mean of large volumes remains the same as the mean of smallvolumes, but
the standard deviation of the average property from one large volume to the next
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Figure 2: Spatial variability of a soil layer

is smaller than the standard deviation of the average property from one small
volume to the next [21]. The extent of averaging of soil properties,u(z), within
a large volume depends on the structure of spatial variation. More precisely, the
extent of averaging depends on the standard deviation of properties,σu, from point
to point and on the autocorrelation function. Similarly, the standard deviations
of the spatial averages,u∆z anduV, areσu∆z andσuV , respectively. Therefore, the
larger the length∆zor the volumeV over which the property is averaged, the more
variations ofu tends to produce a reduction in the process of spatial averaging.
This tends to originate a reduction in standard deviation asthe size of the averaged
length or volume increases. The so-called reduction factorΓu(V) is defined as the
dimensionless ratio betweenσuV andσu (Γu(V) = σuV / σu).

The square of the reduction factor,Γ2
u, will be called the variance function,

whereas for the two-dimensional case it will take the form:Γ2
u(∆z) = Θu / ∆z

for ∆z≥ Θu. This relationship in fact defines thescaleΘu, and provides a basis
for estimating this parameter ofu(z) (figure 2). A useful interpretation of this
relationship is thatΘu is the elementary distancethat can be used to measure
∆z. Other assumptions for the determination of this variance reduction factor are
presented in e.g. [10, 22].

3 Probabilistic approach

3.1 The point estimate method

An alternative approach for calculating the statistical moments of the limit state
function, denoted by G(X), whereX is the collection of random input variables, is
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the point estimate method (PEM). The method is essentially aweighted average
method similar to numerical integration formulas involving sampling pointsand
weighting parameters. The method seeks to replace a given continuous proba-
bility density function, with a discrete function having the same first three central
moments (mean valueµ, standard deviationσ and skewnessν). The point estimate
method is able to account for up to three moments.

The most common point estimate method was developed by Rosenblueth [17].
In addition to Rosenblueth’s method, there are many other PEMs developed by
various researchers, including the methods of Evans [6], Zhou and Nowak [24],
Harr [9] and of Li [11]. In the present study the point estimate methods by Rosen-
blueth, Harr and Zhou and Nowak are used to obtain the statistical moments of
the bearing capacity factorNc. A brief description of the methods is given below.

PEM by Rosenblueth: Rosenblueth [17] developed a point estimate method
which concentrates the probability density of a continuousrandom variableX into
two estimate points. If G(X) is a function ofn basic variables whose skewness is
zero but which may be correlated, 2n points are chosen to include all possible
combinations so that the value of each variable is one standard deviation above or
below its mean value.

PEM by Harr: In particular the point estimate method by Harr [9] extends
Rosenblueth’s PEM. Harr proposed an alternative method which starts from the
correlation matrix of the data. This matrix is a real symmetric matrix of order
n, the number of random variables which can be diagonalized byan orthogonal
eigenvector matrix. The correlation matrix can be represented by a hypersphere of
radius

√
n centered at the corresponding expected values ofxn in the standardized

coordinate system. The eigenvector starts from the origin of expected values in
their respective directions and each eigenvector intersects the sphere at two points.
These points of intersections provide the 2n point estimates for calculating the
statistical moments of G(X).

PEM by Zhou and Nowak: In the approach proposed by Zhou and Nowak [24]
predetermined points in the standard normal space are used to compute the statisti-
cal parameters of a function of multiple random variablesX. These points must be
transformed in the typically correlated and non standard normal distributed space.
The integration of G(X) can be achieved using a non-product formula. Zhou and
Nowak provide a set of numerical integration formulas. In this work the 2n2+1
formula (ZN III) is used which leads to 2n2+1 realizations of G(X).

3.2 Stochastic modelling of soil properties

The finite element code [2] used in the proposed approach to calculate the bearing
capacityqf , require the soil profile to be modelled using homogeneous layers with
constant soil properties. For this reason soil properties have to be defined not only
for a certain point in space, but also for the entire domain which is used in the
calculation process. Due to the fact of spatial averaging ofsoil properties the
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coefficient of variation is reduced significantly as described above. In this study,
the variance reduction factorΓ by Vanmarcke [22] is used and can be obtained by

Γ2 =

[
Θ
Lu

(
1− Θ

4Lu

)]

for Θ/Lu≤ 2, whereΘ is the autocorrelation length andLu is the length of the
potential failure surface. Forµϕ = 25◦ the length of the failure surfaceLu yields a
value of approximately 10.5 m.

4 Stochastic approach

The model of Fenton and Griffiths [7] combines random field theory with an
elasto-plastic finite element algorithm in a Monte-Carlo framework (RFEM). The
spatially varying and cross-correlated random fields are generated using the so-
called Local Average Subdivision (LAS) method which produces local arithmetic
averages of the lognormally distributed random field over each element. Thus,
each element is assigned a random value of lnc (c is the soil cohesion) as a local
average, over the element size, of the continuously varyingrandom field having
point statistics. The element values thus correctly reflectthe variance reduction
due to arithmetic averaging over the element as well as the cross-correlation struc-
ture dictated by spatial correlation length,Θln c. For the correlation structure of the
underlying generated fields an exponentially decaying isotropic correlation func-
tion is assumed,ρ(τ) = exp(-2τ / Θln c) whereτ is the absolute distance between
any two points in the field. A typical deformed finite element mesh at failure is
shown in figure 3. Lighter regions in the illustration indicate stronger material
and darker regions indicate weaker material, which have triggered quite irregular
failure mechanisms.

The soil cohesion,c, is assumed to be lognormally distributed with meanµc,
standard deviationσc, and spatial correlation lengthΘln c. For the friction angle,
ϕ, a bounded distribution is selected. For each set of statistical properties given in
Table 1 according to [7], Monte-Carlo simulations have beenperformed, which
involves 1000 repetitions of the soil property random fieldsand the subsequent
finite element analysis. A different value for the bearing capacity, and after nor-
malization by the mean cohesionµc, a different value for the bearing capacity
factor,Nci, is obtained for each of then Monte-Carlo simulations byNci = qf i /
µc, i = 1,2,...,n. These values are then analysed statistically leading to anexpected
value E[Nc], and standard deviation, s[Nc].
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Figure 3: Typical deformed finite element mesh at failure from [7]

5 Fuzzy set approach

Zadeh [23] used the theory of fuzzy sets as a basis for possibility to model un-
certainties. Although possibility distributions seem to be similar to probability
distributions, possibility calculus, which is used to derive the membership func-
tion of the performance of a system from the membership functions of the un-
certain variables, is fundamentally different than probability calculus. The main
difference between the axioms of possibility and probability measures is that the
possibility of a union of events (disjoint or not) is equal tothe maximum of the
possibilities of the individual events, whereas the probability of a union of disjoint
events is equal to the sum of the probabilities of these events (see e.g. discussion
in [4]). Therefore, fuzzy set approach is an alternative to probability.

5.1 Fuzzy numbers

F(X) denotes the collection of fuzzy subsets of a setX. A fuzzy setA∈ F(X) is
characterized by (and can be identified with) its membershipfunctionmA(x), 0≤
mA(x) ≤ 1, describing the degree of possibility that the variableA takes the value
x of X. The fuzzy sets [A]α = x ∈ X : mA(x) ≥ α are the so-calledα-level sets of
A, i.e. the variableA fluctuates in the range [A]α with possibility degreeα. Given
a functionf : X→ Y, the extension principles by Zadeh [23] allows to extend it to
a functionf :F(X)→ F(Y) by mf (A)(y) = sup{mA(x),x∈ f−1(y)}.

A ∈ F
(
Rd
)

is called a fuzzy vector, if each of itsα-level sets is convex and
compact (0< α < 1), and [A]1 contains exactly one point. In the case ofd = 1, A
is referred to as a fuzzy number. Iff : Rd→R is continuous andA a fuzzy vector,
the function valuef (A) is a fuzzy number, whose level sets are computed by set
theoretic evaluation: [f (A)]α = f ([A]α).
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5.2 Fuzzification Method

Dubois and Prade [5] have proposed methods, which are based on judgement
and/or on statistical data but there is no commonly acceptedprocedure for es-
timating the possibility distribution of a variable. To compare probabilistic and
fuzzy set-based methods, we first construct a fuzzy set of an uncertain variable
on the basis of a given probability distribution by means of the least conservative
principle [12]. In this way, we ensure that both models are constructedusing the
same data. In this paper, the principle is applied to construct a fuzzy set on the
basis of a given lognormal probability distribution in sucha way that the range
between the 5% and the 95%-fractile represents the support (the upper and lower
bound value corresponds toα = 0) of the triangular fuzzy number where the ulti-
mate value, the core, respectively is at the modal value, which is the most frequent
value (figure 4 and 5). Since the data is based on the lognormaldistributions ac-
cording to section 3.3, it has to be pointed out that autocorrelation is considered
already.

Figure 4: Fuzzy input parameter c, for a) COV of 0.2 and b) COV of 0.5

5.3 Fuzzy finite element analysis

When the input variables are defined as fuzzy numbers, the computation of the
fuzzy response quantity has to be performed. This is achieved by constructing
a possibility distribution for the response quantity whichis based on the exten-
sion principle mentioned above. The principle relates the possibility distribution
of fuzzy input variables to the possibility distribution ofthe fuzzy response func-
tion, whereas theα-level concept is used to numerically implement the extension
principle. In this approach, the fuzzy function is a finite element model that trans-
forms input fuzzy data to a desired fuzzy output quantity. Byreplacing the fuzzy
numbers in the solution model with intervals, the fuzzy computation reduces to a
series of interval analyses, where the minimum and the maximum of the 2n values
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Figure 5: Fuzzy input parameterϕ, for a) COV of 0.2 and b) COV of 0.5

define the resulting interval (n is the number of fuzzy input variables). Repeating
this process for all selectedα-levels, a set of resulting intervals corresponding to
the selectedα-levels is obtained and define the final output, the response mem-
bership function of the dimensionless bearing capacity factor, Nc (figure 6). The
higher the number ofα-levels under consideration, the greater the accuracy of the
possibility distribution of the response. The total numberof finite element runs
that is involved isN·2n, whereN is the number ofα-levels.

Figure 6: Possibility distribution of the bearing capacityfactor,Nc, for a) COV of
0.2 and b) COV of 0.5

5.4 Defuzzification Method

For defuzzification a method based on weighted possibilistic mean and variance
of fuzzy numbers is used in this paper. Carlsson and Fuller [3] suggested the
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notations of weighted possibilistic mean value and variance of fuzzy numbers,
which are consistent with the extension principle. Furthermore, they showed that
the weighted variance of linear combinations of fuzzy numbers can be computed
in a similar manner as in probability theory:

E[Xr ] =
N

∑
i=1

αi .xr
αi

N

with xr
αi

= 1/2 (xr
αi,L

+xr
αi,U

), where E[Xr ] represents the level-weightedrth mo-
ment of allα-level sets.αi denotes theα-level, N the number ofα-levels con-
sidered andxr

αi
the arithmetic means of allα-level sets, that is, the weight of the

arithmetic mean ofxr
αi,L

andxαi,U is justα.

6 Results and discussion

Figure 7 depicts the influence ofΘ and COVc on the sample coefficient of vari-
ation of the estimated bearing capacity factor, COVNc = sNc/E[Nc] computed by
the random field model (RFEM) and by using the probabilistic and the fuzzy set
approach.

Figure 7: Coefficient of variation ofNc, a)Θ=0.5 and b)Θ=4.0

To have an assessment on the performance of all the approaches, the results
from the fuzzy solution are also included in those plots. Thefigure shows how
the bearing capacity factor varies with soil variability, and the spatial correlation
length. The plots indicate that COVNc is positively correlated with both COVc
andΘ, i.e. the variability in E[Nc] increases with the variability in the soil (the
higher the spatial correlation length the higher the increase). The results compare
well with the COVNc by the random field method, which represents a more so-
phisticated method. The PEM methods as well as the fuzzy set method capture



Peschl & Schweiger: Reliability Analysis in Geotechnics ... 447

the overall behaviour of the analysed ratio and is fairly accurate for moderate
magnitudes of the variability in the soil, i.e. COV<0.5.

Dubois and Prade [5] have shown that a possibility distribution (fuzzy setA)
constructed starting from few statistical data may be used to represent a wide
class of probability distributions (compatible with the available information) and
to consistently define upper and lower probability distributions,FL(x) andFU (x).
These bounds may be rewritten in terms of the membership function of the fuzzy
setA asFL(x) = sup{mA(x),x≤ ω} andFU (x) = inf{1-mA(x),x > ω}, whereω
describes the valuex with the degree of possibility,mA(x)=1 [8].

Figure 8: Cumulative distribution functions of E[Nc] assumed as lognormally dis-
tributed and membership function ofNc, for a) COV of 0.2 and b) COV of 0.5

Figure 8 shows the possibility and probability of the bearing capacity factor
Nc. It can be seen that the possibility is always greater than the probability. Also
note that, for this case, the possibility is 1.0 when the probability is 0.5. These
results are in line with other studies, e.g. Smith et al. [18]showed that if the fuzzy
membership function for a random variable is based on the mean and standard
deviation of a probabilistic random variable, the possibility of failure is one when
the probability of failure is fifty-percent. Therefore, fuzzy set theory may be used
to obtain conservative bounds for probability [13].

From a practical point of view, it would be of interest to estimate the proba-
bility of designfailure [7], defined here as occurring when the computed bearing
capacity factor,Nc, is less than the deterministic value based on the mean angle
of friction divided by a factor of safetyF, i.e. 20.7/F (the mean angle of frictionϕ
= µϕ = 25 degrees, then the deterministic value ofNc yields approximately 20.7).

With the obtained mean value and standard deviation of the performance func-
tion based on the PEM assuming a lognormal distribution the probability of design
failure (P[Nc<20.7/F]) can be evaluated. For the case whereΘ=4.0 figure 9 com-
pares the probability of design failure for two different factors of safetyF obtained
by probabilistic methods and random field method [14]. The results indicate that
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the higher the variability (COV) the higher the probabilityof design failure and
show that the proposed method predicts the basic behaviour of relatively simple
functions of random variables, but the accuracy is significantly reduced for large
coefficients of variation of the input variables.

Figure 9: Probabilistic and stochastic approach withΘ=4.0: Influence of factor of
safety for a)F=2 and b)F=4

In order to determine a possibility of design failure the membership functions
for the response bearing capacity factor,Nc, are compared with the allowable re-
sponses, i.e. 20.7/F as already mentioned. Figure 10 illustrates how the possibility
of design failure varies as a function of COVNc and the ratio of the target value
20.7/F. The fuzzy set method also captures the basic behaviour in terms of the
possibility of design failure for the given problem. The outcomes show that the
higher the variability (COV) the higher the possibility of design failure. Similar
observations can be made about the relations between possibility and probability
as described by figure 8, i.e. that the possibility of failureis one when the prob-
ability of failure is fifty-percent. However, Stroud et al. [20] reported that even
though the possibility of failure was always greater than the probability of failure
for a particular problem with two failure modes, the assumption that possibilis-
tic design is conservative is not a valid assumption when there are many failure
modes.

7 Concluding remarks

The general objective of this paper is to study the differences between probabilis-
tic, stochastic and fuzzy set methods for modelling uncertainties with respect to a
simple practical problem for geotechnical engineering. Itis argued that the uncer-
tainties associated with material and model parameters arecovered in a rational
way in the probabilistic and fuzzy set approach. The true probability distributions
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Figure 10: Fuzzy set approach: Influence of factor of safety for a)F=2 and b)F=4

of the uncertain soil parameters,c (cohesion), and,ϕ (friction angle), are used
as the scale to compare the probabilistic and fuzzy set basedmethods. Generally
speaking the outcome of point estimate methods and the fuzzyset method agreed
reasonably well with the results obtained by the random fieldmethod. An advan-
tage of the fuzzy set approach, from a practical point of view, is the determination
of an upper and lower bound to the probability in an efficient way. The results
are in line with other studies, even for membership functions as simple as the tri-
angular functions employed here. For the given system and the given data about
uncertainties, probabilistic and stochastic analysis yields the probability of failure
and fuzzy set analysis yields the possibility of failure, which also varies between
zero and one. However, the two measures are not directly comparable, but the
results considered were intended to be of easy comprehension and to allow the
establishment of a comparison and a correspondence betweenthe methods.

It is acknowledged that the comparisons presented are not rigorous in a math-
ematical sense and the authors are aware of the discussion onwhether the assump-
tions made in these methods allow a comparison at all. However, from a practical
point of view this type ofuncertaintycan be accepted, because it is a significant
step forward to be able to account for uncertainties in material parameters using
high level numerical methods and keeping the computationaleffort acceptable. In
practice there will always be a trade off between mathematical rigour and prac-
tical benefits achievable, which is true in particular in geotechnical engineering.
The work presented here should be seen as a step towards a morerealistic mod-
elling in geotechnical engineering by demonstrating the applicability of various
approaches and should not be seen as a recommendation for oneor the other
method, at least not at the present stage of developments.
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Abstract

We discuss two approaches for choosing a strategy in a two-player game. We
suppose that the game is played a large number of rounds, which allows the
players to use observations of past play to guide them in choosing a strategy.

Central in these approaches is the way the opponent’s next strategy is
assessed; both a precise and an imprecise Dirichlet model are used. The ob-
servations of the opponent’s past strategies can then be used to update the
model and obtain new assessments. To some extent, the imprecise probabil-
ity approach allows us to avoid making arbitrary initial assessments.

To be able to choose a strategy, the assessment of the opponent’s strategy
is combined with rules for selecting an optimal response to it: a so-called
best response or a maximin strategy. Together with the updating procedure,
this allows us to choose strategies for all the rounds of the game.

The resulting playing sequence can then be analysed to investigate if the
strategy choices can converge to equilibria.

Keywords

game theory, fictitious play, equilibria, imprecise Dirichlet model, learning

1 Introduction

In [4] and [5], Fudenberg et al. have proved a number of convergence results con-
cerning methods for learning optimal strategies in a game-theoretic context. They
show that these results hold in particular forfictitious playin strictly competitive
two-player games in strategic form. In this context, a player bases his learning
method on the assumption that his opponent uses a fixed, but unknown, mixed
strategy. The pure strategies that his opponent actually plays are consequently
assumed to be iid observations of the randommultinomial processthat has this
mixed strategy as its probability mass function. The playerthen uses a Bayesian
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statistical updating scheme, where the prior is chosen fromamong a class of mod-
els that is conjugate with the multinomial likelihood function, namely the Dirich-
let priors, mainly because such a choice allows for simple updating rules.

In the present work, we investigate how this learning methodis influenced by
replacing the Dirichlet priors by so-called imprecise Dirichlet priors, first intro-
duced by Walley [9], and we provide generalisations for Fudenberg’s convergence
results that can be applied to the new learning method.

1.1 The Game

We considerstrictly competitive two-player games in the strategic form; [3, Chap-
ter 2], [5, Chapter 1]. One player is denoted byi and his opponent by−i, where
i ∈ {−1,1}.

Playeri has a finite setSi = {1, . . . ,Ni} of pure strategies si . After each round
of the game, he receives a (possibly negative)pay-off ui(si ,s−i), with si ∈ Si and
s−i ∈ S−i. This pay-off is assumed to be expressed in units of some predetermined
linear utility, e.g. probability currency; [7, Sections 13and 14], [8, Section 2.2.2].

Instead of choosing a pure strategy, playeri can also choose a so-calledmixed
strategyσi , which is a probability mass function on the setSi. This amounts to
using a randomisation device that chooses a pure strategy fromSi, with the prob-
abilities for each pure strategy defined by the mixed strategy σi . These can be
written as a vector of lengthNi with ∑si σi(si) = 1. We denote the set of these
mixed strategies byΣi . In what follows, unless otherwise indicated,si will always
be an element ofSi andσi will always be an element ofΣi .

When using mixed strategies, only theexpected pay-offcan be calculated,

ui(σi ,σ−i) = ∑
si∈Si

∑
s−i∈S−i

ui(si ,s−i)σi(si)σ−i(s−i). (1)

It should be clear that pure strategies can be considered as border-case, or degen-
erate, mixed strategies. The set of all mixed strategiesΣ−i can be represented as
the unit simplex inRN−i

. Pure strategies correspond to the vertices of the simplex.
The distance between two strategies is measured using the sup-norm,1

d(σ−i ,τ−i) = sups−i∈S−i |σ−i(s−i)− τ−i(s−i)|.

Observe that the convex unit simplex is compact under this norm.

1.2 Our Objective

We wish to formulate a procedure that guides the players in their strategy choices
in such a way, that, using the information they have at their disposal, their ex-
pected pay-off is in some sense optimal.

1This allows for a nice interpretation, but any norm generating the usual topology could be used.
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2 Assessing the Opponent’s Strategy

It is essential that the information playeri has about the strategyσ−i that his
opponent will play, is modelled in a manner that is useful, inlight of the objective
above, for choosing a strategyσi in response toσ−i . In this section we describe
two uncertainty models for representing such information.The first is a precise
probability model, the second is imprecise.

2.1 Gambles

The available information about his opponent’s strategyσ−i will lead playeri to
accept or reject gambles whose outcome depends onσ−i . Both the uncertainty
models described later intend to model playeri’s behavioural dispositions toward
such gambles. Agamble Xon Σ−i is a bounded real-valued map onΣ−i . It rep-
resents an uncertain reward: it yields the amountX(σ−i) if player−i decides to
play the mixed strategyσ−i . The set of all gambles onΣ−i is denoted byL(Σ−i);
[8, Section 1.5.6]. Two types of gambles are of special interest.

If player i decides to play strategyσi , then the game will result in an ex-
pected pay-off that still depends on the strategyσ−i that his opponent will play.
Thus, we can associate thestrategy gamble Xσi on Σ−i with this strategyσi by
definingXσi (σ−i) = ui(σi ,σ−i) for all σ−i in Σ−i . It represents the uncertain ex-
pected pay-off for playeri if he chooses strategyσi . Every gamble in the subset
K i = {Xσi : σi ∈Σi} of L(Σ−i) is thus anuncertain expected pay-off. The distance
between two strategy gambles is measured using the sup-norm,

d(Xσi ,Xτi ) = sup
σ−i∈Σ−i

|Xσi (σ−i)−Xτi(σ−i)|.

Proposition 1 The set of strategy gamblesK i is convex and compact under the
sup-norm topology onΣ−i .

Another type of gamble onΣ−i , specifically associated with a pure strategy
s−i , is theevaluation gamble Ys−i : Σ−i → [0,1] defined byYs−i (σ−i) = σ−i(s−i).
This definition implies that∑s−i Ys−i = 1. Each of these gambles yields the un-
known probability mass of the pure strategys−i defined by (the unknown) prob-
ability mass functionσ−i . Using this notation, the vectorY−i = (Y1, . . . ,YN−i ) of
evaluation gambles returns to the unknown mixed strategyσ−i = Y−i(σ−i) itself.

Using Eq. (1), it is possible to write each strategy gamble asa linear combi-
nation of evaluation gambles,

Xσi = ∑
s−i∈S−i

(
∑

si∈Si

ui(si ,s−i)σi(si)

)
Ys−i . (2)



Quaeghebeur and De Cooman: Game-theoretic learning using the IDM 455

2.2 The Precise Dirichlet Model

First we consider a model that specifies the information available to playeri as
a linear prevision Pon some subset ofL(Σ−i); [2, Chapter 3], [8, Section 2.8].
P(X) is playeri’s fair price, or prevision, for the gambleX, i.e., the unique real
number such that he is disposed to buy the gambleX for all pricesp < P(X) and
to sellX for all pricesp > P(X).

If we defineπP = P(Y−i) = (P(Y1), . . . ,P(YN−i )), then the properties of linear
previsions allow us to conclude that∑s−i πP(s−i) = 1 and 0≤ πP(s−i) ≤ 1. We
see thatπP is a possible mixed strategy for the opponent. It is playeri’s prevision
of the strategy that his opponent will play. Using Eq. (2) andthe linearity of the
operatorP, we can write for the prevision of the strategy gambleXσi :

P(Xσi ) = ∑
s−i∈S−i

(
∑

si∈Si

ui(si ,s−i)σi(si)

)
πP(s−i) = Xσi (πP), (3)

i.e., the expected pay-off if the opponent were actually to play strategyπP.
The linear previsionP we shall use here is aprecise Dirichlet model(PDM)

P(· | βt ,ρt), whereβt > 0 andρt is a mixed strategy in the interior int(Σ−i) of Σ−i ,
i.e.,ρt(s−i) > 0 for all s−i ∈ S−i. This PDM is defined for all measurable gambles
X on Σ−i by

P(X | βt ,ρt) =
1

B(βt ,ρt)

Z

Σ−i
X(σ−i) f (σ−i | βt ,ρt)dσ−i , (4)

wheref and the normalisation constantB define the parametrised2 Dirichlet prob-
ability density function,

f (σ−i | βt ,ρt) = ∏
s−i∈S−i

σ−i(s−i)βtρt(s−i)−1 and B(βt ,ρt) =
∏s−i Γ(βtρt(s−i))

Γ(βt)
.

When using such a PDM, the previsionπP of the strategy his opponent will play
coincides withρt :

πP = πP(·|βt ,ρt) = P(Y−i | βt ,ρt) = ρt .

This means that for the calculation ofP(Xσi | βt ,ρt) we don’t need to use Eq. (4),
but that we can use Eq. (3), replacingπP by ρt :

P(Xσi | βt ,ρt) = ∑
s−i∈S−i

(
∑

si∈Si

ui(si ,s−i)σi(si)

)
ρt(s

−i) = Xσi (ρt).

2We use a non-standard parametrisation, because it is more convenient in this context; [9].
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2.3 The Imprecise Dirichlet Model

Next, we consider an imprecise probability model for the information playeri
has about his opponent’s strategy. This can always be made totake the form of
a coherentlower prevision Pon some subset ofL(Σ−i); [8, Section 2.3].P(X)
specifies playeri’s supremum acceptable price for buying the gambleX, i.e., it is
the greatest real numberp such that he is disposed to buying the gambleX for all
prices strictly smaller thanp.

The lower previsionP we shall use here is animprecise Dirichlet model(IDM)
P(· | βt ,Mt ), whereβt > 0 andMt ⊆ int(Σ−i); [9]. This IDM is defined for all
measurable gamblesX on Σ−i as the lower envelope of a set of PDM’s (with a
commonβt , but each with their ownρt),

P(X | βt ,Mt) = inf{P(X | βt ,ρt) : ρt ∈Mt ⊂ Σ−i}. (5)

3 Choosing an Optimal Strategy

When choosing an optimal strategy, it is important to be clear on what defines
optimality. In this game-theoretic context, it is desirable to attain a pay-off that
is as high as possible, but on the other hand it may also be important to limit
possible losses. These are the guiding criteria in our search for optimal strategies
[6, Section 3.8].

3.1 Admissible Strategies, Maximin Strategies, Best Replies

If for two strategiesτi andσi , the pay-off forτi is always at least as high as that
for σi , i.e., Xτi ≥ Xσi or in other words(∀σ−i ∈ Σ−i)(Xτi (σ−i) ≥ Xσi (σ−i)), we
say thatτi dominatesσi—or thatXτi dominatesXσi ; [5, Section 1.7.2].

A strategyσi ∈ Σi , or its corresponding strategy gambleXσi ∈ K i , is called
inadmissibleif there is another strategyτi that strictly dominates it:Xτi ≥ Xσi and
Xσi 6= Xτi . Otherwise, it is calledadmissible. We consider an admissible strategy
to be more optimal than an inadmissible strategy. However, the discussion of, and
the results deduced for, the learning models below is not essentially affected when
this distinction is not made.

Now suppose that playeri knows that his opponent will play some strategy in
M ⊆ Σ−i , but nothing more. When playingσi , his expected pay-off will at least
be infσ−i∈M Xσi (σ−i). An M-maximin strategyτi maximises this minimal pay-off:

τi ∈ argmax
σi∈Σi

inf
σ−i∈M

Xσi (σ−i).

Proposition 2 There are admissible M-maximin strategies for any compact sub-
set M ofΣ−i .
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WhenM = Σ−i , playeri doesn’t have a clue about his opponent’s strategy choice,
and the correspondingΣ−i-maximin strategy is simply called amaximin strategy.

Corollary 1 There are always admissible maximin strategies.

At the other extreme, playeri knows his opponent will play a strategyσ−i . Any
corresponding{σ−i}-maximin strategy is called abest replyto σ−i . The set of all
best replies toσ−i is denoted byBRi(σ−i).

Corollary 2 There are always admissible best replies to any strategyσ−i in Σ−i .

This set of best replies has some interesting properties.

Proposition 3 For all σ−i in Σ−i , BRi(σ−i) is a compact and convex subset ofΣi .
Moreover, ifσi ∈ BRi(σ−i) andσi(si) > 0 for some si ∈ Si, then si ∈ BRi(σ−i).

For M ⊆ Σ−i , the collection of best replies to strategies inM is denoted by
BRi(M) and given by

BRi(M) =
[

σ−i∈M

BRi(σ−i).

Proposition 4 For any subset M ofΣ−i that is convex and closed, the M-maximin
strategies make up a subset of BRi(M).

Corollary 3 There are always admissible best replies to any convex and closed
subset M ofΣ−i .

3.2 Optimal Strategies and the PDM

When using a linear previsionP, any admissible strategyσi that maximisesP(Xσi )
is called aBayes strategy. This name refers to the fact that it is an optimal strategy
in the usual Bayesian sense of maximising expected utility;[8, Section 3.9].

Eq. (3) tells us thatP(Xσi ) = Xσi (πP). This means thatτi is a Bayes strategy
wheneverτi ∈ argmaxσi Xσi (πP). This gives the following result.

Proposition 5 The set of the Bayes strategies corresponding to a linear prevision
P is given by the admissible strategies of BRi(πP).

If player i’s model for his opponent’s strategy is a PDMP(· | βt ,ρt), we find
that his optimal (Bayes) strategies are simply the admissible strategies ofBRi(ρt).

3.3 Optimal Strategies and the IDM

When using a coherent lower previsionP, a maximal strategyis any admissible
strategyσi for which minτi∈Σi P(Xσi −Xτi) ≥ 0; see [8, Section 3.9] for motiva-
tion.3

3To see that this definition generalises that of a Bayes strategy, consider that

σi ∈ argmax
τi∈Σi

P(Xτi )⇔ P(Xσi )≥max
τi∈Σi

P(Xτi )⇔ min
τi∈Σi

P(Xσi −Xτi )≥ 0.
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We shall use the notationM (P) for the set of linear previsionsP that dominate
P on its domain.

Proposition 6 A strategyσi is maximal under P

⇔ σi is a Bayes strategy under some P inM (P);

⇔ σi is an admissible best reply toπP for some P∈M (P), i.e., the admissible
σi ∈ BRi(MP), where MP = {πP : P∈M (P)} ⊆ Σi .

Corollary 4 There are maximal strategies under P.

There is another optimality criterion associated with a lower previsionP: an
admissible mixed strategyσi is calledP-maximinif it maximises the lower pre-
vision P(Xτi ) of all strategy gamblesXτi , i.e., if σi ∈ argmaxτi∈Σi P(Xτi ); [8, Sec-
tion 3.9]. Since a coherent lower previsionP is the lower envelope of its set of
dominating linear previsions (see [8, Theorem 3.3.3]), we see that

P(Xτi ) = min
P∈M (P)

P(Xτi ) = min
σ−i∈MP

Xτi (σ−i),

and consequently, the admissible mixed strategyσi is P-maximin if and only if
σi ∈ argmaxτi∈Σi minσ−i∈MP

Xτi (σ−i), i.e., if it is MP-maximin. We know from

Section 3.1 that all theMP-maximin strategies also belong toBRi(MP).

Corollary 5 For any coherent lower prevision P, there are P-maximin strategies.
They coincide with the admissible MP-maximin strategies, and are in particular
also maximal strategies under P.

If player i models his uncertainty about his opponent’s strategy by an IDM
P(· | βt ,Mt ), we have proved the following results, using the continuityof Y−i

and the properties ofM (P(· | βt ,Mt)).

Theorem 1 If Mt is a subset ofint(Σ−i), then the set MP(·|βt ,Mt ) is the closed
convex hullco(Mt ) of Mt .

We thus find that the optimal strategies in this imprecise model are the admissible
elements ofBRi(co(Mt)). Moreover, if playeri wants to play it safe (maximise his
minimal expected gains), he can use admissibleco(Mt)-maximin strategies.

4 Playing the Game Over and Over Again

We now turn our attention to how the proposed models, the PDM and the IDM,
can be used when a number of rounds of the game are played. We specifically
look at the way observations of past play can change the assessments of a player
and we formulate an algorithm to guide the players in their strategy choices.
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4.1 Learning from Past Play

After playing t rounds of the game, playeri has observed a so-calledhistory
ζ−i

t ∈ Z−i
t = (S−i)t of the pure strategiesζ−i

t (k), k = 1, . . . ,t, that his opponent
has played.

If player i supposes that his opponent plays a fixed mixed strategyσ−i ,4 which
is of course not necessarily the case, the order of the strategies in the history
does not matter and the observed strategies can be considered as outcomes of
a multinomial iid process. As a sufficient statistic forσ−i he can then use the
N−i-tuplen−i of observed occurrencesfor which each componentn−i(s−i) is the
number of times his opponent has playeds−i ∈ S−i, and which is consequently a
random variable with the multinomial distribution. The total numbert of rounds
played is also equal to∑s−i n−i(s−i). TheN−i-tuple ofobserved frequenciesn

−i

t
is denoted byκ−i

t and can be considered to be an element ofΣ−i .
The likelihood function forn−i is

Ln−i (σ−i) =
t!

∏s−i n−i(s−i)! ∏
s−i∈S−i

σ−i(s−i)n−i(s−i).

Using Bayes’ rule, we can now update (see e.g. [5, Chapter 2])a prior Dirichlet
density functionf (σ−i | β0,ρ0) with the observationsn−i,

f (σ−i | β0,ρ0,n
−i) =

1
P(Ln−i | β0,ρ0)

f (σ−i | β0,ρ0)Ln−i (σ−i)

= f (σ−i | β0 + t,
β0ρ0 +n−i

β0 + t
)

= f (σ−i | βt ,ρt).

We see that the posterior density functionf (σ−i | βt ,ρt) is still a Dirichlet density
function. This means that that the Dirichlet density functions constitute aconju-
gatefamily of density functions for the multinomial sampling likelihood function
Ln−i . Observe thatP(Ln−i | β0,ρ0) has to be non-zero, which is guaranteed by
β0 > 0 andρ0 ∈ int(Σ−i).

4.2 Updating a Dirichlet model

When updating a prior PDMP(· | β0,ρ0) after t rounds, we find that we simply
have to update the parameters,

β0→ βt = β0 + t and ρ0→ ρt =
β0ρ0 +n−i

β0 + t
, (6)

4This corresponds to the underlying assumption used in so-called fictitious play; [5, Chapter 2].
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to obtain the posterior PDMP(· | βt ,ρt). It is clear that first updating withn−i

and then updating the new model withm−i is equivalent to updating the original
model withn−i +m−i.

When updating a prior IDMP(· | β0,M0) after t rounds, the answer is a bit
more complicated. It is possible that there aren−i for whichP(Ln−i | β0,M0) = 0
even withM0⊆ int(Σ−i), i.e., forP(Ln−i | β0,M0) > 0 we needP(Ln−i | β0,ρ0) > 0
for all ρ0 ∈ co(M0). However, using the notion ofregular extension, we can find
a unique posterior IDM that is coherent withP(· | β0,M0) and that satisfies the
additional rationality axiom ofregularity; [8, Appendix J]. This posterior lower
prevision turns out to be the lower envelope of the updated PDM’s,

inf
ρ0∈M0

P(X | β0 + t,
β0ρ0 +n−i

β0 + t
) = inf

ρt∈Mt
P(X | βt ,ρt) = P(X | βt ,Mt),

whereβt andMt are the parameters of the updatedIDM ,

β0→ βt = β0 + t and M0→Mt = {β0ρ0 +n−i

β0 + t
: ρ0 ∈M0}. (7)

4.3 Iterative Playing Algorithm: Assess, Decide and Update

Our generic guiding algorithm for playeri playing multiple rounds of a strictly
competitive two-player game consists of three steps; [4, Section 3]. Assume that
t rounds have already been played, and that the historyζ−i

t of the pure strategies
played by the opponent during these rounds is available to playeri. He is about to
play a new round and uses some model to describe the information he has.

1. Playeri has to make an assessmentµi(ζ−i
t ) about the data that are relevant

for his strategy choice: to this end, he uses anassessment rule µi .

2. Playeri has to use adecision ruleφi to choose a strategyφi(ζ−i
t ) to play,

using his assessmentsµi(ζ−i
t ).

3. After the round is played, playeri should use the observation of his oppo-
nent’s strategy toupdatehis information.

Let us now see what this algorithm becomes for the two types ofuncertainty
models described above.

When using a PDMP(· | βt ,ρt), we can formulate the following implementa-
tion of the algorithm.

1. Letµi(ζ−i
t ) = ρt = πP(·|βt ,ρt), the prevision of the opponent’s strategy.

2. Letφi(ζ−i
t ) be some (admissible) element ofBRi(ρt).

3. Update the PDM toP(· | βt+1,ρt+1) using Eq. (6).
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Initially, player i has to choose aρ0 andβ0. The parameterβ0 can be interpreted
as the number ofpseudocounts5 associated with the initial prevision of his oppo-
nent’s strategyρ0, for which any choice is arbitrary (if it is not based on some
information).

When using an IDMP(· | βt ,Mt), we can formulate two different implemen-
tations of the algorithm, different only in their choice of behaviour rule.

1. Letµi(ζ−i
t ) = co(Mt) = MP(·|βt ,Mt).

2. (a) If we consider maximality as the optimality criterion, then letφi(ζ−i
t )

be some (admissible) element ofBRi(co(Mt )).

(b) If we consider maximinity as the optimality criterion, then letφi(ζ−i
t )

be some (admissible)co(Mt)-maximin strategy.

3. Update the IDM toP(· | βt+1,Mt+1) using Eq. (7).

Initially, player i has to choose anM0 and a number of pseudocountsβ0. When
he has no information available, an obvious choice forM0 is int(Σ−i), which cor-
responds to so-called near-ignorance [8, Section 4.6.9]. The choice for the best
reply behaviour rule or the maximin behaviour rule will not influence the results
of Section 5 in any way.

5 Equilibria and Convergence

Now that we have two learning models, the PDM and the IDM, at our disposal,
we can investigate the game-play that results from using them. We start by giving
some definitions that are essential for the ensuing analysis.

5.1 Strategy Profiles and Equilibria

To be able to analyse the game-play that results from the assessment and be-
haviour rules discussed in Section 4.3, we introduce some new notation and recall
the concept of an equilibrium.

A couple of strategies of the players is called astrategy profile, which can
be pures = (si ,s−i) ∈ S= Si ×S−i, or mixedσ = (σi ,σ−i) ∈ Σ = Σi ×Σ−i . A
correspondingprofile historyaftert rounds of play is denoted byζt ∈ Zt = St .

The notationσ(s) corresponds to(σi(si),σ−i(s−i)). Likewise, we write

BR(σ) = BRi(σ−i)×BR−i(σi)⊆ Σ,

µ(ζt) = µi(ζ−i
t )×µ−i(ζi

t)⊆ Σ,

φ(ζt) = (φi(ζ−i
t ),φ−i(ζi

t)) ∈ Σ.

5In the literature, the values 1 and 2 are found for prior models that are not based on any informa-
tion; [9].
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An equilibrium is a strategy profile for which the pay-off for both players
cannot be increased if one of them changes his strategy, while his opponent’s
strategy remains unchanged; [3]. This means that

σ∗ is an equilibrium⇔ (∀i)
(

ui(σ∗) = max
τi∈Σi

ui(τi ,σ−i
∗ )
)
⇔ σ∗ ∈ BR(σ∗).

If s∗ = BR(s∗), thens∗ is astrict equilibrium.6 A game can have multiple (strict)
equilibria.7

5.2 Assessment Rules

The definitions in this section and in the next are generalisations of the definitions
given by Fudenberg and Kreps in [4] to learning models with assessmentsµi(ζ−i

t )
that are set-valued rather than point-valued.

An important characterisation of possible assessment rules can be made by
looking at what the influence is of different parts of a history.

We say that a assessment ruleµi is adaptiveif it attaches diminishing im-
portance to earlier parts of the history, as the number of roundst increases. This
means that for allt and allε > 0,

(∃T > t)
(
∀t ′ > T− t

)(
∀ζ−i

t+t′ ∈ Z−i
t+t′
)(
∀σi ∈ µi(ζ−i

t+t′)
)(

σi(si) < ε
)
,

for every pure strategysi that was not played in the lastt ′ rounds (did not appear
in thet ′ last components ofζ−i

t+t′ ).
A specific subcategory of the adaptive assessment rules can be defined using

the observed frequenciesκ−i
t of strategies played by the opponent. An assessment

rule µi is calledasymptotically empiricalif for every infinite historyζ−i
∞ ∈ Z−i

∞ it
holds that limt→∞ supσ−i∈µi(ζ−i

t ) d(σ−i ,κ−i
t ) = 0, where theζ−i

t are partial histories

of the selected infinite historyζ−i
∞ .

Using the updating formulae (6) and (7), we obtain the following result.

Theorem 2 The assessment rules of the PDM and the IDM are asymptotically
empirical, and thus adaptive.

5.3 Behaviour Rules

It is clear that the behaviour rulesφ determine which histories are possible. A his-
tory is calledcompatiblewith the behaviour rulesφ used by the players if it can
be generated (with non-zero probability) by these behaviour rules. Explicitly, this

6By Proposition 3, only pure strategy profiles can be strict equilibria.
7When only admissible strategies are considered optimal, some equilibria might not be playable.

There is always at least one admissible equilibrium.
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means that for every pure profileζt(k), k = 1, . . . ,t, that is a component of a com-
patible profile history, both components ofφ(ζk−1)(ζt(k)) are strictly positive, so
the randomisation devices used by the players can select thepure strategiesζi

t(k)
andζ−i

t (k) with non-zero probability.
It is useful to know to what degree the behaviour rulesφ used by the players

succeed in attaining the objective of optimality (see Section 1.2). The characteri-
sations in this section do just this, and give a clear interpretation of this objective,
keeping in mind that the players suppose that their opponentplays an unknown,
but fixed, mixed strategy.

We call a behaviour ruleφi set-myopicrelative to the assessment ruleµi if, for
all t and historiesζ−i

t , it holds thatφi(ζ−i
t ) ∈ BRi(µi(ζ−i

t )). When the assessments
µi(ζ−i

t ) are point-valued, the prefix ‘set’ in set-myopic is dropped.
We now define a weakening of the notion of a set-myopic behaviour rule. We

call a behaviour ruleφi strongly asymptotically set-myopicrelative to the assess-
ment ruleµi if, for some sequenceεt > 0 with limt→∞ εt = 0 and for allt and
historiesζ−i

t , it holds that
(
∀σ−i ∈ µi(ζ−i

t )
)(
∀s̃i ∈ Si such thatφi(ζ−i

t )(s̃i) > 0
)

(
ui(s̃i ,σ−i)+ εt ≥max

si∈Si
ui(si ,σ−i)

)
.

Using the definitions from Section 4.3 the next result is immediate.

Theorem 3 The behaviour rules for the IDM are set-myopic and the behaviour
rule for the PDM is myopic.

5.4 Convergence to equilibria

An interesting theorem about strict equilibria follows directly from the definitions
of a strict equilibrium and of a myopic behaviour rule; [4].

Theorem 4 (absorption to a strict equilibrium) If there is a strict equilibrium
s∗ that is played in some round t of a profile historyζt compatible with a myopic
behaviour ruleφ, then s∗ will be played during all subsequent rounds t′ > t.

This theorem holds for the PDM (with myopic behaviour rules), due to Theo-
rem 3, but not for the IDM (with set-myopic behaviour rules),because we have
been able to show that the selected mixed strategyφi(ζ−i

t ) under both optimisation
criteria can still be different fromsi

∗ due to the fact thatµi(ζ−i
t ) = co(Mt) is a set.

It is possible to tighten the conditions, to obtain a result that also works for the
IDM, i.e., to make sure that best reply only containss∗.

Theorem 5 (conditional absorption to a strict equilibrium) If, for some profile
historyζt compatible with set-myopic behaviour rulesφ, the strategy profileφ(ζt)
cannot be different from the strict equilibrium s∗, then s∗ will be played during all
subsequent rounds t′ > t.
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For equilibrias∗ of pure strategies that aren’t necessarily strict, the following
result is found.

Theorem 6 (repeated play of a pure strategy profile)Consider an infinite his-
tory ζ∞ in Z∞ such that for some t, a pure strategy profile s∗ is played in all
subsequent rounds. Ifζ∞ is compatible with behaviour rulesφ that are strongly
asymptotically set-myopic relative to the adaptive assessment rules µ, then s∗ is
an equilibrium.

This theorem can be used for both the PDM and the IDM, due to Theorems 2 and
3, even if both players don’t use the same model. For example,one player can use
the IDM and his opponent the PDM, or two players can use the IDM, each using
a different optimality criterion.

For mixed equilibriaσ∗, the following result about the convergence of the
observed game-play to a mixed equilibrium, is found.

Theorem 7 (repeated play of a mixed strategy profile)Let the infinite history
ζ∞ in Z∞ be such that for some mixed strategy profileσ∗, it holds that for both
players i∈ {−1,1}

lim
t→∞

κ−i
t = σ−i

∗ .

If the infinite historyζ∞ is compatible with behaviour rulesφ that are strongly
asymptotically set-myopic relative to the assessment rules µ that are asymptoti-
cally empirical, thenσ∗ is an equilibrium.

As before, due to Theorems 2 and 3, this theorem can be used forboth the PDM
and the IDM.

Theorems 6 and 7 can only say that convergence has occurred, but do not
indicate when convergence will occur. They could be useful for finding equilibria
in large games. As these theorems are generalisations to set-valued assessment
rules of theorems found in [4], their proofs are (not always trivial) modifications
of the ones found there.

6 Conclusions

6.1 General Remarks

Both the learning models discussed above accomplish our objective of optimality
of the expected pay-off quite well. Their convergence properties also favour their
use in game theory, notably in the search for equilibria.

The PDM has already been studied in the literature and the learning model
based on it is often calledfictitious playin a game-theoretic setting. The IDM has
also been used in different contexts; see [9] for the presentation of the IDM itself
and [1], [10], [11] and [12] for examples of possible applications in other areas.
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In Section 5 we have in fact generalised the results of Fudenberg and Kreps
in [4, Sections 3 and 4], where point-valued assessmentsµi(ζ−i

t ) are used, to set-
valued assessments. This is why we formulated Theorems 6 and7 for a broader
class of learning models than our Dirichlet models, which allows Section 5 to be
seen as a generalisation of [4, Sections 3 and 4], and not onlyas a group of results
for the PDM and IDM.

We haven’t discussed the choice of a specific strategyφi(ζ−i
t ) from among

the optimal ones. But, if for a specific application other, additional, criteria are
available, then using them at this stage will not influence the convergence results
in any way.

6.2 PDM vs. IDM

If we compare the PDM to the IDM, the first thing to be said is that the PDM is a
special case of the IDM, whereM0 = {ρ0}. This immediately indicates the most
important advantage of the IDM over the PDM, the possibilityof not having to
make an arbitrary initial choice, as there is no need to choose one specific prior.

The second advantage of the learning model using the IDM is that it reflects,
in its assessmentµi(ζ−i

t ), the amount of information on which it is based. This
corresponds to the fact that the distances between elementsof Mt shrink with
increasingt. So the model becomes more precise as more observations comein,
in the sense that all elements ofMt will lie closer and closer to theρt of any PDM
that could have been used.8

One disadvantage of the IDM is that it is a more complex model (the player
has to work with sets of strategies instead of one strategy).This difference could
be reflected by the calculation load for both models.
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Abstract

The European call option prices have well-known formulae inthe Cox-Ross-
Rubinstein model [2], depending on the volatility of the underlying asset.
Nevertheless it is hard to give a precise estimate of this volatility. S. Muzzioli
and C. Toricelli [6] handle this problem by using possibility distributions. In
the first part of our paper we make some critical comments on their work. In
the second part we present an alternative solution to the problem by perform-
ing a sensitivity analysis for the pricing of the option. This method is very
general in the sense that it can be applied if one describes the uncertainty in
the volatility by confidence intervals as well as if one describes it by fuzzy
numbers. The conclusion is that the price of the option is notnecessarily a
strictly increasing function of the volatility.

Keywords

fuzzy sets, option pricing, sensitivity analysis

1 Introduction

In the first section of this paper we introduce the Cox-Ross-Rubinstein model [2]
for the pricing of a European call option and the assumptionswhich are made.
The well-known formula for the option price depends on the volatility of the un-
derlying asset. However in practice it is hard to give a precise estimate of this
volatility. S. Muzzioli and C. Toricelli [6] handle this problem by using possibil-
ity distributions. In the first part of our paper we make some critical comments on
their work. In the second part we present an alternative solution to the problem
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by performing a sensitivity analysis for the pricing of the option. This method is
very general in the sense that it can be applied if one describes the uncertainty in
the volatility by confidence intervals as well as if one describes it by fuzzy num-
bers. Indeed, in both approaches the imprecise volatility results in imprecise up
and down factors. Those factors are modelled by a fuzzy quantity or are said to
belong to a confidence interval.
We consider the case where the down factor is the inverse of the up factor. The
lifetime of the option is divided intoN steps of lengthT/N. Then we need to
study the behaviour of the option price as a function of the upfactor in an inter-
val, which is a subset of](1+ r)T/N,+∞[, wherer stands for the risk-free interest
rate. Therefore we study the functional behaviour of the option price for all pos-
sible values of the up factor.
Finally, we illustrate the method by an example with a fuzzy up factor.

2 The binary tree model

The binary tree model of Cox-Ross-Rubinstein [2] can be considered as a discrete-
time version of the Black & Scholes model [1]. The following assumptions are
made:

• The markets have no transaction costs, no taxes, no restrictions on short
sales, and assets are infinitely divisible.

• The lifetimeT of the option is divided intoN steps of lengthT/N.

• The market is complete.

• No arbitrage opportunities are allowed which implies for the risk-free rate
of interestr, thatd < (1+ r)T/N < u, whereu is the up factor andd the
down factor.

The European call option price at time zero, has a well-knownformula in this
model:

EC(K,T) =
1

(1+ r)T

N

∑
j=0

(
N
j

)
p j

u(1− pu)
N− j (S0u jdN− j −K

)
+

(1)

whereK is the exercise (or strike) price,S0 is the price of the underlying asset
at time the contract begins,pu the risk-neutral probability that the price goes up
with the factoru = exp(σ

√
T/N), with σ the volatility of the underlying asset.

Let pd be the risk-neutral probability that the price goes down with the factord.
We assume thatd = 1/u. It is known thatpu andpd are solutions to the system:

{
pu + pd = 1

dpd +upu = (1+ r)T/N.
(2)
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The solutions are:

pu =
(1+ r)T/N−d

u−d
=

(1+ r)T/Nu−1
u2−1

(3)

pd =
u− (1+ r)T/N

u−d
=

u2− (1+ r)T/Nu
u2−1

. (4)

3 Critical Analysis of the paper ‘A Multiperiod Bi-
nomial Model for Pricing Options in an Uncertain
World’ by S. Muzzioli and C. Torricelli

S. Muzzioli and C. Torricelli [6] state: ‘There are different methods for estimating
volatility either from historical data, or from option prices. Sometimes it is hard
to give a precise estimate of the volatility of the underlying asset and it may be
convenient to let it take interval values. Moreover, it may be the case that not all
members of the interval have the same reliability, as central members are more
possible then the ones near the borders. This is exactly the idea behind our model,
but instead of modelling volatility as a fuzzy quantity, we directly model the up
and down jumps of the stock price.’
Instead of modelling the volatility as a fuzzy quantity, S. Muzzioli and C. Tor-
ricelli model directly the up and down factorsu and d as the fuzzy numbers
(u1,u2,u3) and (d1,d2,d3), whereu1 (respd1) is the minimum possible value,
u3 (respd3) is the maximum possible value andu2 (respd2) is the most possible
value. A triangular fuzzy number(a1,a2,a3) can alternatively be defined by its
α-cuts[a1(α2),a3(α2)], α ∈ [0,1]:

[a1(α2),a3(α2)] = [a1 + α(a2−a1),a3−α(a3−a2)].

In fact a fuzzy quantity is completely defined by itsα-cuts. Consider intervals
[a1(α),a3(α)], α ∈ [0,1], where

α1 ≤ α2 : [a1(α1),a3(α1)]⊆ [a1(α2),a3(α2)],

then the intervals[a1(α),a3(α)] are theα-cuts of the fuzzy quantitya,

a(x) = sup
α∈[0,1]

min{α,1[a1(α),a3(α)](x)}, x∈ R.

Since theα-cuts of a triangular fuzzy number are compact intervals of the set of
real numbers, the interval calculus of Moore [5] can be applied to them. Thus
every binary operation inR can be extended to a binary operation on the set of
fuzzy numbers.
S. Muzzioli and C. Torricelli consider a binary tree with 1 period, i.e.T = N = 1.
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A fuzzy version of the two equations of the system (2) should be introduced. This
can be done (for each equation) in two different ways:

pu + pd = (1,1,1)

pu = (1,1,1)− pd

respectively

dpd +upu = (1+ r,1+ r,1+ r)

upu = (1+ r,1+ r,1+ r)−dpd

wherepu andpd are the fuzzy up and down probabilities((pu)1,((pu)2,((pu)3)
and(((pd)1,((pd)2,((pd)3).
S. Muzzioli and C. Torricelli choose for both equations the first form. However,
one has to take into account thatpu andpd are fuzzy probabilities and therefore
one should use the second form for the first equation. For the second equation in
(2) the first form should be taken since the left-hand side is an expectation.
Thus the correct solution is obtained by extending the system (2) to

{
pu = (1,1,1)− pd

dpd +upu = (1+ r,1+ r,1+ r).

Expressed inα-cuts and keeping in mind that the operations are binary operations
on fuzzy numbers, see e.g. E. Kerre [3], this leads to the system:






[(pu)1(α),(pu)3(α)] = [1,1]− [(pd)1(α),(pd)3(α)]

[d1(α),d3(α)][(pd)1(α),(pd)3(α)]+ [u1(α),u3(α)][(pu)1(α),(pu)3(α)]

= [1+ r,1+ r]

or 




(pu)1(α) = 1− (pd)3(α)

(pu)3(α) = 1− (pd)1(α)

d1(α)(pd)1(α)+u1(α)(pu)1(α) = 1+ r

d3(α)(pd)3(α)+u3(α)(pu)3(α) = 1+ r.

The correct solution to this system is:






(pu)1(α) = d1(α)(d3(α)+u3(α))−(1+r)(d1(α)+u3(α))
d1(α)d3(α)−u1(α)u3(α)

(pu)3(α) = d3(α)(d1(α)+u1(α))−(1+r)(d3(α)+u1(α))
d1(α)d3(α)−u1(α)u3(α)

(pd)1(α) = (1+r)(d3(α)+u1(α))−u1(α)(d3(α)+u3(α))
d1(α)d3(α)−u1(α)u3(α)

(pd)3(α) = (1+r)(d1(α)+u3(α))−u3(α)(d1(α)+u1(α))
d1(α)d3(α)−u1(α)u3(α) .
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One can easily prove that forα = 1:
{

(pu)2 = (1+r)−d2
u2−d2

(pd)2 =
u2−(1+r)

u2−d2

and forα = 0: 




(pu)1 = d1(d3+u3)−(1+r)(d1+u3)
d1d3−u1u3

(pu)3 = d3(d1+u1)−(1+r)(d3+u1)
d1d3−u1u3

(pd)1 = (1+r)(d3+u1)−u1(d3+u3)
d1d3−u1u3

(pd)3 = (1+r)(d1+u3)−u3(d1+u1)
d1d3−u1u3

.

Next S. Muzzioli and C. Torricelli calculate the price of theoption in the one
period model. They assume that the exercise price is betweenthe highest value of
the underlying asset in state down and the lowest value of theunderlying asset in
state up,

S0d3≤ K ≤ S0u1 (5)

in which case the calculations are very simple. The aim of their next section is to
extend the pricing methodology to a two period and then to a multi period binary
model. The condition (5) is extended as follows:

S0d j+1
3 uN− j−1

3 ≤ K ≤ S0d j
1uN− j

1 j = 0, . . . ,N−1

which is impossible sinceK can not be an element of thoseN intervals. Even if
one changes the condition to

∃ j ∈ {0, . . . ,N−1} : S0d j+1
3 uN− j−1

3 ≤ K ≤ S0d j
1uN− j

1

the condition is not always fulfilled since one can easily prove (for example in
the crisp case withd = 1/u) thatS0d j+1

3 uN− j−1
3 is not always less thenS0d j

1uN− j
1 .

Even if this is the case, there are no economic reasons why theexercise price
would not be out of the mentioned intervals.
Finally, they calculate the price of the option in one special situation of the two
period model and remark that the extension toN periods is straightforward, which
is not the case as we will see in what follows.
A last remark concerns the number of periods. S. Muzzioli andC. Torricelli ex-
tend the number of periods without explicitly mentioning that at the same time
one should fix the lifetime of the option. Otherwise when the lifetime equals the
numberN of periods andN is increased, another option is considered at each step.
Hence, if one models one and the same option, one has to fix the lifetime T and
divide T in N subperiods of lengthT/N. Then increasing the numberN of steps
implies at the same time a decrease of the steplength.
This is also the way to proceed in order to be able to consider the important limit
problem.
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4 Imprecise volatility and the pricing of a European
Call Option

The change of the priceSt of the underlying asset at time t can be modelled as in
[4] by

St+1 = ξt+1St

whereξt+1 is a sequence taking values in a compact setM. We are interested
in the special case whereM consists only of two elements, its upper and lower
boundsu andd. Those up and down factors depend on the volatilityσ. As we
already mentioned, it is often hard to give a precise estimate of the volatility. This
problem can be avoided either by giving a confidence intervalof the volatility or
by modelling the volatility by a fuzzy quantity.
Imprecise volatility implies imprecision in the up (and down) factors. Under the
assumptions of section 2 the (confidence orα-cut) intervals, to which the up fac-
tor, belongs, are subsets of](1+ r)T/N,+∞[. We study the behaviour of the price
of a European call option for all possible values of the up factor. In sections
5, 6 and 7 we also need to include the border case where the up factor equals
(1+ r)T/N. Therefore we define the up factor asuλ:

uλ = (1+ r)T/N + λ, λ ∈ R+.

If we invoke (3), the risk-neutral probability,pλ, that the price goes up, is

pλ =
(1+ r)T/Nuλ−1

u2
λ−1

.

The priceCλ(K) of the option is:

Cλ(K) =
1

(1+ r)T E[(ST
λ −K)+]

=
1

(1+ r)T

N

∑
j=0

(S0u2 j−N
λ −K)+ ·P[XN

λ = j]

=
1

(1+ r)T

N

∑
j= j∗λ

(S0u2 j−N
λ −K)

(
N
j

)
p j

λ(1− pλ)
N− j (6)

whereXN
λ is the number of ups in the lifetimeT andS0u2 j−N

λ −K is positive for
j ≥ j∗λ.
Consider a confidence interval,[u0,u1]⊂](1+ r)T/N,+∞[, of the up factor with

u0 = (1+ r)T/N + λ0

u1 = (1+ r)T/N + λ1.
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If uµ ∈ [u0,u1],µ∈ [0,1] then

uµ = µu0 +(1−µ)u1

= µ((1+ r)T/N + λ0)+ (1−µ)((1+ r)T/N + λ1)

= (1+ r)T/N +[µλ0+(1−µ)λ1]

= (1+ r)T/N + λ∗(µ).

The price of the option belongs to the interval

[ min
µ∈[0,1]

Cλ∗(µ)(K), max
µ∈[0,1]

Cλ∗(µ)(K)].

Suppose the imprecise volatility is described by using a fuzzy quantity,(u1,u2,u3),
u1,u2,u3 ∈](1+ r)T/N,+∞[, with

u1 = (1+ r)T/N + λ1

u2 = (1+ r)T/N + λ2

u3 = (1+ r)T/N + λ3,

for the up factor. Anα-cut,α ∈ [0,1], is the interval:

[u1 +(u2−u1)α,u3 +(u2−u3)α] =

[(1+ r)T/N + λ1+ α(λ2−λ1),(1+ r)T/N + λ3+ α(λ2−λ3)].

An element of this interval can be described by

µ[(1+ r)T/N +(λ1+ α(λ2−λ1))]+ (1−µ)[(1+ r)T/N + λ3+ α(λ2−λ3)]

= (1+ r)T/N +µ(λ1+ α(λ2−λ1))+ (1−µ)(λ3+ α(λ2−λ3))

= (1+ r)T/N + λ∗α(µ), µ∈ [0,1].

Theα-cut,α ∈ [0,1], of the option price is:

[ min
µ∈[0,1]

Cλ∗α(µ)(K), max
µ∈[0,1]

Cλ∗α(µ)(K)]. (7)

It is clear that, for the method with confidence intervals as well as for the method
using fuzzy quantities, the behaviour ofCλ(K) as function ofuλ should be studied.
This is the subject of the following sections.

5 Definitions, notations and lemmas

The function is broken up in its basic elements: first the (up and down) probabili-
ties are considered, then their products and finally their products with the up and
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down factors. The risk-neutral probability,pλ, is a decreasing function ofuλ. For
uλ = (1+ r)T/N this probability is one and

lim
uλ→+∞

pλ = 0.

And one obtainsp∗ = 0.5 for

uλ = u∗ = (1+ r)T/N +

√
(1+ r)2T/N−1.

The probability 1− pλ is an increasing function ofuλ.
The functionpλ(1− pλ) has a maximum foruλ = u∗. It is zero foruλ = (1+ r)T/N

and in the limit foruλ→+∞.
The functionuλpλ attains a minimum foruλ = u∗. It is equal to(1+ r)T/N for
uλ = (1+ r)T/N and in the limit foruλ→+∞.
The functionu−1

λ (1− pλ) attains a maximum foruλ = u∗. It is zero foruλ =

(1+ r)T/N and in the limit foruλ→+∞.
One can prove that

(uλ pλ)
′ =

1−2pλ

u2
λ−1

=−(u−1
λ (1− pλ))

′.

6 Functional behaviour of the functionsC1(λ, j) and
C2(λ, j,K)

In the next section we will examine the functional behaviourof each term in the
sum (6). Those terms consist of two parts, namelyC1(λ, j) = S0u2 j−N

λ
(N

j

)
p j

λ(1−
pλ)

N− j andC2(λ, j,K) = −K
(N

j

)
p j

λ(1− pλ)
N− j . Those functions are first exam-

ined separately, regardless the sign of their sum.
The derivative of the functionC1(λ, j) with respect touλ, uλ ∈ [(1+ r)T/N,+∞],
is:

(C1(λ, j))′ (8)

=
S0
(N

j

)

uλ
(uλpλ) j−1(u−1

λ (1− pλ))
N− j−1( j(1− pλ +u2

λpλ)−Nu2
λpλ)

1−2pλ

u2
λ−1

which implies that:

• If j ≤ N/2 then j(1− pλ + u2
λpλ)−Nu2

λpλ < 0 and the functionC1(λ, j)
attains a maximum foruλ = u∗. It is zero foruλ = (1+ r)T/N and in the
limit for uλ→+∞.

• If N/2 < j < N then the expressionj(1− pλ +u2
λpλ)−Nu2

λpλ
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– is negative for alluλ if moreover(1+ r)T/N ≤ N
2
√

(N− j) j
and the func-

tion C1(λ, j) attains a maximum foruλ = u∗.

– if (1+ r)T/N > N
2
√

(N− j) j
, j = floor(N/2+1)

(a) the expression is negative forj > Nu∗
2(1+r)T/N and the functionC1(λ, j)

attains a maximum foruλ = u∗

(b) the expression has two roots forj ≤ Nu∗
2(1+r)T/N

Those roots are:

u1( j) =
N+

√
N2−4(N− j) j(1+ r)2T/N

2(N− j)(1+ r)T/N

u2( j) =
N−

√
N2−4(N− j) j(1+ r)2T/N

2(N− j)(1+ r)T/N

with u1( j)≥ u∗ ≥ u2( j) ≥ (1+ r)T/N

and ifu1( j) = u2( j) thenu1( j) = u2( j) = u∗.
The functionC1(λ, j) attains a maximum foruλ = u2( j) and foruλ =
u1( j). It attains a minimum foruλ = u∗.

– The functionC1(λ, j) is zero foruλ = (1+ r)T/N and in the limit for
uλ→+∞.

• if j = N then the function equalsS0(uλpλ)
N and it attains a minimum for

uλ = u∗. The functionC1(λ, j) is equal toS0(1+ r)T for uλ = (1+ r)T/N

and in the limit foruλ→+∞.

The derivative of the functionC2(λ, j,K),0 < j < N, with respect touλ is:

(C2(λ, j,K))′ =−K

(
N
j

)
( j−Npλ)p j−1

λ (1− pλ))
N− j−1(pλ)

′ (9)

The factor( j−Npλ) has two roots for all j:

u∗1( j) =
N(1+ r)T/N +

√
N2(1+ r)2T/N−4 j(N− j)

2 j

u∗2( j) =
N(1+ r)T/N−

√
N2(1+ r)2T/N−4 j(N− j)

2 j

butu∗2( j) < (1+ r)T/N.
The function attains a minimum foruλ = u∗1( j). If j ≤ N/2 thenu∗1( j) > u∗ and
if j ≥ N/2 thenu∗1( j) < u∗. The function is zero foruλ = (1+ r)T/N and in the
limit for uλ→+∞.
The function is decreasing forj = 0. It is zero foruλ = (1+ r)T/N and equal to
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−K in the limit for uλ→+∞.
The functionC2(λ, j,K) increases forj = N. It is equal to−K for uλ = (1+ r)T/N

and zero in the limit foruλ→+∞.

7 The branches of the binary tree considered sepa-
rately

Each term in the sum corresponds to a branch in the binary tree. Such a term
depends onj, j = 0, . . . ,N, andK, and is function ofλ:

Cλ( j,K) = (S0u2 j−N−K)

(
N
j

)
p j

λ(1− pλ)
N− j .

The functional behaviour ofCλ( j,K) is examined regardless of its sign.
Noting that

Cλ( j,K) = C1(λ, j)+C2(λ, j,K)

the derivative ofCλ( j,K) with respect touλ can be calculated by invoking (8) and
(9):

S0

(
N
j

)
(uλpλ) j−1(u−1

λ (1− pλ))
N− j−1u−1

λ ( j(1− pλ +u2
λpλ)−Nu2

λpλ)
1−2pλ
u2

λ−1

−K

(
N
j

)
( j−Npλ)p j−1

λ (1− pλ))
N− j−1(pλ)

′.

In those intervals where both derivatives (8) and (9) have the same sign or for
those values ofuλ where one of the derivatives is zero, one can immediately con-
clude from section 6 if the term is decreasing or increasing.
On the other hand we can draw conclusions about the functional behaviour of the
term by remarking that we studied the functional behaviour of S0u2 j−N

λ multiplied

by
(N

j

)
p j

λ(1− p j−N
λ ) and that the term can be calculated in two steps: first subtract

K from S0u2 j−N
λ and then multiply the result by

(N
j

)
p j

λ(1− p j−N
λ ).

This leads to the following conclusions:

j = 0

• C0(0,K) = 0 andCλ(0,0) > 0,
lim

uλ→+∞
Cλ(0,K) =−K.

• If K ≥ S0(1+ r)−T thenCλ(0,K) is negative for alluλ.
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• If 0 < K < S0(1+ r)−T thenCλ(0,K) has a root,u∗(0) = (S0
k )

1
N . The func-

tion is negative for alluλ > u∗(0), it attains a maximum in the interval
](1+ r)T/N,u∗[. The root and the maximum decrease asK increases.

0 < j <
N
2

• C0( j,K) = 0 andCλ( j,0) > 0,
lim

uλ→+∞
Cλ( j,K) = 0

• If K ≥ S0(1+ r)
(2 j−N)T

N thenCλ( j,K) is negative for alluλ.

• If K < S0(1+ r)
(2 j−N)T

N thenCλ( j,K) has a root,u∗( j) = ( K
S0

)
1

2 j−N . The
function is negative for alluλ > u∗( j), it attains a maximum in the interval
](1+ r)T/N,u∗[. The root and the maximum decrease asK increases.

• Since the function converges to zero it attains a minimum in the interval
]u∗( j),+∞[.

j = N/2 , j is odd

SinceCλ( j,K) = (S0−K)
(N

j

)
(pλ(1− pλ))

N/2,

• C0( j,K) = 0 and lim
uλ→+∞

Cλ( j,K) = 0.

• The function is positive for alluλ if S0 > K and negative for alluλ if S0 < K.

• The function attains a maximum foruλ = u∗ if S0 > K and a minimum for
uλ = u∗ if S0 < K.

N
2

< j < N

• C0( j,K) = 0 and lim
uλ→+∞

Cλ( j,K) = 0

• If (1+ r)T/N ≤ N
2
√

(N− j) j
or
(1+ r)T/N > N

2
√

(N− j) j
and N

2 < j ≤ Nu∗
2(1+r)T/N

then

– If K ≤ S0(1+ r)
(2 j−N)T

N the function is positive for alluλ and attains a
maximum, larger thenu∗. The maximum increases asK increases.
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– If K > S0(1+ r)
(2 j−N)T

N the function has a root,u∗( j) = ( K
S0

)
1

2 j−N . The
function is positive for alluλ > u∗( j). It attains a maximum, larger
thenu∗. The maximum and the root increase as K increases. It attains
a minimum, smaller thenu∗1( j), between(1+ r)T/N and the root.

• (1+ r)T/N > N
2
√

(N− j) j
and Nu∗

2(1+r)T/N < j < N

– If K ≤S0(1+ r)
T(2 j−N)

N then the function is positive for alluλ. It attains
a maximum and a minimum in]u2( j),u∗[ . If K increases the differ-
ence between the maximum and the minimum becomes insignificant.
It also attains a maximum which is larger thenu1( j).

– If S0(1+ r)
T(2 j−N)

N < K then the function has a root,u∗( j) = ( K
S0

)
1

2 j−N ,
and is negative for alluλ < u∗( j). It attains a minimum, smaller then
u∗1( j), between(1+ r)T/N and the root.

j = N

• C0(N,K) = S0(1+ r)T−K and lim
uλ→∞

Cλ(N,K) = S0(1+ r)T .

• If K ≥ S0(1+ r)T thenCλ(N,K) has a root,u∗(N) = ( K
S0

)
1
N . The function

is positive for alluλ > u∗( j). The root decreases whenK decreases. The
function increases.

• If S0(1+ r)T− 2T
N ≤K < S0(1+ r)T then the function is positive and increas-

ing for all uλ.

• If 0 ≤ K < S0(1+ r)T− 2T
N then the function is positive for alluλ and attains

a minimum in](1+ r)T/N,u∗[. The minimum decreases asK increases.
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8 Procedure for the Pricing of the European Call
Option

Suppose thatK is such thatCλ( j,K) is positive for all j, then the priceEC(K,T)
(1) or (6) reads

Cλ(K) =
1

(1+ r)T

N

∑
j=0

(S0u2 j−N
λ −K)

(
N
j

)
p j

λ(1− pλ)
N− j

=
S0

(1+ r)T

N

∑
j=0

(uλ pλ)
j(u−1

λ (1− pλ))
N− j

− K
(1+ r)T

N

∑
j=0

p j
λ(1− pλ)

N− j

=
S0

(1+ r)T (uλpλ +u−1
λ (1− pλ))

N− K
(1+ r)T

= S0−
K

(1+ r)T ,

where in the last equality we applied (2).
This case is only possible ifK < S0, since otherwise the terms forj < N/2 are
not in the sum. If this condition is fulfilled forK, then all terms forj ≥ N/2 are
in the sum. Therefore we concentrate on the terms withj < N/2. The expression

Cλ( j,K) is positive for alluλ < (S0
K )

1
N−2 j .

The smallest root is(S0
K )

1
N . This root is larger then(1+ r)T/N if 0 < K ≤ S0(1+

r)T/N. If, in this case,

(1+ r)T/N < uλ < (
S0

K
)

1
N

then all terms are in the sum andCλ(K) is constant for those values ofuλ, namely
Cλ(K) = S0(1+ r)T/N−K.
If uλ increases:

(
S0

K
)

1
N ≤ uλ < (

S0

K
)

1
N−2

thenCλ(0,K) < 0 and the corresponding term is not in the sum. ThusCλ(K) =
S0−K(1+ r)−T −Cλ(0,K)(1+ r)−T . SinceCλ(0,K) is negative and decreasing

for (S0
K )

1
N ≤ uλ < (S0

K )
1

N−2 , Cλ(K) increases for those values ofuλ.
This procedure can be extended for all values ofuλ andK.
Finally, we illustrate the procedure by an example in the case the imprecise volatil-
ity is described by a fuzzy quantity.
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Let 0< K ≤ S0(1+ r)T/N and

u1 ∈ ](1+ r)T/N,(
S0

K
)

1
N [

u2 = (
S0

K
)

1
N

u3 ∈ ](
S0

K
)

1
N ,

S0

K
)

1
N−2 [.

then, by applying (7), theα-cuts of the option price are

[S0−
K

(1+ r)T ,S0−
K

(1+ r)T −
Cλ∗α(1)(0,K)

(1+ r)T ].

9 Conclusions

In the continuous Black & Scholes model, of which the binary tree model is a
discrete time version, the price of a European call option isa strictly increasing
function of the volatility, since the hedging parameter vega, i.e. the derivative of
the price with respect to the volatility, is strictly positive.
In the discrete case we studied the functional behaviour of the price in order to
model the uncertainty in the volatility. We can conclude that in the binary tree
model the price is not necessarily a strictly increasing function of the volatility.
As further research we will investigate the functional behaviour when this discrete
time model converges to the Black & Scholes model.
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JOSÉ CARLOS FERREIRA DA ROCHA
Escola Polit́ecnica, Universidade de São Paulo
Universidade Estadual de Ponta Grossa, Brazil

FABIO GAGLIARDI COZMAN
Escola Polit́ecnica, Universidade de São Paulo, Brazil

Abstract

A credal network associates sets of probability distributions with directed
acyclic graphs. Under strong independence assumptions, inference with credal
networks is equivalent to a signomial program under linear constraints, a
problem that is NP-hard even for categorical variables and polytree mod-
els. We describe an approach for inference with polytrees that is based on
branch-and-bound optimization/search algorithms. We usebounds gener-
ated by Tessem’s A/R algorithm, and consider various branch-and-bound
schemes.

Keywords

credal networks, strong independence, probability intervals, inference, branch-and-bound
algorithms

1 Introduction

A credal network provides a representation for imprecise probabilistic knowledge
through direct acyclic graphs (DAGs) [1]. In this formalism, each node in a DAG
represents a random variable, and each variable is associated with convex sets of
probability distributions. The structure of the graph indicates relations of proba-
bilistic independence between variables. In this paper we interpret independence
relations as statements of strong independence [1, 2].

A credal network can be viewed as a Bayesian network [3] with relaxed
numerical statements. Credal networks can be used to study the robustness of

∗The first author is supported in part by CAPES. The work has received substantial support from
HP Labs through “Convênio Redes Bayesianas para Aprendizado.”
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Bayesian networks [4], or to represent vague or incomplete probability state-
ments.

An inferencewith a credal network is the computation of upper and lower
probability values for each category of aqueryvariable. This computation is NP-
hard even for polytrees [5], and it can be viewed as a signomial program under
linear constraints [6]. Exact and approximate inference algorithms have been pro-
posed in the literature, but no algorithm can handle large credal networks exactly.

In this article we propose new algorithms for inferences in polytrees. The idea
is to use branch-and-bound search/optimization techniques to produce inferences.
We explore Tessem’s A/R algorithm [7] as a bound generation mechanism. We
show how this approach can generate exact and approximate inferences, illustrat-
ing the main ideas with of examples.

The organization of the text is as follows. Sections 2 and 3 present a sum-
mary of credal networks and branch-and-bound techniques. Section 4 describes
how exact and approximate inference can be performed with branch-and-bound
techniques and the A/R algorithm. Section 5 shows how exact and approximate
techniques can be combined through decomposition of networks. Section 6 dis-
cusses the proposed algorithms and results.

2 Credal sets, credal networks and inference

A convex set of probability distributions is called a credalset [8].1 Denote the
probability density of a categorical random variableX by p(X). A credal set for
X is denoted byK(X); we assume that every credal set has a finite number of
vertices. We can represent such a set just enumerating its vertices. A conditional
credal set is a set of conditional distributions. We obtain aconditional credal set
applying Bayes rule to each distribution in a joint credal set.

Given a number of marginal and conditional credal sets, anextensionof these
sets is a joint credal set with the given marginal and conditional credal sets. A col-
lection of marginal and conditional credal sets can have more than one extension.
In this paper we are always interested in computing the largest possible extension
for a given collection of marginal and conditional credal sets.

Credal networks associate credal sets with a direct acyclicgraph. In analogy
to Bayesian networks, in a credal network every node of a directed acyclic graph
is associated with a variable,2 and every variable is associated with a collection of
local credal setsK(X|pa(X)), where pa(X) denotes the parents of variableX in
the graph. That is, a node stores the credal sets

{K(X|pa(X) = π1) , . . . ,K(X|pa(X) = πm)},
1We deal only with convex sets.
2To simplify the text, we represent a node and its variable with the same symbol.
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where{π1, . . . ,πm} are the instances of pa(X). A root node has only one credal
set associated with it.

The setsK(X|pa(X)) are calledseparately specifiedwhen there is no relation-
ship between them for different values of pa(X). In this paper we assume that
local credal sets are always separately specified.

The basic assumption in a credal network is that every variable is independent
of its nondescendants nonparents given its parents. Obviously the import of such
a condition depends on which concept of independence for credal sets is adopted
[1, 2, 9]. In this paper we adopt the concept ofstrong independence: two variables
X andY are strongly independent when every extreme point ofK(X,Y) satisfies
stochastic independence ofX andY (that is, each vertexp(X,Y) ∈ K(X,Y) sat-
isfies p(X|Y) = p(X) and p(Y|X) = p(Y) for all possible conditioning values)
[10].

Thestrong extensionof a credal network is the largest joint credal set such that
every variable is strongly independent of its nondescendants nonparents given
its parents. The strong extension of a credal network is the joint credal set that
contains every possible combination of vertices for all credal sets in the network,
such that the vertices are combined as follows [1]:

p(X1, . . . ,Xn) = ∏
i

p(Xi |pa(Xi)) . (1)

Figure 1 shows the structure of a credal network that is latter used in examples.
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Figure 1: A polytree credal network.

An inferencein a credal network is the computation of tight bounds for prob-
ability values in an extension of the network. These bounds are calledupperand
lower probabilities. IfXq is aqueryvariable andXE represents a set ofobserved
variables, then an inference is the computation of tight bounds forp(Xq|XE) for
one or more values ofXq.

Algorithms for exact inference in strong extensions can be found in [1, 5,
11, 12]. The only known polynomial algorithm for strong extensions is the 2U
algorithm, which processes polytrees with binary variables [13]. In general, ex-
act inference in credal networks is a NP-hard problem (even for polytrees), so
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approximate algorithms are a natural solution. We distinguish outerapproxima-
tions frominnerones; the former are produced when the correct interval between
lower and upper probabilities is enclosed in the approximate interval; the latter
approximations are produced when the correct interval encloses the approximate
interval. Outer approximations can be found in [7, 14, 15], and inner approximate
algorithms can be found in [4, 16, 17]. Generally speaking, inner algorithms are
obtained by local optimization methods.

In this paper we are interested in inferences with strong extensions. The diffi-
culty faced by inference algorithms is the potentially enormous number of vertices
that a strong extension can have — even a relatively small network can dwarf the
best exact algorithms. Consider the following example, taken from [5]:

Example 1 Consider a network with four variables X, Y, Z and W; W is the sole
child of X, Y and Z, and there are no other arrows in the network. Suppose that all
variables have three values and that every local credal set has only three vertices.
The vertices of the strong extension K(X,Y,Z,W) factorize as p(W,X,Y,Z) =
p(W|X,Y,Z) p(X) p(Y) p(Z). Now, W is associated with 27 credal sets; therefore
there are327 ways to combine the vertices of these credal sets. These327 vertices
must be combined with every combination of vertices of K(X), K(Y) and K(Z).
So, the potential number of vertices in K(X,Y,Z,W) is 330.

We note that inference in credal networks is an optimizationproblem. Con-
sider the computation of an upper probability:

• The goal is to find a distributionp(Xi |pa(Xi)) in K(Xi|pa(Xi)), for each
variableXi , so as to maximize the probability valuep(Xq|XE).

• The objective functionp(Xq|XE) is a fraction of multilinear expressions:

p(Xq|XE) =
∑X1,...,Xn\{Xq,XE}∏i p(Xi |pa(Xi))

∑X1,...,Xn\XE ∏i p(Xi |pa(Xi))
.

• The maximization is subject to linear constraints, given our assumption of
credal sets with finitely many vertices.

This maximization problem belongs to the field ofsignomialprogramming [6], as
observed independently by [4, 12, 18]. Signomial programs are generally solved
dividing the feasible set (“branching” on various subsets)and obtaining outer ap-
proximations (“bounding” the objective function in each subset) [6, 19]. That
is, signomial programming is solved by branch-and-bound procedures. The great
advantage of signomial programming over more general optimization problems
is that it is possible to obtain bounds for signomial programs using geometric
programming — a well establish field that can be tackled efficiently through con-
vex programming [20]. However, direct application of geometric programming
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bounds to strong extensions seems to face difficulties. First, the inference prob-
lem is an “implicit” signomial programming, as the objective function is encoded
in the graph through Expression (1); each combination of variables in the credal
network would be a maximizer in the geometric program. Second, and perhaps
more importantly, the “degree of difficulty” of a geometric program depends on
the number of polynomial terms in the program — note that Expression (1) sum-
marizes a large number of terms.

In this paper we adopt the basic idea of branching and bounding to compute
lower and upper probabilities, but instead of relying on properties of geometric
programming, we use bounds that have been specifically developed for strong
extensions.

3 Branch-and-bound search and optimization

Branch-and-bound techniques appear in artificial intelligence, optimization and
constraint satisfaction [21, 22]. The basic purpose of a branch-and-bound algo-
rithm is to optimize a function. For example, take a problemP stated as:

(P) max f (w)

s.t. g(w)≤ 0,w∈W,

whereW ⊆ℜn, f is a real valued function, and the image ofg is contained inℜm.
A branch-and-bound technique is suitable forP whenever it is possible to divideP
in sub-instances that are easier to solve or approximate than P itself, and such that
the solution forP is present in one of these sub-instances [23, 24]. Additionally, a
branch-and-bound technique requires a boundr (overestimation) for the solution
of P. This upper bound is usually obtained from a relaxed versionof P, indicated
by R. Obviously,Rmust be easier and faster to solve thanP, and must give a good
approximation forP. The relaxed bound forP is denoted byr(P).

In our implementation we use the following version of branch-and-bound
[25]; several variants exist for it [23].

Algorithm 1 - Depth-first branch-and-bound

• Input: a problemP.

• Output:the value of maxf (w), denoted by ¯p.

1. Initialize p̂ with a small value (necessarily smaller than ¯p).

2. If W contains a single valuew then: update ˆp with f (w) when f (w) > p̂;

3. else:
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(a) using decomposition, obtain a listL of sub-instances ofP; each sub-
instance is denoted byPh and has feasible regionWh.

(b) for eachPh do

i. if Wh is feasible in the original problem andr(Ph) > p̂, call re-
cursively depth-first branch-and-bound overPh.

4. Take the last ˆp as p̄.

This algorithm can be viewed as a search in a tree where the root node con-
tainsP and descendant nodes contain sub-instances ofP. The leaf nodes contain
problems that can be exactly solved. When a leaf nodel is reached, the value for
f at l is computed; if this value is the largest one up to that moment, it is retained.
Non-leaf nodes are processed by relaxing the original problem and producing
bounds. Every non-leaf node is expanded by decomposition into sub-instances, as
long as its bound is larger than the current best value.

4 Branch-and-bound inference in strong extensions

This section contains the central ideas in this paper. We usea branch-and-bound
procedure where

• branching occurs at every vertex of credal sets, and

• bounding is achieved by Tessem’s A/R algorithm [7].

Given a query variableX and a credal networkN , a single run of the branch-
and-bound procedure computes the lower or upper probability for a single state
of X, denoted byx.

The first step is to discard variables that are not used to compute the inference;
this can be done using d-separation [26]. The resulting network is denoted byN0.

4.1 Branching

The root node in the branch-and-boundsearch tree isN0. The root nodeN0 is then
divided into several simpler credal networks{N01, . . . ,N0q}. Each one of these
networks is obtained as follows. We select one credal set inN0, and produce as
many networks as there are vertices in this credal set — each network is associated
with a single vertex of the selected credal set. This decomposition procedure is
then applied recursively, following the branch-and-boundalgorithm. At each step,
a credal set is “expanded”. Using this decomposition strategy, a leaf node contains
a Bayesian network, obtained by a particular selection of vertices in all credal
sets in the credal network. When a leaf node is reached, a variable elimination
algorithm is used to perform inference in the Bayesian network defined by the
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leaf [27]. Such an algorithm produces a probability valuep(x|XE); if p(x|XE) is
greater than the current maximum probability, the latter value is updated.

We always select the non-expanded credal set nearest to the queried variable,
but we always keep the query variable to be processed at last (a similar criterion
is used in [28] to deal with partial evaluation of belief nets). We have tried several
criteria for the selection of the credal sets that are expanded, and we found that
the procedure just described is quite appropriate.

4.2 Bounding

For non-leaf nodes in the search tree, we run the A/R algorithm as a relaxation of
exact inference [7], because this algorithm produces outerbounds rather quickly.
The A/R algorithm focuses on polytrees, even though it can bemodified to handle
more general networks [14].

The A/R algorithm assumes that every credal set is approximated by a collec-
tion of probability intervals. So we must convert the credalnetwork to an interval-
based Bayesian network (conditional probability tables contain intervals). Obvi-
ously the replacement of credal sets by probability intervals introduces potential
inaccuracies into the process.

The A/R algorithm mimics the dynamics of Pearl’s belief propagation algo-
rithm [3]. The functionsλ, π and the messages used in BP are still defined with
identical purposes, but they are now interval-valued functions. The idea is to ma-
nipulate these intervals using interval arithmetic and twoadditional techniques
called by Tessemannihilationandreinforcement.

We can understand the basic ideas in the A/R algorithm by looking at the
computation of the interval-valued messageπ(X) — this message is computed
at a nodeX with parentsY0, . . . ,Yk. Consider then the computation ofπ∗(x j), the
lower bound ofπ(x j) for a particular valuex j :

1. Construct a interval-valued functionβ(Y0, . . . ,Yk) by interval-multiplication
of the messagesπX(Yi) received byX (these messages are also interval-
valued).

2. Construct a distributionp(Y0, . . . ,Yk) that is consistent with the intervals in
β(Y0, . . . ,Yk), such thatp(Y0, . . . ,Yk) minimizes the sum

∑
Y0,...,Yk

p(x j |Y0, . . . ,Yk) p(Y0, . . . ,Yk) ,

wherep(x j |Y0, . . . ,Yk) is the lower value forp(x j |Y0, . . . ,Yk); the minimum
of the sum isπ∗(x j).

These operations are efficient because it is not hard to findp(Y0, . . . ,Yk) in step 2:
sort p(x j |Y0, . . . ,Yk) in increasing order, and distribute probability mass (consis-
tently with β(Y0, . . . ,Yk)) from the smallest to the largest value ofp(x j |Y0, . . . ,Yk).
The same operations can be adapted to compute the upper boundπ∗(x j ).
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Figure 2: An example of branch-and-bound based inference. Left: a simple credal
network, whereK(U) is the convex hull of{a0,a1}, with a0 = (0.5,0.5) and
a1 = (0.3,0.7); K(V|u0) is the convex hull of{b0,b1}, with b0 = (0.5,0.5) and
b1 = (0.3;0.7); K(V|u1) is the convex hull of{b2,b3}, with b2 = (0.4,0.6) and
b3 = (0.2,0.8). Right: Search tree for computation ofp(v0).

The A/R algorithm prescribes similar operations for computation of λX(Yi)
andπZi (X) (whereZi is a child ofX). The functionλ(X) is obtained by direct
interval multiplication. Finally, the algorithm uses annihilation or reinforcement
operations to “normalize” the functionsλX(Yi), πZi (X), and the productπ(X)λ(X)
— “normalization” means simply computing bounds that take into account the
fact that probability distributions add up to one.

In our branch-and-bound procedure, the deeper a node is in the search tree,
the more point probabilities are manipulated by the A/R algorithm.

Example 2 Figure 2 shows a very simple network and the the basic steps ofour
branch-and-boundalgorithm when computingp(v0). Nodes in the search tree rep-
resent credal networks; the numbering inside nodes indicates the order in which
nodes are visited. The value r is obtained by the A/R algorithm. Close to each
arc in the search tree we indicate which vertex (and for whichcredal set) was
expanded.

4.3 Experiments

We have implemented the branch-and-bound scheme in a Java program, using
Pentium IV machines to run tests. We ran experiments with networks containing
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Table 1: Cost for exact inference forE in the network of Figure 1.

# states # vertices Potential size Visited nodes Samples
per per credal of the strong (mean) (networks)

variable sets extension
03 02 221 5499 35
03 03 321 284912 10
04 02 235 559255 10

variables with three and four states. Each configuration wastested against several
randomly generated credal nets [29]. Experiments discussed in this section have
no evidence (XE = /0); this restriction simplifies the presentation with no lossin
generality.

We have observed that the size of the search tree explored by branch-and-
bound is usually a small fraction of the potential vertices of the strong extension.
As an example, consider the network in Figure 1. Table 1 showsrelevant results
for query variableE, indicating the number of states for variables, the number of
vertices for each credal set in the network, and the potential number of vertices of
the strong extension. The table indicates how many networksof each type were
tested, and the mean number of visited nodes during branch-and-bound. Note the
enormous difference between the potential number of vertices and the number of
effectively expanded nodes.

As another instructive example, we applied the branch-and-bound scheme to
the network described in Example 1. We tested thirty randomly generated credal
networks with the same structure and different credal sets;in each one of them
we computed the lower and upper probabilities forw0. These sample networks
had ternary variables and three distributions in each credal set. The branch-and-
bound search was always able to quickly compute the exact inference, on average
exploring 243 nodes per inference.

Consider another example. We took the polytree structure ofthe well-known
Bayesian network called “Car Starts”3 and set all of its variables as ternary. We
assumed that in practice it would be unusual to have credal sets associated to
all variables in a credal network — some distributions couldbe obtained with
greater precision, and in any case the specification of dozens of credal sets is not
an easy matter. We therefore introduced credal sets in all root nodes and in the
node calledBatteryState, usingε-contaminated models withε = 0.2 [30]. The
resulting strong extension has 318 potential vertices (about 387 million potential
vertices). We ran branch-and-bound inference for all states of the variableStarts
and obtained exact values after evaluating 1,139,717 nodes(less than 0.3% of

3Microsof Research: http://www.research.microsoft.com/research/dtg/bnformat/autoxml.html.
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Table 2: The probability error in underestimated approximate reasoning forE in
the network of Figure 1.

# states # vertices Fixed number Mean
per variable per credal set of visited nodes relative error

03 03 150000 0.0013
03 03 30000 0.0067
04 02 200000 0.0061
04 02 50000 0.0097

the number of potential vertices were explored). An interesting test was made
with the branching strategy. We ran the same inference usinga “reverse ordering”
for branching; that is, we first expanded the credal sets thatwere farthest away
from the query node. Using this strategy, the branch-and-bound algorithm found
the exact values after expanding 4,546,943 nodes. This simple test reinforces the
intuition that the most relevant probability values in an inference are the values
that are “close” to the query variable.

It is also possible to look at the branch-and-boundscheme not only as an exact
algorithm, but also as an algorithm that can be stopped at anytime to generate ap-
proximate results. We tested this idea by running the branch-and-bound algorithm
with a fixed number of nodes. Table 2 shows the mean relative error in inferences
(each row is the mean of ten random networks). The relative error is computed
using the approximate and the exact values forP(E = e0).

5 Inference with network fragments

If the credal networkN is large, it may not be possible to run the branch-and-
bound algorithm to optimality. In this section we propose strategies to handle
such problems. The basic idea is to divide the credal networkin parts and to run
branch-and-bound in these sub-networks, in some suitable order. We illustrate this
idea through an example.

Consider the network in Figure 1, with ternary variables andtwo vertices in
each credal set. Suppose that we want to compute exact lower and upper proba-
bilities for variableG and that our space and time constraints allow us to perform
an exact inference just forE, but not forG. We then run branch-and-bound and
obtain lower and upper probabilities forE. In a particular instance of the network
shown in Figure 1, we obtainedp(e0) ∈ [0.199;0.587], p(e1) ∈ [0.084;0.375] and
p(e2) ∈ [0.212;0.604]. We can easily generate the largest credal set that is consis-
tent with these intervals. We obtainK(E) defined by the vertices

{(0.413;0.375;0.212),(0.312;0.084;0.604),(0.587;0.084;0.329),
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(0.199;0.197;0.604),(0.587;0.201;0.212),(0.199;0.375;0.426)}.
Now we can removeE and its antecedents from the network, and replaceE by
a new nodeE′ that has the marginal credal set ofE as its marginal credal set.
The transformed network is displayed in Figure 3. We then runexact branch-
and-bound based inference forG, obtaining the intervalsp(g0) ∈ [0.091;0.447],
p(g1) ∈ [0.157;0.564] andp(g2) ∈ [0.208;0.591]. Incidentally, we computed the
same inferences with an exhautive algorithm in the JavaBayes system4 and got
the same values.

E′
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J K
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✲

❘

❯

✲

✻
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Figure 3: Transformed polytree credal network.

If inferences in the transformed credal network are still unfeasible, we can run
an approximate inference algorithm in the transformed credal network. Consider
running Tessem’s algorithm in the network in Figure 3. We obtain the intervals
p(g0) ∈ [0.053,0.502], p(g1) ∈ [0.116,0.663] andp(g2) ∈ [0.128,0.644].

In closing, we note that Tessem’s algorithm alone in the complete example
network produced the intervalsp(g0) ∈ [0.040,0.524], p(g1) ∈ [0.106,0.698] and
p(g2) ∈ [0.097,0.667].

6 Discussion

Any branch-and-boundalgorithm is highly dependent on the quality of the bounds
it employs. We have found that Tessem’s bounds, while fast tocompute and rea-
sonably accurate, are quite wide — usually the search tree isexpanded to a large
depth before some of its branches are discarded. To give an example, in the com-
putation of inferences for variableE in our samples with ternary variables and
three vertices, the branch-and-bound algorithm explored the search tree almost
completely down to levels 12 or 13 (the complete search tree has 21 levels).

As an aside, we have also implemented a breadth-first versionof branch-and-
bound [22], but we have found that the need to store the expanded frontier in
such algorithms makes them unfeasible. Breadth-first branch-and-boundwill only
become a reality if better bounds than Tessem’s are found.

4Free software, site http://www.cs.cmu.edu/ javabayes.
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Generally speaking, we can say that the branch-and-bound algorithm needs to
explore a tiny fraction of potential vertices of the strong extension, and is faster
than the best existing exact algorithms [5]. For really small credal networks (with
a few thousand potential vertices in the strong extension),the overhead of branch-
ing and bounding can be significant, and in those cases enumeration algorithms
may be faster.

Clearly, the branch-and-bound algorithm with Tessem bounds cannot cope
with arbitrarily large problems, and it can face difficulties even in seemingly sim-
ple situations. In the network in Figure 1, inferences for variableL could not be
found exactly, even after extensive tests.

7 Conclusion

This paper can be best understood as proposing afamilyof solutions for inference
in strong extensions, using branch-and-bound algorithms as a unifying idea in
such solutions. We have restricted ourselves to polytrees,but branch-and-bound
techniques can be used for general inference; we have stressed the use of Tessem
bounds, but any bounding scheme can be used.

We believe that our ideas are the first explicit formulation and implementa-
tion of inference in credal networks as a search procedure that runs to optimality.
Branch-and-bound techniques are rather suitable for this purpose; the experiments
show that inference with branch-and-bound and Tessem bounds is a definite im-
provement over existing algorithms.

We also would like to emphasize the possibility that a network is processed
in pieces, using different levels of accuracy in each one of the partial inferences.
Such a strategy seems to be appropriate for large networks. Our future research
will be focused on developing and implementing general algorithms for decom-
posing networks and processing fragments with different strategies.
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Abstract

We contrast three decision rules that extend Expected Utility to contexts
where a convex set of probabilities is used to depict uncertainty: Γ-Maximin,
Maximality, andE-admissibility. The rules extend Expected Utility theory
as they require that an option is inadmissible if there is another that carries
greater expected utility for each probability in a (closed)convex set. If the
convex set is a singleton, then each rule agrees with maximizing expected
utility. We show that, even when the option set is convex, this pairwise com-
parison between acts may fail to identify those acts which are Bayes for some
probability in a convex set that is not closed. This limitation affects two of
the decision rules but notE-admissibility, which is not a pairwise decision
rule. E-admissibility can be used to distinguish between two convex sets of
probabilities that intersect all the same supporting hyperplanes.

1 Introduction

This paper offers a comparison among three decision rules for use when uncer-
tainty is depicted by a non-trivial, convex set of probability functionsP . This
setting for uncertainty is different from the canonical Bayesian decision theory
of expected utility, which uses a singleton set, just one probability function, to
represent a decision maker’s uncertainty. Justifications for using a non-trivial set
of probabilities to depict uncertainty date back at least a half century [4] and a

∗The research of the first three authors is supported by NSF grant DMS-0139911
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foreshadowing of that idea can be found even in [7], where he allows that not all
hypotheses may be comparable by qualitative probability – in accord with, e.g.,
the situation where the respective intervals of probabilities for two events merely
overlap with no further (joint) constraints, so that neither of the two events is
more, or less, or equally probable compared with the other.

We study decision rules that are extensions of canonical Subjective Expected
Utility [SEU] theory, using sets of probabilities, in the following sense. The deci-
sion rules we consider all satisfy the following pairwise comparison between two
options.

Criterion 1 For a pair of options f and g, if for each probability P∈ P , f has
greater expected utility than g, then g is inadmissible whenever f is available.

This pairwise comparison itself creates a strict partial order. It (or a similar
relation) has been the subject of representation theorems by, e.g., [3, 14, 15].
Note that whenP is a singleton set, then the partial order is a weak order that
satisfies SEU theory. In this sense, a decision rule that embeds this partial order
extends SEU theory.

Here, we avail ourselves of four simplifying assumptions:

1. The decision maker’s values for outcomes are determinateand are depicted
by a (cardinal) utility function.

Reason: We use circumstances under which convexity ofP is not con-
troversial.1

2. The algebra of uncertainty is finite, with finite state spaceΩ = {ω1,ω2, ...,ωk}.
Reason: We avoid the controversies surrounding countable versus fi-

nite additivity, which arise with infinite algebras.

3. Acts (or options) aregambles, i.e. functions from states to utilities,f :
Ω−→ IR.

Reason: This assumption is commonplace and affords us an opportu-
nity to contrast a variety of decision rules.

4. Each decision problem presents the decision maker auniformly bounded
choice setA of gambles.

Reason: We avoid complications with unbounded utilities. Moreover,
by considering the convex hull of a family of such gambles, weare as-
sured of achieving the infimum and supremum operations with respect to
expected utilities calculated with respect to the setP .

1The issue of convexity ofP is controversial. See [14] for a representation of partially ordered strict
preferences that does not require convexity unless the decision maker has a determinate (cardinal)
utility for outcomes. Rebuttal is presented in Section 7 of [11].
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Of the three decision rules we discuss, perhaps the most familiar one isΓ-
Maximin2. This rule requires that the decision maker ranks a gamble byits lower
expected value, taken with respect to a closed, convex set ofprobabilities,P , and
then to choose an option fromA whose lower expected value is maximum. This
decision rule (as simplified by the assumptions, above) was given a representation
in terms of a binary preference relation over Anscombe-Aumann horse lotteries
[2], has been discussed by, e.g., Section 4.7.6 of [1] and recently by [5], who de-
fend it as a form of Robust Bayesian decision theory. TheΓ-Maximin decision
rule creates a preference ranking of options independent ofthe alternatives avail-
able inA : it is context independent in that sense. ButΓ-Maximin corresponds to
a preference ranking that fails the so-called (von Neumann-Morgenstern’s) “In-
dependence” or (Savage’s) “Sure-thing” postulate of SEU theory. In Section 2 of
[15], we note that such theories suffer fromsequential incoherencein particular
sequential decision problems.

The second decision rule that we consider, calledE-admissibility (‘E’ for
“expectation”), was formulated in [8, 9].E-admissibility constrains the decision
maker’s admissible choices to those gambles inA that are Bayes for at least one
probabilityP ∈ P . That is, given a choice setA , the gamblef is E-admissible
on the condition that, for at least oneP ∈ P , f maximizes subjective expected
utility with respect to the options inA .3 Section 7.2 of [12]4 defends a precursor
to this decision rule in connection with cooperative group decision making.E-
admissibility does not support an ordering of options, real-valued or otherwise,
so that it is inappropriate to characterizeE-admissibility by a ranking of gambles
independent of the setA of feasible options. However, the distinction between
options that are and are notE-admissible does support the “Independence” pos-
tulate. For example, if neither optionf nor g is E-admissible in a given decision
problemA , then the convex combination, the mixed optionh = α f ⊕ (1-α)g (0
≤ α ≤ 1) likewise isE-inadmissible when added toA . This is evident from the
basic SEU property: the expected utility of a convex combination of two gambles
is the corresponding weighted average of their separate expected utilities; hence,
for a givenP ∈ P the expected utility of the mixture of two gambles is bounded
above by the maximum of the two expected utilities. The assumption that neither
of two gambles isE-admissible entails that their mixture hasP-expected utility
less than someE-admissible option inA .

The third decision rule we consider is calledMaximalityby Walley in [17]5,

2When outcomes are cast in terms of a (statistical) loss function, the rule is thenΓ-Minimax:
rank options by their maximum expected risk and choose an option whose maximum expected risk is
minimum.

3Levi’s decision theory is lexicographic, in which the first consideration isE-admissibility, fol-
lowed by other considerations, e.g. what he calls a Securityindex. Here, we attend solely toE-
admissibility.

4Savage’s analysis of the decision problem depicted by his Figure 1, p. 123, and his rejection of
optionb, p. 124 is the key point.

5There is, for our discussion here, a minor difference with Walley’s formulation of Maximality
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who appears to endorse it (p. 166).Maximalityuses the strict partial order (above)
to fix the admissible gambles fromA to be those that are not strictly preferred by
any other member ofA . That is, f is a Maximal choice fromA provided that
there is no other elementg ∈ A that, for eachP ∈ P , carries greater expected
utility than f does. Maximality (under different names) has been studied, for
example, in [6, 8, 10, 13, 16]. Evidently, theE-admissible gambles in a decision
problem are a subset of the Maximally admissible ones.

The three rules have different sets of admissible options. Here is a heuristic
illustration of that difference.

Example 1 Consider a binary-state decision problem,Ω = {ω1, ω2}, with three
feasible options. Option f yields an outcome worth 1 utile ifstateω1 obtains and
an outcome worth 0 utiles ifω2 obtains. Option g is the mirror image of f and
yields an outcome worth 1 utile ifω2 obtains and an outcomes worth 0 utiles if
ω1 obtains. Option h is constant in value, yielding an outcome worth 0.4 utiles
regardless whetherω1 or ω2 obtains. Figure 1 graphs the expected utilities for
these three acts. LetP = {P: 0.256P(ω1) 60.75}. The surface of Bayes solutions
is highlighted. The expected utility for options f and g eachhas the interval of
values [0.25, 0.75], whereas h of course has constant expected utility of 0.4. From
the choice set of these three optionsA = { f , g, h} the Γ-Maximin decision rule
determines that h is (uniquely) best, assigning it a value of0.4, whereas f and g
each has aΓ-Maximin value of 0.25. By contrast, under E-admissibility, only the
option h is E-inadmissiblefrom the trio. Either of f or g is E-admissible. And, as
no option is strictly preferred to any other by expectationswith respect toP , all
three gambles are admissible underMaximality.

What normative considerations can be offered to distinguish among these
three rules? For example, all three rules are immune to a Dutch Book, in the
following sense:

Definition 1 Call an optionfavorableif it is uniquely admissible in a pairwise
choice against the status-quo of “no bet,” which we represent as the constant 0.

Proposition 1 For each of the three decision rules above, no finite combination
of favorable options can result in a Dutch Book, i.e., a sure loss.

Proof. Reason indirectly. Suppose that the sum of a finite set of favorable gam-
bles is negative in each stateω. Choose an elementP from P . The probability
P is a convex combination of the extreme (0-1) probabilities,corresponding to a
convex combination of the finite partition by states. The expectation of a convex

involving null-events. Walley’s notion of Maximality requires, also, that an admissible gamble be
classically admissible, i.e., not weakly dominated with respect to state-payoffs. This means that, e.g.,
our Theorem 1(i) is slightly different in content from Walley’s corresponding result.
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Figure 1: Expected utilities for three acts in Example 1. Thethicker line indicates
the surface of Bayes solutions.

combination of probabilities is the convex combination of the individual expec-
tations. This makes theP-expectation of the sum of the finite set of favorable
options negative. But theP-expectation of the sum cannot be negative unless at
least one of the finitely many gambles has a negativeP-expectation. Then that
gamble cannot be favorable under any of the three decision rules. Thus, none of
these three decision rules is subject to sure loss. ✷

In this paper, we develop an additional criterion for contrasting these deci-
sion rules. In Section 2 we address the question of what operational content the
rules give todistinguishing among different (convex) sets of probabilities. That is,
we are concerned to understand which convex sets of probabilities are treated as
equivalent under a given decision rule. When do two convex sets of probabilities
lead to all the same admissible options for a given decision rule?Γ-Maximin and
Maximality are based solely on pairwise comparisons. Not sofor E-admissibility.
Even when the choice setA of feasible options is convex (e.g., closed under mixed
strategies), these rules have distinct classes of admissible options.
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2 Gambles and pairwise choice rules

It is evident that forΓ-Maximin generally to satisfy Criterion 1, the convex set of
probabilitiesP must be closed. For an illustration why, if Example 1 is modified
so thatP ′ = {P : 0.4 < P(ω1) 6 0.75} then, even thoughf and h both have
the same infimum, 0.4, of expectations with respect toP ′, for eachP∈ P ′ f has
greater expected utility than doesh. Thus, from the perspective of operational
content, theΓ-Maximin rule fails to distinguish between different convex sets of
probabilities that differ with respect to Criterion 1, although each of Maximality
andE-admissibility does distinguish the two setsP andP ′.

In order to contrast Maximality andE-admissibility, first we ask when do they
lead to the same choices? Walley’s Theorem 3.9.5 of [17] shows that, when the
option spaceA is convex and the convex set of probabilitiesP is closed, the two
rules are equivalent, i.e. bothE-admissibility and Maximality reduce to a pairwise
comparison of options according to Criterion 1. In this circumstance, an option
is admissible, under either rule, just in case there is no other option that makes it
inadmissible under Criterion 1. Then, with decision problems using convex sets
of options, the two rules are capable of distinguishing between any two closed
convex sets of probabilities, since distinct closed convexsets have distinct sets of
supporting hyperplanes.

In Corollary 1 we re-establish Walley’s result, and we extend the equivalence
to decision problems in whichP is open andA is finitely generated. The example
following Theorem 1 establishes that for part (ii), the restriction to a finite (or
finitely generated) option set,A , is necessary. More important, however, we think
is the second example following Theorem 1. That example is ofa finite decision
problem with a convex set of probabilitiesP (neither closed nor open) where,
even though the option set is made convex, some Maximal options are not Bayes
with respect toP . Hence, even when the option space is convex,E-admissibility
does not in general reduce to pairwise comparisons.

We preface Theorem 1 with a restatement of the structural assumptions for
decision problems that we use in this paper. LetΩ be a finite state space withk
states. LetA be a uniformly bounded collection of acts or gambles (real-valued
functions fromΩ). Let C be the convex hull ofA . For each probability vectorP
= (p1, . . . , pk) ∈ P and eachf ∈ C there is a point(p1, . . . , pk−1,Ep( f )) ∈ IRk,
whereEp( f ) = ∑k

j=1 p j f (ω j ). For eachf ∈ C there is a hyperplane that contains
all of the points of the form(p1, . . . , pk−1,Ep( f )). For eachf ∈ C , the halfspace
at or above its corresponding hyperplane is

{x∈ IRk : α⊤f x≥ cf },

where
α f = ( f (ωk)− f (ω1), . . . , f (ωk)− f (ωk−1),1),

andcf = f (ωk).
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Definition 2 Let P be a convex set of probability vectors. We say that f∈ A is
Bayes with respect toP if there exists p∈ P such that Ep( f ) ≥ Ep(g) for all
g∈ A .

Theorem 1 LetB be the set of all f∈ A such that f is Bayes with respect toP .
Suppose that g∈ A \B . Assume either

(i) that P is closed, or

(ii) that A is finite and thatP is open. That is,

{(p1, . . . , pk−1) : (p1, . . . , pk) ∈ P}

is an open subset of IRk−1.

Then there exists h in the convex hull ofB such that Ep(h) > Ep(g) for all p ∈ P .

Corollary 1 Assume thatA is closed and convex. LetB be the set of all f∈ A
such that f is Bayes with respect toP . Suppose that g∈ A \B is not Bayes with
respect toP . Assume either

(i) that P is closed, or

(ii) that A is the convex hull of finitely many acts and thatP is open.

Then there exists h∈ B such that Ep(h) > Ep(g) for all p ∈ P .

The proofs of Theorem 1 and Corollary 1 rely on a series of results about convex
sets and are given in Appendix A.

Example 2 The following example illustrates that Theorem 1(ii) does not hold
if A is allowed to be infinite. LetΩ have only k= 2 states. LetA consist of the
gambles{ fθ : 0≤ θ≤ π/4} where

fθ = (0.4+0.8tan(θ)−0.2sec(θ),0.4−0.2tan(θ)−0.2sec(θ)) .

Notice that f0 = (0.2,0.2). Let

P = {(p1, p2) : p1 > 0.2}.

For each p1∈ (0.2,0.3), the act fθ is Bayes with respect toP whenθ = 0.5sin−1(10[p1−
0.2]). For p1≥ 0.3, fπ/4 is Bayes with respect toP . Let g= f0, which is not Bayes
with respect toP . Notice that, for everyθ,

Ep( fθ) = (p1−0.2) tan(θ)+0.4−0.2sec(θ).

So, Ep( fθ) < 0.2 when p1 = 0.2. Since Ep( fθ) is a continuous function of p,
Ep( fθ) < 0.2 for p in an open set around(0.2,0.8), which includes part ofP .
It follows that every convex combination h of fθ’s has Ep(h) < 0.2 somewhere
inside ofP .
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Example 3 This example illustrates why we assume thatP is closed in Theo-
rem 1(i). LetΩ consist of three states. Let

P = {(p1, p2, p3) : p2 < 2p1 for p1≤ 0.2}
∪{(p1, p2, p3) : p2≤ 2p1 for 0.2 < p1≤ 1/3}.

The set of actsA contains only the following three acts (each expressed as a
vector of its payoffs in the three states):

f1 = (0.2,0.2,0.2),

f2 = (1,0,0),

g = (−1.8,1.2, .2).

Notice that Ep( f2) is the highest of the three whenever p1 ≥ 0.2, Ep( f1) is the
highest whenever p1 ≤ 0.2, and Ep(g) is never the highest. So,B = { f1, f2} and
g is not Bayes with respect toA . For each0≤ α≤ 1, we compute

Ep(α f1 +(1−α) f2) = p1(1−α)+0.2α,

Ep(g) = −2p1 + p2+0.2.

Notice that Ep(α f1 +(1−α) f2) is strictly greater than Ep(g) if and only if p2 <
(3−α)p1−0.2(1−α). There is noα such that this inequality holds for all p∈ P .

Remark 1 Note that is it irrelevant to this example that p2 = 0 for some p∈ P .

Definition 3 Say that two convex setsintersect all the same supporting hyper-
planesif they have the same closure and a supporting hyperplane intersects one
convex set if and only if it intersects the other.

In addition to showing thatE-admissibility does not reduce to pairwise com-
parisons even when the option set is convex, this example also brings out the
important point theE-admissibility (but not Maximality) can distinguish between
some convex sets that intersect all the same supporting hyperplanes. As we noted
some years ago (Section III of [15]), the strict preference relation induced by Cri-
terion 1 cannot distinguish between pairs of convex sets that intersect all the same
supporting hyperplanes. Of course,Γ-Maximin does even worse than Maximality,
as it cannot distinguish open convex sets from their closure.

Figure 2 illustrates Example 3 and that the presence or absence of probability
pointD = (0.2,0.2,0.4) determines whether or not actg is Bayes from the choice
setA = { f1, f2,g}. The closure of the convex setP is the triangle with extreme
pointsA = (1/3,0,2/3), B = (1/3,2/3,0), andC = (0,0,1). In Example 3, set
P is the result of removing the closed line segment[C,D] from the left face[B,C]
of the triangleABC, leaving the half-open line segment[B,D) along that face.
The convex setP ∗ is the set of probabilities that results by adding pointD to
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Figure 2: Illustration for Example 3. The set of(p1, p2) such that(p1, p2,1− p1−
p2)∈P is the diagonally shaded set inside the probability triangle at the bottom of
the figure with the pointsA, B, C, andD that are discussed in the text labeled. The
diagonally shaded surface is the surface of Bayes solutionsfor all probabilities
(not just those inP ). The solid shaded set is{(p1, p2,Ep(g)) : p∈ P}. The points
(0.2,0.4), (0,0), and(0.2,0.4,Ep(g)) are indicated by open circles.

setP . PointD then is an extreme but not exposed point inP ∗. Evidently,P and
P ∗ intersect all the same supporting hyperplanes. Next, we indicate how to use
E-admissibility to distinguish between these two convex sets of probabilities.

For this exercise, we bypass the details of what can easily bedone with pair-
wise comparisons to fix the common boundaries ofP andP ∗. Specifically, binary
comparisons suffice to fix the closed interval [A,B] belongs to both sets, as the up-
per probabilityP(ω1) = 1/3; they suffice to fix that pointC doesnot belong to
either set, as the lower probabilityP(ω1) > 0; they suffice to fix the half-open
interval[A,C) belongs to both sets, as the lower probabilityP(ω2) = 0, and they
suffice to fix the half open interval[B,C) as a boundary for both sets, as the upper
called-off (conditional) odds ratioP(ω1|{ω1,ω2}) > 1/3. But pairwise compar-
isons according to Criterion 1, alone, cannot determinehow muchof the half-open
interval [B,C) belongs to either setP or P ∗. For that, we use non-binary choice
problems andE-admissibility.

In order to establish that the half open line segment [C, D) does not belong to
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either setP or P ∗, consider the family of decision problems defined by the three-
way choices:A−ε = { f1, f2,g−ε}, whereg−ε is the act with payoffs(1.8,1.2−
ε,0.2). For eachε > 0, only the pair{ f1, f2} is E-admissible from such a three-
way choice, with respect to each of the two convex sets of probabilities.

Likewise, in order to establish that the half-open line segment(D,B] belongs
to both sets,P and P ∗, consider the family of decision problems defined by
the three-way choices:A+ε = { f1, f2,g+ε}, whereg+ε is the act with payoffs
(1.8,1.2+ ε, .2). For eachε > 0, all three options are E-admissible with respect
to each of the two convex sets of probabilities.

However, in the decision problem with optionsA = { f1, f2,g}, as shown
above, only the pair{ f1, f2} is E-admissible with respect to the convex setP ,
whereas all three options areE-admissible with respect to the convex setP ∗.

By contrast, given a choice set, Maximality makes the same ruling about
which options are admissible from that choice set, regardless whether convex set
P or convex setP ∗ is used. That is, Maximality cannot distinguish between these
two convex sets of probabilities in terms of admissibility of choices, as the two
convex sets of probabilities intersect all the same supporting hyperplanes.

3 Summary

The discussion here contrasts three decision rules that extend Expected Utility
and which apply when uncertainty is represented by a convex set of probabilities,
P , rather than when uncertainty is represented only by a single probability distri-
bution. The decision rules are:Γ-Maximin, Maximality, andE-admissibility. We
show that these decision rules have different operational content in terms of their
ability to distinguish different convex sets of probabilities. When do the admis-
sible choices differ for different convex sets of probabilities?Γ-Maximin is least
sensitive among the three in this regard. We show that, even when the option set
is convex, one decision rule (E-admissibility) distinguishes among more convex
sets than the other two. This is because it alone among these three is not based on
pairwise comparisons among options. The upshot it that it, but neither of the other
two rules, can distinguish between two convex sets of probabilities that intersect
all the same supporting hyperplanes.

A Proofs of Theorem 1 and Corollary 1

The proofs rely on some lemmas about convex sets.

Lemma 1 Let k be a positive integer. Let C be a closed convex subset of IRk that
contains the origin. There exists a unique closed convex subset D of IRk+1 with
the following properties:
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• C = {x∈ IRk : α⊤x≥ c, for all (α,c) ∈D}.
• (α,c) ∈D implies(aα,ac) ∈ D for all a≥ 0,

• (α,c) ∈D implies(α,c−a) ∈ D for all a > 0,

Also, for each(α,c) ∈D, c≤ 0.

Proof. To see that(α,c)∈D impliesc≤ 0, let0 be the origin. Thenα⊤0= 0≥ c.
Define the following set

D0 = {(α,c) : α⊤x≥ c, for all x∈C}. (1)

To see thatD0 is convex, let(γ1,d1) and(γ2,d2) be inD0 and 0≤ β ≤ 1. Then,
for all x∈C,

(βγ1 +[1−β]γ1)
⊤x≥ βd1 +(1−β)d2.

This means thatβ(γ1,d1)+ [1−β](γ2,d2) ∈D0, andD0 is convex. To see thatD0

is closed, notice thatD0 =
T

x∈C Dx, whereDx = {(α,c) : α⊤c≥ c} and eachDx

is closed. It is clear thatD0 has the last two properties in the itemized list. For
the first condition, letE be the set defined in the first condition. It is clear that
C⊆ E. Suppose that there isx0 ∈ E such thatx0 6∈C. Then there is a hyperplane
that separates{x0} fromC. That is, there isγ ∈ IRk andd such thatγ⊤x≥ d for all
x∈C andγ⊤x0 < d. It follows that(γ,d) ∈D0, but thenx0 6∈ E, a contradiction.

To see that the set that satisfies the conditions is unique, suppose thatD andF
are both sets satisfying the listed conditions. IfF 6= D, then there is(α,c) either
in D\F or in F \D. We will show, by way of contradiction, that neither of these
cases can occur. The two cases are handled the same way. We will do only the
first. In the first case, there is a hyperplane separating{(α,c)} from F. That is,
there is(γ,d, f ) with γ ∈ IRk andd, f ∈ IR such that

γ⊤δ+dg≥ f , for all (δ,g) ∈ F , (2)

andγ⊤α+dc< f . It follows thataγ⊤δ+da(g−b)≥ f for all (δ,g) ∈ F and all
a,b > 0. As a→ 0, we see thatf ≤ 0 is required. Asb→ ∞, we see thatd ≤ 0
is required. Asa→ ∞ we see thatγ⊤δ + dg≥ 0 for all (δ,g) ∈ F , hence we can
assume thatf = 0. Becaused,c≤ 0 andγ⊤α+dc< 0 it follows thatγ⊤α < 0 and
there existsd0 < 0 such thatγ⊤α+d0c < 0. Becauseg≤ 0 for all (δ,g) ∈ F , we
see that, even ifd = 0, γ⊤δ+d0g≥ 0 for all (δ,g)∈ F . Hence, we can assume that
the separating hyperplane has the form(γ,d0,0) with d0 < 0. Defineγ0 = γ/(−d0).
It follows from (2) thatδ⊤γ0≥ g for all (δ,g) ∈ F and soγ0 ∈C. Henceα⊤γ0≥ c
which contradictsγ⊤α+d0c < 0. ✷

Lemma 2 Let V be a closed convex subset of IRk+1, and express elements of V as
(α,d) whereα ∈ IRk and d is real. Define

A = {x∈ IRk : α⊤x≥ d, for all (α,d) ∈V}.
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Assume that A is nonempty. Define D to be the set of all vectors in IRk+1 of the
form (aα,ad−b) with a,b≥ 0 and(α,d) ∈V. Then D= {(α,d) ∈ IRk+1 : α⊤x≥
d, for all x ∈ A}.

Proof. Let x0 ∈ A, and define

C = {x−x0 : x∈ A},
V ′ = {(α,d−α⊤x0) : (α,d) ∈V}.

It follows that

C = {x∈ IRk : α⊤x≥ c, for all (α,c) ∈V ′}, (3)

andC contains the origin and is a closed convex set. DefineD1 = {(α,d−α⊤x0) :
(α,d) ∈ D}. In other words,D1 is the convex closed convex set of all vectors in
IRk+1 of the form(aα,ac−b) with a,b≥ 0 and(α,c) ∈V ′. The definitions ofD
andD1 were rigged so thatD1 satisfies all the conditions required of the set called
D in Lemma 1 except possibly the first condition in the itemizedlist. To verify
this condition, define

C′ = {x∈ IRk : α⊤x≥ c, for all (α,c) ∈ D1}.

To see thatC ⊆ C′, let x ∈ C. Thenaα⊤x ≥ ac− b for all (α,c) ∈ V ′ and all
a,b≥ 0. Hence,α⊤x≥ c for all (α,c) ∈ D1. To see thatC′ ⊆C, let x∈C′. Since
(α,c) ∈V ′ implies(α,c) ∈ D1, we haveα⊤x≥ c for all (α,c) ∈ D1 andx∈C. It
follows from Lemma 1 thatD1 is the setD0 defined in (1) andD is the claimed
set as well. ✷

Proof of Theorem 1. (i) Let

U =

{
x∈ IRk :

(
x1, . . . ,xk−1,1−

k−1

∑
j=1

x j

)
∈ P

}
.

Let C ′ be the convex hull ofB . Let V consist of all points of the form(α f ,cf )
where f ∈ C ′. Let A be as defined in the statement of Lemma 2. Sinceg is not
Bayes with respect toP , the setHg = {x ∈ U : α⊤g x = cg} does not intersect
A. Now, notice thatHg and A are disjoint closed convex sets, hence there is a
separating hyperplane. That is, there exists a nonzeroγ ∈ IRk and c such that
γ⊤x≥ c for all x∈ A andγ⊤y < c for all y∈ Hg. Becauseγ⊤x≥ c for all x∈ A,
it follows from Lemma 2 that(γ,c) is in the setD defined in the statement of
Lemma 2. Hence,γ = aα andc = ad−b for some(α,c) ∈V and somea,b≥ 0.
Becauseγ is nonzero, we havea> 0 and we can assume without loss of generality
thata = 1 and(γ,d−b) ∈V. So,γ = αh for someh∈ C ′ andc = ch−b, and we
can assume without loss of generality thatb = 0 andc = ch. Now, for all realt,

α⊤h (p1, . . . , pk−1,t) = h(ωk)−Ep(h)+ t = ch−Ep(h)+ t.
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So, for allx∈ Hg,
ch > α⊤h x = ch−Ep(h)+Ep(g).

It follows that, for allp∈ P , Ep(h) > Ep(g).
(ii) Define U , C ′, V, A, andHg exactly as in the proof of part (i). It is

still true thatHg andA are convex, thatA is closed, and thatHg does not intersect
A. But Hg is now relatively open. That is, it is the intersection of thehyperplane
H ′g = {x : α⊤g x= cg}with an open set. For this reason,H ′g is the unique hyperplane
that containsHg. Of course, if the closure ofHg fails to intersectA, the rest of the
proof of part (i) continues to work. So, suppose that the closureHg of Hg intersects
A. Even so, there is a weakly separating hyperplane(γ,c), i.e., there is aγ ∈ IRk

andc such thatγ⊤x ≥ c for all x ∈ A and γ⊤y ≤ c for all y ∈ Hg. We need to
show that among all such separating hyperplanes, there is atleast one such that
the second inequality is strict, i.e., at least one of the separating hyperplanes fails
to intersectHg. Then the rest of the proof of part (i) will finish the proof.

BecauseA is finite, A is the intersection of finitely many closed halfspaces,
and each of these halfspaces is of the form{x : α⊤f x≥ cf } for somef ∈ B . Now,

Hg intersectsA in some convex subset of the union of the hyperplanes that de-
termine these halfspaces. No subset of the union of finitely many distinct hyper-
planes can be convex unless it is contained in the intersection of one or more of
the hyperplanes. (Just check thatαx+(1−α)y is in the same hyperplane withx
if and only if y is as well.) Hence,A∩Hg is a subset of the intersection of one or
more of the hyperplanes of the formH ′f = {x : α⊤f x= cf } for somef ∈B . Define

W = { f ∈ B : A∩Hg⊂ H ′f }.

If W = B , thenHg⊂ A, a contradiction. Letf0 ∈B \W be such thatH ′f0 is closest

to A∩Hg. Suchf0 exists becauseB is finite. Letε be one-half of the distance from
H ′f0 to A∩Hg, and define

O = {x : ‖x−A∩Hg‖< ε}.

Then

T = O∩
(

\

f∈W

{x : α⊤f x≥ cf }
)
⊂ A.

For eachf ∈W, defineM f = {x∈ Hg : α⊤f x≥ cf }. If at least oneM f = /0, then
H ′f fails to intersectHg, and the proof is complete. So assume, to the contrary,

that everyM f 6= /0. Then for eachf , the closureM f of M f containsA∩Hg. It fol-
lows that eachM f contains points in every neighborhood ofA∩Hg, includingO.
Hence, for eachf , there existsx∈ T∩M f . Each suchx∈Hg∩A, a contradiction.
✷

Proof of Corollary 1. Let C be the convex hull ofB . Either assumption (i) or
(ii) is strong enough to imply that Theorem 1 applies, hence there ish′ ∈ C such



Schervish et al.: Extensions of Expected Utility Theory 509

that Ep(h′) > Ep(g) for all p ∈ P . If h′ 6∈ B let h1 = h′, and apply Theorem 1
repeatedly in a transfinite induction as follows. At each successor ordinalγ + 1,
find hγ+1 ∈ C such thatEp(hγ+1) > Ep(hγ) for all p ∈ P . At a countable limit
ordinalγ choose any countable sequence{γn}∞

n=1 of ordinals that is cofinal with
γ. By the induction hypothesis,Ep(hγi ) < Ep(hγ j ) for all p ∈ P if i < j. The
sequence{hγn}∞

n=1 belongs to the closed bounded setA , hence it has a limithγ
and

Ep(hγ) = lim
n→∞

Ep(hγn) = sup
n

Ep(hγn),

for all p, and hence does not depend on which limit point we take. Also,supnEp(hγ)>
Ep(hα) for all α < γ, so we continue to satisfy the induction hypothesis. SinceA
is bounded, there cannot exist an uncountable increasing sequence ofEp(hγ) val-
ues, hence the transfinite induction terminates at some countable ordinalγ0 with
hγ0 ∈ B .
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Abstract

This article introduces a new way of understanding subjective probability and
its generalization to lower and upper prevision. Instead ofasking whether a
person is willing to pay given prices for given risky payoffs, we ask whether
the person believes he can make a lot of money at those prices.If not—if the
person is convinced that no strategy for exploiting the prices can make him
very rich in the long run—then the prices measure his subjective uncertainty
about the events involved.

This new understanding justifies Peter Walley’s updating principle, which
applies when new information is anticipated exactly. It also justifies a weaker
principle that is more useful for planning because it applies even when new
information is not anticipated exactly. This weaker principle can serve as a
basis for flexible probabilistic planning in event trees.

Keywords

subjective probability, upper and lower prevision, updating, event trees

1 Introduction

In the established understanding of subjective probability, set out by Bruno de
Finetti [2] and his followers, a person’s beliefs are revealed by the bets he is
willing to make. The odds at which he is willing to bet define his probabilities.

We develop a somewhat different understanding of subjective probability, us-
ing Shafer and Vovk’s game-theoretic framework [8]. In thisframework, proba-
bility is understood in terms of two players: one who offers bets, and one to whom

∗Research for this article was supported by NSF grant SES-9819116.
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the bets are offered. We call these two playersHouseandGambler, respectively.
The established understanding seems to be concerned with House’s uncertainty,
since he is the one stating odds and offering to bet. But following Shafer and
Vovk, we take Gambler’s point of view. Gambler is trying to beat the odds, and
Shafer and Vovk’s work suggests that what makes odds expressions of a person’s
uncertainty is his conviction that he cannot beat them.

We briefly introduce our new understanding of subjective probability in Sec-
tion §2 and immediately generalize it to lower and upper previsionin Section§3.

2 Subjective Probability

Suppose House states oddsp : (1− p) and offers Gambler the opportunity to bet
any amount he chooses for or againstE at these odds. This means that House
offers Gambler the payoff

{
α(1− p) if E happens
−αp if E fails

(1)

for any real numberα, which Gambler must choose immediately, before any other
information becomes available. The absolute value ofα is the total stakes for the
bet, and the sign ofα indicates which side Gambler is taking:

• If α is positive, then Gambler is betting onE happening. Gambler puts up
αp, which he loses to House ifE fails, while House puts upα(1− p), which
he loses to Gambler ifE happens. The total stakes areαp+α(1− p), or α.

• If α is negative, then Gambler is betting againstE happening. Gambler
puts up−α(1− p), which he loses to House ifE happens, while House
puts up−αp, which he loses to Gambler ifE fails. The total stakes are
−α(1− p)−αp, or−α.

No principle of logic requires House to state odds at which Gambler can take ei-
ther side. But mathematical probability has earned our attention by its practical
successes over several centuries, and if we follow de Finetti in rejecting as de-
fective all past attempts to provide objective interpretations of probability, then
we seem to be left with (1) as the only viable way of interpreting this successful
mathematical theory.

De Finetti developed this interpretation from the viewpoint of the player we
are calling House. The principle that House should avoid sure loss to Gambler was
fundamental to this development. If we agree that House should offer Gambler (1)
for somep, then the principle that House should avoid sure loss leads immediately
to the conclusion thatp should be unique. If House offers (1) for bothp1 andp2,
wherep1 < p2, then Gambler can accept thep1-offer with α = 1 and thep2-offer
with α = −1, and this produces a sure gain ofp2− p1 for Gambler, no matter
whetherE happens or fails.
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2.1 Protocols

From a thoroughly game-theoretic point of view, the game between House and
Gambler also involves a third player, who decides the outcomes on which they
are betting. Calling this third playerReality, we can lay out an explicit protocol
for the game in the style of Shafer and Vovk [8].

PROBABILITY FORECASTING

House announcesp∈ [0,1].
Gambler announcesα ∈ R.
Reality announcesx∈ {0,1}.
K1 :=K0 + α(x− p).

This is a perfect-information protocol; the players move inthe order indicated
(not simultaneously), and each player sees the other players’ moves as they are
made. We have writtenK0 for Gambler’s initial capital andK1 for his final capital.
Reality’s announcement indicates the happening or failureof E: x = 1 means
E happens, andx = 0 meansE fails. Thusα(x− p) is the same as (1). This is
Gambler’s net gain, which we can think of as the result of his payingαp for αx;
Gambler buysα units ofx for p per unit.

We may, for example, present de Finetti’s argument for Additivity in this for-
mat. Consider the following protocol, where House gives probabilities for the
three eventsE, F , andE∪F , whereE andF are disjoint:

MULTIPLE PROBABILITY FORECASTING

House announcespE, pF , pE∪F ∈ [0,1].
Gambler announcesαE,αF ,αE∪F ∈ R.
Reality announcesxE,xF ,xE∪F ∈ {0,1}.
K1 :=K0 + αE(xE− pE)+ αF(xF − pF)+ αE∪F(xE∪F − pE∪F).

Constraint on Reality: Reality must makexE∪F = xE + xF (this expresses the
assumptions thatE andF are disjoint and thatE∪F is their disjunction).

The constraint on Reality is part of the rules of the game. Like the other rules, it
is known to the players at the outset.

To see that House must makepE∪F = pE + pF in order to avoid sure loss in
this protocol, set

δ :=






1 if pE∪F > pE + pF

0 if pE∪F = pE + pF

−1 if pE∪F < pE + pF

and consider the strategy for Gambler in whichαE andαF are equal toδ and
αE∪F is equal to−δ. Gambler’s net gain with this strategy is

δ(xE− pE)+ δ(xF − pF)− δ(xE∪F − pE∪F) = δ(pE∪F − (pE + pF)),
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which is positive unlesspE + pF = pE∪F .
This argument readily generalizes to an argument for the rule that relates the

expected value (or prevision) of a payoff to the probabilityof the events that
determine the payoff.

2.2 Cournot’s Principle

The rules of probability can be derived from House’s motivation to avoid sure loss.
But a clear understanding of how subjective probabilities should be updated over
time requires that we shift to Gambler’s viewpoint and invoke Cournot’s principle.
When we assert that certain numbers are valid as objective probabilities, we are
asserting that they do not offer anyone any opportunity to get very rich. When we
advance them as our subjective probabilities, we are sayingsomething only a little
different: we are asserting that they do not offer us, with the knowledge we have,
any opportunity to get very rich. When we say this, we put ourselves in the role
of Gambler, not in the role of House. The point is not how we gotthe numbers:
the point is what we think we can do with them.

A probability for a single event, if it is not equal to 0 or 1, can hardly be
refuted. Even if Gambler chooses the winning side, with stakes high enough to
make a lot of money, we will hesitate to conclude that the probability was wrong.
Gambler may simply have been lucky. On the other hand, if House announces
probabilities for a sequence of events, and Gambler consistently manages to make
money, then the validity of the probabilities will be cast indoubt.

Shafer and Vovk [8] have shown that we can make this notion of testing pre-
cise within the following protocol, where House announces probabilitiesp1, p2, . . .
for a series of eventsE1,E2, . . . with indicator variablesx1,x2, . . . :

SEQUENTIAL PROBABILITY FORECASTING

K0 := 1.
Forn = 1,2, . . . :

House announcespn ∈ [0,1].
Gambler announcesαn ∈ R.
Reality announcesxn ∈ {0,1}.
Kn :=Kn−1+ αn(xn− pn).

In this protocol, Gambler can test House’s probabilities bytrying to get infinitely
rich (limn→∞Kn = ∞) without ever risking bankruptcy (without giving Reality an
opportunity to makeKn negative for anyn). If Gambler succeeds in doing this, he
has refuted an infinite subset of the set of given probabilities.

Shafer and Vovk use the nameCournot’s principlefor the hypothesis that Re-
ality will not allow Gambler to become infinitely rich without risking bankruptcy.
This principle says that no matter what bankruptcy-free strategy for Gambler we
specify (in addition to House’s and Reality’s previous moves, such a strategy may
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also use other information available to Gambler), we can be confident that Reality
will move in such a way that the strategy will not make Gamblerinfinitely rich.
This is an empirical hypothesis—a hypothesis about how Reality will behave, not
a rule of the game.

If given probabilities satisfy Cournot’s principle for anypotential gambler, no
matter how much information that gambler has, then we might call themobjective
or causalprobabilities [5, 6]. On the other hand, if they satisfy Cournot’s principle
only for gamblers with a certain level of information, then we might call them
subjectiveprobabilities for that level of information. An individualwho believes
that the probabilities provided to him by some source or method do not permit
any bankruptcy-free strategy to make him very rich might reasonably call them
his personal subjective probabilities.

Under this interpretation, a person with subjective probabilities is not merely
saying that he does not know how to get very rich betting at these probabilities.
He is saying that he is convinced that there is no bankruptcy-free strategy that will
make him very rich.

3 Subjective Lower and Upper Prevision

In recent decades, there has been great interest in supplementing subjective prob-
ability with more flexible representations of uncertainty.Some of the represen-
tations studied emphasize evidence rather than gambling [4, 9, 12]; others use a
concept of partial possibility [3]. But many scholars prefer to generalize the story
about betting that underlies subjective probability. The first step of such a gen-
eralization is obvious. Instead of requiring a person to setodds at which he will
take either side of a bet, allow him to set separate odds for the two sides. This
leads to lower and upper probabilities and lower and upper previsions rather than
additive probabilities and expected values. See the early work of C. A. B. Smith
[10, 11] and Peter Williams [17, 18, 19], the influential workof Peter Walley
[13, 14, 15, 16], and the recent work of the imprecise probabilities project [1].

In this section, we look at lower and upper previsions from the point of view
developed in the preceding section. This leads to a better understanding of how
these measures of subjective uncertainty should change with new information,
both when the new information isexact(i.e., when it is theonly additional infor-
mation) and when it is not.

3.1 Pricing Events and Payoffs

Whereas probabilities for events determine expected values for payoffs that de-
pend on those events (see§2.1), lower and upper probabilities are not so informa-
tive. The rates at which a person is willing to bet for or against given events do
not necessarily determine the prices at which he is willing to buy or sell payoffs
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depending on those events. We need more than a theory of lowerand upper prob-
abilities for events: we need a theory of lower and upper previsions for payoffs.

3.1.1 Lower and Upper Probabilities

Suppose House expresses his uncertainty aboutE by specifying two numbers,p1

andp2. He offers to pay Gambler

−α1(x− p1) =

{
−α1(1− p1) if E happens

α1p1 if E fails
(2)

for anyα1≥ 0, and he also offers to pay Gambler

α2(x− p2) =

{
α2(1− p2) if E happens
−α2p2 if E fails

(3)

for anyα2≥ 0. In (2), Gambler sellsα1 units ofx for p1 per unit, while in (3), he
buysα2 units ofx for p2 per unit. Here is the protocol for this:

FORECASTING WITHLOWER AND UPPERPROBABILITIES

House announcesp1, p2 ∈ [0,1].
Gambler announcesα1,α2 ∈ [0,∞).
Reality announcesx∈ {0,1}.
K1 :=K0−α1(x− p1)+ α2(x− p2).

To avoid sure loss, House must makep1≤ p2. If p1 > p2, then Gambler can make
money for sure by makingα1 andα2 strictly positive and equal.

House would presumably be willing to increase his own payoffs by decreasing
p1 in (2) and increasingp2 in (3). The natural remaining question is how high
House will makep1 and how low he will makep2. We may callp1 andp2 House’s
lower and upper probabilities, respectively, if House will not offer (2) for any
value higher thanp1 and will not offer (3) for any value lower thanp2.

When we model our beliefs by putting ourselves in the role of House, we
have some flexibility in the meaning we give our refusal to offer higher values
of p1 or lower values ofp2. Perhaps we are certain that we do not want to make
additional offers, perhaps we are hesitating, or perhaps weare providing merely
an incomplete model of our beliefs (Walley [14], pp. 61–63).

When we instead model our beliefs by putting ourselves in therole of Gam-
bler, the question is what values ofp1 and p2 we believe will satisfy Cournot’s
principle. In the context of a sequence of forecasts, we might call p1 andp2 Gam-
bler’s lower and upper probabilitieswhen (1) Gambler believes that no strategy
for buying and selling will make him very rich in the long run when he can sell
x for p1 or buy it for p2 but (2) Gambler is not confident about this in the case
where he is allowed to sellx for more thanp1 or buy it for less thanp2.
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Clause (2) can be made precise in more than one way. Gambler might be
unsure about whether he can get very rich with better values of p1 or p2, or he
might believe that a strategy available to him would succeedwith such values.

3.1.2 Lower and Upper Previsions

The following protocol allows us to price a payoffx that depends on the outcome
of more than one event:

FORECASTING WITHLOWER AND UPPERPREVISIONS

House announcesp1, p2 ∈ R.
Gambler announcesα1,α2 ∈ [0,∞).
Reality announcesx∈ R.
K1 :=K0−α1(x− p1)+ α2(x− p2).

Again, Gambler is allowed to sellx for p1 and buy it forp2. If p1 is the highest
price at which Gambler can sellx (either the highest price House will offer or the
highest price at which Gambler believes Cournot’s principle, depending on our
viewpoint), we may call it thelower previsionof x. Similarly, if p2 is the lowest
price at which Gambler can buyx, we may call it theupper previsionof x.

House may have more to say aboutx than the lower and upper previsions
p1 and p2, and even the statement that these are lower and upper previsions is
not exactly a statement about the protocol itself. We now turn to a more abstract
approach, better suited to general discussion.

3.2 Forecasting in General

Consider a setR, and consider a setH of real-valued functions onR. We callH a
belief coneonR if it satisfies these two conditions:

1. If g is a real-valued function onR andg(r)≤ 0 for all r ∈R, theng is in H.

2. If g1 andg2 are inH anda1 anda2 are nonnegative numbers, thena1g1 +
a2g2 is in H.

We writeCR for the set of all belief cones onR.
Intuitively, a belief cone is a set of payoffs that House might offer Gambler.

Thus if (α−g) ∈ H, House is willing to buyg for α; and if (g−α) ∈ H, House
is willing to sell g for α. Condition 1 says that House will at least offer any con-
tract that does not require him to risk a loss. Condition 2 says House will allow
Gambler to combine any two of his offers, in any amounts. These conditions are,
of course, closely related to Walley’s concept ofdesirability.

The following abstract protocol is adapted from p. 90 of [8].

FORECASTING
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Parameters: RandC ⊆ CR
Protocol:

House announcesH ∈ C .
Gambler announcesg∈ H.
Reality announcesr ∈ R.
K1 :=K0 +g(r).

We call any protocol obtained by a specific choice ofR andC a forecasting pro-
tocol. We callR thesample space.

We call a real-valued function on the sample spaceR a variable. House’s
moveH, itself a set of variables, determines lower and upper previsions for all
variables. Thelower previsionfor a bounded variablex is

EH x := sup{α | (α−x) ∈ H}, (4)

and theupper previsionis

EH x := inf{α | (x−α) ∈ H}. (5)

These definitions are similar to those given by Walley ([14],pp. 64–65), with a
difference in sign because Walley considers a collectionD of payoffs that House
is willing to accept for himself rather than a collectionH that House offers.

The condition(α− x) ∈ H in (4) means that Gambler can sellx for α. So
roughly speaking, the lower previsionEH x is the highest price at which Gambler
can sellx. We say “roughly speaking” because (4) tells us only that Gambler
can obtainα−x for α arbitrarily close toEH x, not that he can obtain(EH x)−x.
Similarly, the upper previsionEH x is roughly the lowest price at which Gambler
can buyx.

Once we know lower previsions for all variables, we also knowupper previ-
sions for all variables, and vice versa, because

EH x =−EH(−x)

for every variablex. For additional general properties of lower and upper previ-
sions, see Chapter 2 of Walley [14] and Chapters 1 and 8 of [8].

3.2.1 Regular Protocols

GivenH ∈ CR, set
H∗ := {x : R 7→ R | EH x≤ 0}.

The following facts can be verified straightforwardly:

• H∗ is also a belief cone (H∗ ∈ CR),

• H ⊆ H∗,
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• EH x = EH∗ x andEH x = EH∗ x for every variablex, and

• (H∗)∗ = H∗.

Intuitively, if House offers Gambler all the payoffs inH, then he might as well
also offer the other payoffs inH∗, because for every payoff inH∗, there is one in
H that is arbitrarily close.

We call a forecasting protocolregular if H = H∗ for everyH in C . Because
any forecasting protocol can be replaced with a regular one with the same lower
and upper previsions (enlarge eachH in C to H∗), little generality is lost when we
assume regularity. This assumption allows us to remove the “roughly speaking”
from the statements that the lower prevision ofx is the highest price at which
Gambler can sellx and the upper prevision the lowest price at which he can buy
it. It also allows us to say thatH is completely determined by its upper previsions
(and hence also by its lower previsions):

x∈H if and only if EH x≤ 0.

The conditionx∈H says that House will givex to Gambler. The conditionEH x≤
0 says that House will sellx to Gambler for 0 or less.

3.2.2 Interpretation

Both interpretations of lower and upper previsions we discussed in§3.1 generalize
to forecasting protocols in general. We can put ourselves inthe role of House and
say that our beliefs are expressed by the prices we are willing to pay—our lower
and upper previsions. Or, as we prefer, we can put ourselves in the role of Gambler
and subscribe to these prices in the sense of believing that they will not allow us
to become very rich in the long run, no matter what strategy wefollow.

The reference to the long run in the second interpretation must be understood
in terms of a sequential version of our abstract protocol. Ifwe suppose, for sim-
plicity, that Reality and House have the same choices of belief cones and payoffs
on every move, this sequential protocol can be written as follows:

SEQUENTIAL FORECASTING

Parameters: RandC ⊆ CR
Protocol:

K0 := 1.
Forn = 1,2, . . . :

House announcesHn ∈ C .
Gambler announcesgn ∈ Hn.
Reality announcesrn ∈ R.
Kn :=Kn−1+gn(rn).

The ambiguities we discussed in§3.1 also arise here. If we take House’s point
of view, we may or may not be categorical about our unwillingness to offer riskier
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payoffs than those inHn. If we take Gambler’s point of view, we may be more or
less certain about whether largerHn would also satisfy Cournot’s principle.

3.3 Walley’s Updating Principle

We turn now to Peter Walley’s updating principle. This principle can be shown to
entail the rule of conditional probability when it is applied to subjective probabil-
ity. Here we apply it to our abstract framework for lower and upper previsions.

TWO-STAGE FORECASTING

Parameters: R, a disjoint partitionB1, . . . ,Bk of R, C ⊆ CR
Protocol:

At time 0:
House announcesH0 ∈ C .
Gambler announcesg0 ∈ H0.
Reality announcesi ∈ {1,2, . . . ,k}.

At time t:
House announcesHt ∈ CBi .
Gambler announcesgt ∈ Ht .
Reality announcesr t ∈ Bi .

Kt :=K0 +g0(r t)+gt(r t).

Because we are considering here how House should make his second move, we
leave this move unconstrained by the protocol. In Sections 3.4 and 3.5 below we
consider two specific alternatives for this choice. Here, House can choose any
belief cone on the reduced sample spaceBi .

Walley’s updating principle says that if House knows at time0 that Reality’s
announcement ofi will be House’s only new information when he moves at time
t, then at time 0, as he makes his moveH0, House should intend for his moveHt

to be the belief conewi
t onBi given by

wi
t := {g : Bi 7→R | g↑ ∈ H0}, (6)

whereg↑ is defined by

g↑(r) :=

{
g(r) if r ∈ Bi

0 if r /∈ Bi .
(7)

In words: House should intend to offer a given payoff at the second stage after
Reality announcesi if and only if he is already offering that payoff at the first
stage contingent on that value ofi. This produces simple formulae relating the
new lower and upper previsions to the old ones:

Ewi
t
x = sup{α | EH0

(x−α)↑ ≥ 0} (8)
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and
Ewi

t
x = inf{α | EH0(x−α)↑ ≤ 0} (9)

for every variablex on the reduced sample spaceBi .

3.4 Announcing Future Beliefs in Advance

We now consider House’s second move being constrained by announcing his fu-
ture beliefs in advance. The rule of conditional probability can be shown to be
mandated by the principle of House’s avoiding sure loss whenhe announces fu-
ture subjective probabilities in advance. What if House announces in advance
future beliefs that determine only lower and upper previsions?

ADVANCE FORECASTING

Parameters: R, a disjoint partitionB1, . . . ,Bk of R, C ⊆ CR.
Protocol:

At time 0:
House announcesH0 ∈ C andH j

t ∈ CB j for j = 1, . . . ,k.
Gambler announcesg0 ∈ H0.
Reality announcesi ∈ {1,2, . . . ,k}.

At time t:
Gambler announcesgt ∈ H i

t .
Reality announcesr t ∈ Bi .

Kt :=K0 +g0(r t)+gt(r t).

Consider House’sH0 and hisH j
t for some particularj. Suppose the variable

g is in H j
t , butg↑ is not inH0. Then it would make no difference in what Gambler

can do if House were to enlargeH0 by addingg↑ to it. He can already get the
effect ofg↑ at time 0 by planning in advance to announceg at timet.

So we can assume, without changing what Gambler can accomplish, that if
g∈H j

t , theng↑ ∈ H0. This assumption impliesH j
t ⊆ w j

t by (6) and then

E
H j

t
≤ E

w j
t

(10)

by (4). The lower prevision at time t that is foreseen and announced at time 0
should not exceed the lower prevision given by Walley’s updating principle.Writ-
ing simply E0 x for EH0

x andEt x for EH i
t
x (the lower previsions that House’s

time-0 announcements imply for time 0 andt, respectively) and recalling (8), we
can write (10) in the form

Et x≤ sup{α | E0(x−α)↑ ≥ 0}, (11)

wherex is a variable on the reduced sample spaceBi .
The argument for (11) relies on the new viewpoint developed in this article,

according to which a person’s uncertainty is measured by prices he believes he
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cannot beat, not by prices he is disposed to offer. We expect (11) to hold because
if it did not, the time 0 lower previsions would need to be increased to reflect
stronger betting offers that Gambler cannot beat. Strictlyspeaking, of course, talk
about Gambler not being able to beat given prices is talk about the long run, and
so a complete exposition of the argument would involve a sequential protocol. We
leave this further elaboration of the argument to the reader.

The argument doesnot rely on any assumption about exact information. Pos-
sibly House and Gambler will learn more thanBi by time t. Et x, in (11), is not
necessarily the lower prevision at timet. It is merely the lower prevision at timet
to which House commits himself at time 0. This commitment does not exclude the
possibility that House and Gambler will acquire additionalunanticipated informa-
tion and that House will thus offer Gambler more variables attime t than those to
which he committed himself at time 0. In this case, the actuallower prevision for
x at timet may come out higher thanEH i

t
x and even higher thanEwi

t
x.

For planning at time 0, we are interested in what we can count on already at
time 0. This is why the upper bound in (11) is interesting. When time t comes
around, positive unanticipated information may lead us to give x a lower pre-
vision exceeding this upper bound, but there is also the possibility of negative
unanticipated information, and the upper bound can be thought of as telling us
how conservative we need to be in our advance commitments in order to hedge
against the possible negative information.

3.5 Updating with Exact Information

Although the case in Section 3.4 above where commitments aremade in advance
in the face of possibleunanticipatednew information seems to us to have greater
practical importance, it is also of interest to consider thecase where new informa-
tion isanticipated exactly. This is where Walley’s principle applies.

Extending the protocol of§3.3, we obtain the following sequential protocol:

SEQUENTIAL TWO-STAGE FORECASTING

K0 := 1.
Forn = 1,2, . . .

At time n:
House announcesHn0 ∈ C .
Gambler announcesgn0 ∈ Hn0.
Reality announcesin ∈ {1,2, . . . ,k}.

At time n+1/2:
House announcesHn1 ∈ CBin

.
Gambler announcesgn1 ∈ Hn1.
Reality announcesrn ∈ Bin.

Kn :=Kn−1+gn0(rn)+gn1(rn).
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First, we make the following assumptions:

1. House’sHn0 satisfy Cournot’s principle.

2. House agrees in advance to follow Walley’s updating principle: Hn1 = win
n ,

wherew j
n := {g : B j 7→R | g↑ ∈ Hn0}.

3. The only new information Gambler acquires between his move at timen
and his move at timen+1/2 is Reality’s choice of ofin. (By the preceding
assumption, he already knows House’s moveHn1.)

4. Reality disregards Gambler’s moves when she chooses her own moves.

Will all of House’s announcements (theHn0 andHn1) satisfy Cournot’s principle
as a group? It is reasonable to conclude that they will. If they did not, then Gam-
bler would have a bankruptcy-free strategyS that would make him infinitely rich.
This strategy would specifygn0 ∈ C for n = 1,2, . . . andg j

n1 ∈w j
n for n = 1,2, . . .

and j = 1, . . . ,k. Because Reality’s moves do not depend on what Gambler does
(Assumption 4) and House will follow Walley’s recommendation for Hn1 (As-
sumption 2), Gambler has a strategyS ′ for choosing thegn0 alone that makes his
capital grow exactly asS does: to duplicate the effect ofS ’s movegn1, he adds
(g j

n1)
↑ to S ’s gn0 for j = 1, . . . ,k. This strategy does not require knowledge ofin,

and so Gambler would have the information needed to implement it (Assumption
3). SoS ′ would also make Gambler infinitely rich, contradicting Assumption 1.

This result is a long-run justification for Walley’s updating principle in its full
generality.

4 Summary and Prospects

In this article, we set forth a new way of understanding probabilities and previ-
sions in which we considered Gambler’s viewpoint, and adopted Cournot’s prin-
ciple, in a series of game-theoretic protocols.

The proper handling of updating depends on whether we can exactly antici-
pate new information.

• We learned in§3.5 that if we can exactly anticipate new information—i.e.,
if we have an exhaustive advance listB1, . . . ,Bk of possibilities for exactly
what all our new information will be, then we can follow Walley’s updating
principle, deriving new lower previsions from old ones using the formula

Et x = sup{α | E0(x−α)↑ ≥ 0}. (12)

• We learned in§3.4 that if we cannot exactly anticipate new information,
but we do know that we will learn which of the mutually exclusive events
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B1, . . . ,Bk has happened, and we commit ourselves in advance to lower pre-
visions that depend on whichBi happens, then these preannounced lower
previsions should satisfy the upper bound

Et x≤ sup{α | E0(x−α)↑ ≥ 0}. (13)

The requirement of exact new information is very strong. Theinequality (13) de-
pends only on the weaker condition that we learn which of theB1, . . . ,Bk happens.
There is no requirement that this be all we learn. On the otherhand, the inequality
only bounds the new lower prevision that can be guaranteed atthe outset, at the
planning stage. Unanticipated information may produce a higher lower prevision.

In this article, we have invoked Cournot’s principle using arelatively simple
protocol, in which Reality has a binary choice at each step. This principle can also
be adopted, however, when Reality sometimes has more than two choices, and
when the choices available to her may depend on what she has done previously.
This brings us to the generality of an event tree [5], offering additional flexibility
that is needed in planning. Here it may be convenient to suppress the role of House
in favor of a formal rule for determining the probabilities offered to Gambler, and
to allow for unanticipated information and the refinement ofbeliefs. We explore
these questions in [7].
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Abstract

A new approach to define a product of capacities is presented.It works for
capacities that are in a certain relation with additive measures, most often this
means that they are somehow derived from additive measures.The product
obtained is not unique, but rather, lower and upper bound aregiven.

Keywords

products of capacities, capacities, non-additive measures, increasing capacities, distorted
measures

1 Introduction

It is a well known fact that there is no straightforward unique way to generalize
the product of additive measures to the non-additive case. Several approaches to
define a product for a specific family of non-additive measures, also called capac-
ities, have already been proposed (see [3, 4, 6]). In this paper a new approach is
presented to define a product for a family of capacities related to additive mea-
sures. The product of capacities defined here is in a close relation with the product
of the corresponding additive measures.

Let us first explain the terminology used in this paper. LetSbe a nonempty set
andA a σ-algebra of its subsets. Acapacityis a monotone functionv: A → R,
such thatv( /0) = 0 andv(S) < ∞. Additive measures used here are assumed to
be finite and defined on the same algebras as the capacities. Wewill also use the
standard terminology for the products in additive case. Soµ×λ will be the usual
additive product of two additive measuresµ andλ, andA ×B will be the usual
product algebra.

A productof capacitiesu andv on σ-algebrasA andB respectively, is any
capacityw: A×B→ R such that

w(A×B) = u(A)v(B). (1)

526
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In additive measure theory the above condition uniquely determines the product
of measures. Uniqueness crucially depends on additivity, moreover, without addi-
tivity requirement uniqueness of product can in general notbe achieved. However,
there always exist product capacities that satisfy (1), as shown in [4] where the
lower and the upper bound are also given. But the set of all products if mono-
tonicity of the product alone is required is far too big and their values differ too
much on non-rectangular sets.

In order to reduce the set of all possible product capacities, the products are
sought within some class of capacities with some additionalproperties that are
preserved by multiplication. In [4] Hendon et al. define a product ofbelief func-
tionsusing the idea ofMöbius representationof capacities. Another definition of
a product was proposed by Koshevoy in [6] using triangulation of geometrical
realizations of distributive lattices. Denneberg in [3] joins both ideas to obtain a
definition of a product for general monotone capacities which coincides with the
Möbius product for the class of belief functions.

Instead of restricting to a special class of capacities Ghirardato in [5] re-
stricts to a special class of functions for which the Fubini theorem for capaci-
ties holds. This class contains characteristic functions for a family of sets that he
calls comonotonic sets. For these sets the double integral of their characteristic
functions is a natural definition of a product of the capacities.

Although the existing definitions of products cover a very general class of
capacities, most of them are still limited to discrete capacities. In this paper I
present a definition of a product of capacities that seems to work better for con-
tinuous capacities, however, the results are valid for discrete case as well. The
class of capacities it covers is rather restricted, but I think there are ways open to
generalize this idea.

2 Increasing Capacities

The product of capacities defined here works for a family of capacities that are
in a certain way related to additive measures. Before defining this relation, we
will observe it in the case of a supermodular distorted measure. A capacityv is
a distorted measureif it can be expressed as a compositef ◦ µ, whereµ is an
additive measure and the distortionf is an increasing real function withf (0) = 0.
It is well known that a distorted measure is submodular or supermodular if the
distortion is concave or convex respectively (see [2]). Suppose now thatv is a
supermodular distorted measure with distortionf applied to measureµ. Since f
is a convex function, graph of a linear function intersects its graph in at most
two different points. Using this fact, one can easily observe that for each pair of
subsetsA⊆ B, v(A)/µ(A)≤ v(B)/µ(B) holds. This leads to the next definition.

Definition 1 Let µ be an additive measure on aσ-algebraA and v a capacity on
the same algebra. The capacity v isincreasingwith respect to µ if the following
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is true: If A⊆ B and µ(A) > 0 then v(A)/µ(A)≤ v(B)/µ(B) and if µ(A) = 0 then
also v(A) = 0.

If µ : A →R is an additive measure,I (µ) will denote the set of all increasing
capacities with respect to µ.

Further, we define quotientmv(A) := v(A)/µ(A), wheremv(A) = 0 for all A

with v(A) = µ(A) = 0, and for eacht ∈ R, Av,t :=
{

A
∣∣ t ≤ v(A)

µ(A)

}
. According to

Definition 1,mv : A→R is an increasing set function and it will be used to define
the product of capacities. Thus, the product of two increasing capacitiesu andv
will be defined by defining the correspondingmu×v.

We will also generalize the concept of comonotonicity for the case of increas-
ing capacities. (For definition of comonotonicity for real functions see e.g. [2]).
If v1 andv2 are capacities on aσ-algebraA , increasing with respect to an addi-
tive measureµ, then we sayv1 andv2 arecomonotonicif the union{Av1,t |t ∈ R}
∪{Av2,s|s∈ R} forms a chain of subsets ofA . Equivalently, capacitiesv1 andv2

are comonotonic exactly whenmv1 andmv2 are comonotonic as real functions on
A in the usual sense.

3 Products of Increasing Capacities

Given a setC∈A×B , we will first define two Borel measurable sets inR2 whose
Lebesgue measures are the minimum and the maximum value for the function
mu×v. These sets can be considered as some kind of products ofmu andmv.

Definition 2 Let u and v be increasing capacities with respect to measuresµ and
λ respectively and defined onσ-algebrasA andB . LetA ×B be the algebra of
all measurable sets with respect to the product measure µ× λ. Define functions
ϕ

u,v
andϕu,v : A×B→ 2R

2
with

(x,y) ∈ ϕ
u,v

(C) ⇐⇒ If there exist A∈ Au,x and B∈ Bv,y

such that A×B⊆C,x > 0,y > 0

(x,y) ∈ ϕu,v(C) ⇐⇒ If for all A ∈ A and B∈ B such that A×B⊇C

A∈ Au,x and B∈ Bv,y holds, x> 0,y > 0

It is easy to see thatϕ
u,v

(C) and ϕu,v(C) are Borel measurable sets inR2

for all C ∈ A ×B . However, there is a substantial asymmetry between both sets.
While ϕu,v(C) is only a rectangle that represents the smallest rectangular set (with
respect tomu andmv) that containsC, ϕ

u,v
(C) is a union of rectangles representing

the family of the largest rectangular sets that are contained inC. Clearly, the latter
set therefore characterizesC much more precisely, in general, than the former one.

The definition of the lower and the upper bound for a product follows.
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Definition 3 Let u and v be increasing capacities with respect to measuresµ and
λ. We define thelower productof u and v as

(u×v)(C) = µ
R2

(
ϕ

u,v
(C)
)

(µ×λ)(C)

and theirupper productas

(u×v)(C) = µ
R2

(
ϕu,v(C)

)
(µ×λ)(C).

The productsu×v andu×v turn out to be the lower and the upper bound for
a product of capacities under some additional natural assumptions. But first we
state some properties of the products just defined.

Proposition 1 The following statements hold for u,u′,ui ∈ I (µ) and v∈ I (λ).

(i) If u ≤ u′ then u×v≤ u′×v.

(ii) (u+u′)×v≤ u×v+u′×v, equality holds if u and u′ are comonotonic.

(iii) If u i ր u then ui×vր u×v.

and

(i)’ If u ≤ u′ thenu×v≤ u′×v.

(ii)’ (u+u′)×v= u×v+u′×v

(iii)’ If u i ր u thenui×vր u×v.

Because of symmetry of the product all of the above properties also hold for the
second term.

The above properties also show that the upper and the lower product are not
symmetric, as one might expect. While the upper product is additive, the lower is
only comonotonically additive.

In order to prove that the lower and the upper product are indeed lower and up-
per bound in a family of product operators, we define operatorsΦ andΦ : I (µ)×
I (λ)→ I (µ×λ) with Φ(u,v) = u×v andΦ(u,v) = u×v.

Proposition 1 implies that the operatorsΦ andΦ are monotonic and contin-
uous from below (in the sense of [2]) in both terms. The upper product operator
Φ is also biadditive, while the lower product operatorΦ is subadditive in both
terms, however, when applied to sum of comonotonic capacities it is additive as
well. Usually such operators are said to becomonotonically additive.

The following two theorems are the main results of this paper.
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Theorem 1 Let µ andλ be positive measures onσ-algebrasA andB respec-
tively. LetΦ : I (µ)× I (λ)→ I (µ× λ) be an operator that is comonotonically
additive, positively homogeneous and continuous in both terms and such that

Φ(u,v)(A×B) = u(A)v(B),

for all A ∈ A and B∈ B . ThenΦ≤Φ≤Φ holds.

Proof Sketch. To prove this and also the next theorem, we define a family of
simple increasing capacities that we callcut measures. LetA ′ ⊆ A be a family of
sets such that for each pair of setsA⊆ B, A∈ A ′ impliesB∈ A ′. Then we define
cut measureµ|A ′ by

µ|A ′(A) :=

{
µ(A) if A∈ A ′
0 otherwise

The first step of proof is to verify thatu×v and u×v are the smallest and
the greatest product measures in case whereu and v are cut measures, say
u = µ|A ′ andv = λ|B ′ . It turns out that cut measures(µ× λ)|C ′ and (µ× λ)|C ′′
are their smallest and largest product capacities increasing with respect toµ×
λ, whereC ′ = {C| there existA∈ A andB∈ B such thatA×B⊆C} andC ′′ =
{C| if for all A×B⊇C, A∈ A andB∈ B holds}. These two cut measures turn
out to be equal tou×v andu×v respectively.

The second step is to show that an increasing capacity can be uniformly ap-
proximated by sums of comonotonic cut measures. Using first step, comonotonic
additivity and continuity ofΦ we get the desired inequality. ✷

Next important property that a product should have is associativity.

Theorem 2 Let u,v and w be increasing capacities, with respect to µ,λ and η.
Then the following equalities hold:

u×v×w = u×v×w=: u×v×w

and
u×v×w = u×v×w=: u×v×w.

The proof of this theorem also consists of two steps, the firstbeing proof that
it holds for the case of cut measures and the second one is extension to general
case, using comonotonic additivity and continuity ofΦ.

4 Conclusion

The results presented here, should be extended to more general families of ca-
pacities. One idea is to extend the product to differences ofincreasing measures.
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That is, if capacitiesu andv can be written asu = u1−u2 andv = v1−v2, where
u1,u2,v1,v2 are increasing with respect to some additive measureµ and λ re-
spectively, an obvious way to extend present definition of the product would be,
to define the lower productu×v = u1×v1 + u2×v2−u1×v2−u2×v1. Such a
definition unfortunately does not provide uniqueness of theproduct. A topic of
further study is therefore searching for alternative generalizations.

The main disadvantage of the product defined here is, that it depends on the
underlying additive measure. If we, on the other hand, modified the definition to
allow all additive measures and apply minimum or maximum on it, we would
probably obtain a trivial result. A compromise would be, to consider a proper
family of additive measures. Such a family could depend on the type of considered
capacities.
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Abstract

A second-order hierarchical uncertainty model of a system of independent
random variables is studied in the paper. It is shown that thecomplex non-
linear optimization problem for reducing the second-ordermodel to the first-
order one can be represented as a finite set of simple linear programming
problems with a finite number of constraints. The stress-strength reliability
analysis by unreliable information about statistical parameters of the stress
and strength exemplifies the model. Numerical examples illustrate the pro-
posed algorithm for computing the stress-strength reliability.

Keywords

stress-strength reliability, imprecise probabilities, second-order uncertainty, natural
extension, previsions, linear programming

1 Introduction

By processing unreliable information, much attention havebeen focused on the
second-order uncertainty models(hierarchical uncertainty models) due to their
quite commonality. These models describe the uncertainty of a random quantity
by means of two levels. Various second-order models and their applications can
be found in the literature [4, 6, 7, 12, 13, 22], and a comprehensive review of
hierarchical models is given in [5], where it is argued that the most common hi-
erarchical model is the Bayesian one [2, 8, 14]. At the same time, the Bayesian
hierarchical model is unrealistic in problems where there is available only partial
information about the system behavior.

The main shortcoming of most proposed second-order hierarchical models
(from the informational point of view) is the necessity to assume the certain type
of the second-order probability or possibility distributions defined on the first-
order level. This information is usually absent in many applications and additional

532



Utkin: Uncertainty Model of Independent Random Variables 533

assumptions may lead to some inaccuracy in results. The study of some tasks re-
lated to homogeneous second-order models without any assumptions about prob-
ability distributions has been illustrated by Kozine and Utkin [10]. However, these
models are of limited use due to the homogeneity of gambles considered on the
first-order level, i.e., the initial information is restricted by previsions of identical
gambles. A new hierarchical uncertainty model for combining different types of
evidence was proposed by Utkin [17, 16], where the second-order probabilities
can be regarded as confidence weights and the first-order uncertainty is modelled
by lower and upper previsions of different gambles [21]. However, the proposed
model [17, 16] supposes that initial information is given only for one random vari-
able. At the same time, many applications use a set of random variables described
by a second-order uncertainty model, and it is necessary to find a model for some
function of these variables. For example, reliability analysis demands to compute
the reliability of a system under uncertain information about its components. An
imprecise hierarchical model of a number of random variables has been studied
by Utkin [18], but this model supposes that there is no information about indepen-
dence of random variables. It should be noted that the condition of independence
takes place in many applications. This condition makes the natural extension to
be non-linear and, as a result, the corresponding hierarchical model becomes very
complex.

An efficient approach to solve this problem is proposed in thepaper. In order
to show the practical relevance of the proposed approach, itis applied to the stress-
strength reliability analysis by the independent stress and strength.

2 Imprecise Stress-Strength Reliability

A probabilistic model of structural reliability can be formulated as follows. LetY
represent a random variable describing the strength of a system and letX represent
a random variable describing the stress or load placed on thesystem. System
failure occurs when the stress on the system exceeds the strength of the system.
Then the reliability of the system is determined asR = Pr{X ≤Y}. A general
approach to the structural reliability analysis based on the imprecise probability
theory [11, 21, 23] was proposed in [19, 20]. Let us briefly consider this approach.
Suppose that available information about the random stressX and the random
strengthY is given as a set ofn lower Ehi and upperEhi previsions of gambles
hi(X,Y) (unbounded gambles are considered in [15]) such that

Ehi ≤ Ep(x,y)hi(X,Y)≤ Ehi, i = 1, ...,n.

Herep(x,y) is a joint density of the stress and strength. It is assumed that there
exist a set of density functions such that linear previsionsEp(x,y)hi can be regarded
as expectations ofhi . Taking into account that

R= Pr{X ≤Y}= Ep(x,y)I[0,∞)(Y−X), (1)
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we can write the following optimization problems (natural extension) for comput-
ing the lowerRand upperR stress-strength reliability as follows:

R
〈
R
〉

= inf
p

〈
sup

p

〉
Z

R
2
+

I[0,∞)(y−x)p(x,y)dxdy, (2)

subject to

Ehi ≤
Z

R
2
+

hi(x,y)p(x,y)dxdy≤ Ehi , i = 1, ...,n. (3)

Here the infimum and supremum are taken over the set of all possible densities
{p(x,y)} satisfying conditions (3),I[0,∞)(Y−X) is the indicator function taking
the value 1 ifY≥X and 0 otherwise. If random variablesX andY are independent,
then the constraintp(x,y) = pX(x)pY(y) is added to constraints (3), wherepX and
pY are densities ofX andY, respectively.

The natural extension is a powerful tool for analyzing the reliability on the ba-
sis of available partial information. However, it has a shortcoming. Let us imagine
that two experts provide the following judgements about thestress: (i) mean value
of the stress is not greater than 10; (ii) mean value of the stress is not less than 10
hours. The natural extension produces the resulting mean value [0,10]∩ [10,∞) =
10. In other words, the absolutely precise measure is obtained from too imprecise
initial data. This is unrealistic in practice of reliability analysis. The reason of
such results is that probabilities of judgements are assumed to be 1. If we assign
some different probabilities to judgements, then we obtainmore realistic assess-
ments. For example, if the belief to each judgement is 0.5, then, according to [9],
the resulting mean value is greater than 5 hours. Therefore,in order to obtain the
accurate and realistic reliability assessments, it is necessary to take into account
some vagueness of information about characteristics of thestress and strength.

3 Second-Order Model. Problem Statement

Suppose that there existn judgements about the stressX:

E f j(X) ∈ Tj = [t j ,t j ], j = 1, ...,n,

andl judgements about the strengthY:

Eh j(Y) ∈ Sj = [sj ,sj ], j = 1, ..., l .

Here f j andh j are gambles corresponding to the available judgements about X
andY. Moreover, it is known that

α j ≤ Pr
{
E f j ∈ Tj

}
≤ α j , j = 1, ...,n,

β
j
≤ Pr

{
Eh j ∈ Sj

}
≤ β j , j = 1, ..., l .
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The second-order probabilities[α j ,α j ] and[β
j
,β j ] are interpreted as a model for

uncertainty about “correct” values of partially known measures ofX andY. Let
us briefly discuss the sense of beliefs to the expert judgements. If we know that
an expert provides 100·α% of “correct” judgements, this means that, by giving
finitely many intervals, sayn, for an unknown parameter, approximatelynα inter-
vals cover some “correct” value of the parameter. But if we have only the(n+1)-st
interval and do not know anything about previousn intervals, then we can only say
that the “correct” value of the parameter lies in this interval with probabilityα and
outside this interval with probability 1−α. If we would have all aforementioned
n intervals, some probability distribution of the parametercould be constructed
and well-known Bayesian methods could be used. In this case,there is no need to
apply imprecise probabilities.

The term “expert information” may be used in a more general sense. In partic-
ular, confidence intervals of parameters elicited as a result of statistical inference
with corresponding confidence probabilities may be regarded as “beliefs to ex-
perts”. For example, if we have one confidence interval for the expectation of a
probability distribution, then we can only assert, that the“correct” value of the
expectation is in the interval with the confidence interval probability [α,1] and
outside the confidence interval with the probability[0,1−α].

How to find average values ofRandR, i.e., to reduce the second-order model
to the first-order one? Roughly speaking, if we have second-order probabilities
defined for different intervals ofE f j andEh j , then there exist a set of second-
order distributions ofE f j , Eh j , andEI[0,∞)(Y−X) produced an interval of lower
and upper expectations ofEI[0,∞)(Y−X), i.e.,R andR. We will call this interval
”average” to distinguish expectations (previsions) on thefirst and second levels
of the considered second-order uncertainty model. In fact,the ”average” interval
allows us to get rid of the more complex second-order model and to deal with the
first-order model. This problem is especially difficult if the stress and strength are
independent. At that, a special type of independence calledby the free product
[11] is studied in the paper. This type of independence is like to the epistemic
irrelevance [3] and, generally, is asymmetric.

In order to give the reader the essence of the subject analyzed and make all
the formulas more readable, we will mainly consider only thelower boundR.

Let vi = E fi andwi = Ehi be values of random variablesVi andWi defined on
sample spacesΩi andΛi , respectively. LetV = (V1, ...,Vn), W = (W1, ...,Wn) and
V = (v1, ...,vn), W = (w1, ...,wl ) be the vectors of random variablesVi, Wi and
their values, respectively. DenoteN = {1, ...,n} andL = {1, ..., l}. Then the natu-
ral extension for computingRcan be written as a sequence of lower expectations:

R= EW
{

EV|W (EI[0,∞)(Y−X)
)}

by given lower and upper previsions

EITi (vi) = αi , EITi (vi) = αi , EISi (wi) = β
i
, EISi (wi) = βi . (4)
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By introducing a random variableZ having valuesz(V,W) = EI[0,∞)(Y−X)
and assuming that there exists a set of densitiesϕ(V) andψ(W) of vectorsV and
W, respectively, we can write

R= inf
ψ

Z

Λ

(
inf
ϕ

Z

Ω
z(V,W)ϕ(V)dV

)
ψ(W)dW, (5)

subject to

αi ≤
Z

Ω
ITi (vi)ϕ(V)dV ≤αi , i ∈ N, β

i
≤

Z

Λ
ISi (wi)ψ(W)dW ≤βi , i ∈ L. (6)

HereΩ = Ω1× · · · ×Ωn, Λ = Λ1× · · · ×Λl . The sample spacesΩi andΛ j are
determined by sets of valuesE fi andEh j , i.e.,

Ωi = [inf E fi ,supE fi ], Λ j = [inf Eh j ,supEh j ].

A dual optimization problem can not be written as it has been made in [18] be-
cause the initial problem is non-linear. Our aim is to findR, i.e., to solve (5)-(6).

4 Solution of Problem (5)-(6)

4.1 A Set of Linear Programming Problems

Let W∗ = (w∗1, ...,w
∗
n) ∈ Λ be a realization of the vectorW. DenoteR(W∗) =

Eϕz(V,W∗). Problem (5)-(6) can be represented as follows:

R= inf
ψ

Z

Λ

(
inf
ϕ

Z

Ω
z(V,W)ϕ(V)dV

)
ψ(W)dW

= inf
ψ

Z

Ω
inf
ϕ

R(W∗)ψ(W)dW = inf
ψ

Z

Ω
R(W∗)ψ(W)dW, (7)

subject to
β

i
≤ EψISi (wi)≤βi , i ∈ L. (8)

Here
R(W∗) = inf

ϕ
Eϕz(V,W∗), (9)

subject to
αi ≤ EϕITi (vi)≤αi , i = 1, ...,n. (10)

Problems (7)-(8) and (9)-(10) are linear and dual optimization problems can
be written, i.e., we have a set of the following problems for eachW∗ ∈ Λ:

R(W∗) = sup

(
c0 + ∑

i∈N
(ciαi−diαi)

)
, (11)
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subject toci ,di ∈R+, c0 ∈ R, i ∈N, and∀V ∈Ω,

c0 + ∑
i∈N

(ci−di) ITi (vi)≤ z(V,W∗), (12)

and one linear programming problem

R= sup

(
c0 + ∑

i∈L

(
ciβi
−diβi

))
, (13)

subject toci ,di ∈R+, c0 ∈ R, i ∈ L, and∀W∗ ∈ Λ,

c0 + ∑
i∈L

(ci−di) ISi (wi)≤ R(W∗). (14)

The dual problems have been introduced in order to get rid of densitiesϕ(V)
andψ(W).

4.2 Solution of Problem (11)-(12)

An algorithm and an approach to solving a problem similar to (11)-(12) are given
in [16, 17]. But problem (11)-(12) has some difference. To solve this problem, it
is necessary to define whatz(V,W∗) is.

Let J be a set of indices andJ⊆N. Introduce the following sets of constraints:

TJ = {Ti , i ∈ J} , T c
J = {Tc

i , i ∈ J} , Tc
i = Ωi\Ti .

Then constraints (12) can be rewritten as

c0 +
n

∑
i=1

(ci−di) ITi (EpX fi)≤ z(V,W∗), pX ∈ P . (15)

HereP is the set of all densities{pX}. Let us consider these constraints in detail
and definez(V,W∗). Note that

z(V,W∗) = EpX pY I[0,∞)(Y−X). (16)

However, we fixed the vectorW∗ = (E∗h1, ...,E∗hl ). This means that the set of
probability densitiespY(y) is restricted as follows:

E∗pY
h1 = w∗1, ...,E

∗
pY

hl = w∗l . (17)

So, z(V,W∗) can be found by solving the optimization problem with objective
function (16), constraints (17), and constraints forpX , which will be considered
below.

In order to compute the indicator functions in (15), it is necessary to substitute
different functionspX fromP and to calculate the corresponding values ofEpX fi
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andITi (EpX fi). Moreover, it is necessary to solve problem (16)-(17) for each pX ∈
P . Obviously, this task can not be practically solved. Therefore, another way for
solving the optimization problem is proposed.

We call the setT c
N\J∪TJ consistentif there is at least one densitypX such that

EpX fi ∈ Ti , i ∈ J, EpX f j ∈ Tc
j , j ∈ N\J. Now we can see that if the setTJ∪T c

N\J
is consistent, thenITi (EpX fi) = 1 if i ∈ J, andITi (EpX fi) = 0 if i ∈ N\J. In other
words, if the setT c

N\J∪TJ is consistent, then there exists at least one densitypX

such that all linear previsionsEpX fi , i ∈ J, are in intervalsTi and their indicator
functions are equal to 1, all linear previsionsEpX f j , j ∈ N\J, do not belong to
intervalsTi and their indicator functions are equal to 0. In this case, wewill say
thatpX belongs to a setPJ. So, to simplify constraints (15), it is necessary to look
over all consistent setsT c

N\J ∪TJ. Then constraints (15) can be rewritten for all
J⊆ N, such thatT c

N\J∪TJ are consistent, as follows:

c0 +∑
i∈J

(ci−di)≤ z(V,W∗). (18)

If T c
N\J ∪TJ is inconsistent, then corresponding inequality (18) is excluded from

the list of all constraints.
But how to determine the consistency of setsT c

N\J∪TJ? The setT c
N\J∪TJ is

consistent if an optimization problem with constraints produced byT c
N\J∪TJ has

any solution. At that, the objective function may be arbitrary. In other words, for
determining the consistency ofT c

N\J ∪ TJ, it is necessary to solve the following
optimization problem:

inf
pX

(
sup
pX

)
EpX u(x),

subject toEpX fi ∈ Ti , i ∈ J, EpX f j ∈ Tc
j , j ∈N\J. Hereu is an arbitrary function.

Let p(1)
X ∈ PJ andp(2)

X ∈ PJ. Then

ITi (Ep
(1)
X

fi) = ITi (Ep
(2)
X

fi).

Let

z(2)(V,W∗) = E
p
(2)
X pY

I[0,∞)(Y−X)≤ E
p
(1)
X pY

I[0,∞)(Y−X) = z(1)(V,W∗).

Then the constraint

c0 + ∑
i∈N

(ci−di) ITi (Ep
(1)
X

fi)≤ z(1)(V,W∗)

follows from the constraint

c0 + ∑
i∈N

(ci−di) ITi (Ep
(2)
X

fi)≤ z(2)(V,W∗)
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and can be removed. This implies that (15) is equivalent to

c0 +∑
i∈J

(ci−di)≤ inf
PJ

z(V,W∗), (19)

where
inf
PJ

z(V,W∗) = inf
pX ,pY

EpX pY I[0,∞)(Y−X), (20)

subject to

EpX fi ∈
{

Ti , i ∈ J
Tc

i , i ∈ N\J , i ∈ N, (21)

EpYhi = w∗i , i ∈ L. (22)

So, an infinite number of constraints has been reduced to at most 2n constraints
(19). Since the functionu is arbitrary, then infPJ z(V,W∗) may be used in place of
u. There exist exact analytical solutions to problem (20)-(22) for various types of
initial information [19].

4.3 Solution of Problem (13)-(14)

Now we have the values ofR(W∗) for eachW∗ ∈ Λ. Let us introduce the sets

SK = {Si , i ∈ K} , Sc
K = {Sc

i , i ∈ K} , K ⊆ L = {1,2, ..., l}.

For solving problem (13)-(14), we apply an algorithm which is similar to the
considered one in the previous subsection, i.e.,

R= sup

(
c0 + ∑

i∈L

(
ciβi
−diβi

))
, (23)

subject toci ,di ∈R+, c0 ∈ R, i ∈ L, and∀K ⊆ L, ∀W∗ ∈ Λ,

c0 + ∑
i∈K

(ci−di)≤ inf
W∗∈Sc

L\K∪SK

R(W∗). (24)

This is a simple linear programming problem with at most 2l constraints.

5 Exact Bounds for the Reliability

It can be seen from results of the previous section that complex non-linear opti-
mization problem (5)-(6) is reduced to a set of linear programming problems with
finitely many constraints and non-linear problems (20)-(22) which can be numer-
ically solved or have exact solutions [19] for the most important types of initial
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information (points of probability distribution functions of X andY, moments of
X andY, probabilities defined on nested intervals). However, these optimization
problems have to be solved for all values ofW∗ ∈ Λ whose number may be infi-
nite. This leads only to the approximate solution and makes the task to be rather
difficult from the computational point of view even by a smallnumber of initial
judgements. It turns out that optimization problem (5)-(6)can be exactly solved.
Therefore, an interesting and efficient solution of the problem is proposed in this
section.

Let us consider constraints (24). Suppose thatR(W∗) achieves its minimum
at W∗ = W∗

o(K) ∈ Sc
L\K ∪ SK . Then all vectorsW∗ ∈ Sc

L\K ∪ SK exceptW∗
o(K)

are not used in constraints to problem (23)-(24). This implies that we do not need
to look over all possible vectorsW∗. By returning to problem (11)-(12), it is
necessary to solve it only forW∗

o(K), K ⊆ L. This implies that the number of
solved optimization problems is finite and depends on numbers n andl of initial
judgements aboutX andY. Moreover, we can obtain exact bounds for the stress-
strength reliability in this case. However, we do not know points W∗

o(K) before
solving problem (11)-(12). Let us show how to overcome this difficulty.

It follows from (11)-(12) thatR(W∗) decreases asz(V,W∗) decreases. More-
over, the left sides of constraints (19) and (24) do not depend on special values
of W∗ and are determined only by the setSc

L\K ∪SK . This implies that we do not
need to know an optimal value of the vectorW∗ = W∗

o(K). It is enough to know
that this value belongs to the setSc

L\K ∪SK (this allows us to construct theK-th

constraint in (24)) and makesz(V,W∗) andR(W∗) to be minimal for at least one
W∗ ∈ Sc

L\K ∪SK . Therefore, constraints (22) have to be replaced by constraints

EpYhi(Y) ∈
{

Si, i ∈ K
Sc

i , i ∈ L\K , i ∈ L, (25)

where intervalsSi , Sc
i are defined by the setSc

L\K ∪SK .
Indeed, infW∗∈Sc

L\K∪SK R(W∗) corresponds to infW∗∈Sc
L\K∪SK infPJ z(V,W∗). At

the same time, this is equivalent to the problem infPJ z(V,K) subject to

EpX fi ∈
{

Ti , i ∈ J
Tc

i , i ∈ N\J , i ∈ N, EpYhi =

{
Si , i ∈ K
Sc

i , i ∈ L\K , i ∈ L,

because constraints (25) contain all pointsW∗ ∈ Sc
L\K ∪SK and infPJ z(V,W∗) is

achieved atpY satisfying one of the valuesW∗.
So,z(V,W∗) andR(W∗) can be replaced byz(J,K) andR(K). This means that

values ofV andW are taken from the setsT c
N\J∪TJ andSc

L\K ∪SK , respectively.
It is worth noticing that this subtle technique allows us to solve a problem

of consistency of judgements (22). It is obvious that constraints (22) may be in-
consistent by some values ofw∗i , and it is not clear what to do in this case. After
introducing constraints (25), the inconsistency means that the corresponding con-
straint in (24) is removed from the list of constraints to problem (23)-(24).
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6 Algorithm for Computing R

Let us write a final algorithm for computingR.
Step 1.Choosing a setSc

L\Ki
∪SKi from the possible setsSc

L\K ∪SK , K ⊆ L.
Step 2.Choosing a setT c

N\Jj
∪TJj from the possible setsT c

N\J∪TJ, J⊆N.

Step 3.Solving the optimization problem with objective function (20) and
constraints (21) and (25) byTi andSi taken from setsT c

N\Ji
∪TJi andSc

L\Ki
∪SKi

defined on Steps 1 and 2, respectively. The result of this stepis the valuez(Jj ,Ki).
If z(J,Ki) are obtained for all possibleJ⊆N, then go to Step 4, else go to Step 2.

Step 4.Solving linear programming problem (11)-(12) by using the consistent
values ofz(J,Ki) computed on Step 3. The result of this step is the valueR(K). If
R(K) are obtained for all possibleK ⊆ L, then go to Step 5, else go to Step 1.

Step 5.Solving linear programming problem (23)-(24) by using the consistent
values ofR(K) computed on Step 4. The result of this step isR.

According to the algorithm, it is necessary to solve 2l +1 linear programming
problems (Steps 4 and 5) and 2nl non-linear optimization problems (Step 3). Step
3 can be realized by means of results given in [19]. For solving this non-linear
problem in a case of arbitrary judgements, a software program has been devel-
oped.

7 Numerical Example 1

Suppose that two experts provide probabilities of events concerning the stress and
strength. The first expert: 0.9 and 1 are bounds for the probability that the stress
is less thanx1 = 18. The second expert: 0 and 0.2 are bounds for the probability
that the strength is less thany1 = 14; 0.75 and 1 are bounds for the probability
that the strength is less thany2 = 20. The beliefs to experts are 0.9 and[0.6,0.8],
respectively. The beliefs[a,b] mean that the expert provides betweena% andb%
of true judgements. This information can be formally represented as

Pr{0.9≤ EI[0,18](X)≤ 1}= 0.9,

Pr{0≤ EI[0,14](Y)≤ 0.2} ∈ [0.6,0.8],

Pr{0.75≤ EI[0,20](Y)≤ 1} ∈ [0.6,0.8].

HereN = {1}, L = {1,2}. Let us findR= EEI[0,∞)(Y−X). Define sets

K = {1,2}, Sc
L\K ∪SK = {S1,S2}= {[0,0.2], [0.75,1]},

K = {1}, Sc
L\K ∪SK = {S1,S

c
2}= {[0,0.2], [0,0.75]},

K = {2}, Sc
L\K ∪SK = {Sc

1,S2}= {[0.2,1], [0.75,1]},
K = {∅}, Sc

L\K ∪SK = {Sc
1,S

c
2}= {[0.2,1], [0,0.75]}.
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and

J = {1}, T c
N\J∪TJ = {T1}= {[0.9,1]} ,

J = {∅}, T c
N\J∪TJ = {Tc

1 }= {[0,0.9]} .

Let us computez(J,K) for eachK andJ. According to [19], there holds

z= t1(1−sj(1)), j(i) = min{ j : xi ≤ y j}.

Hencej(1) = 2, and the following hold forJ = {1} ⊆ {1}

K = {1,2}, z(J,K) = 0,

K = {1}, z(J,K) = 0.225,

K = {2}, z(J,K) = 0,

K = {∅}, z(J,K) = 0.225.

If J = {∅}, thenz(J,K) = 0 for all K ⊆ {1,2} because infTc
1 = 0. Let us solve

problem (11)-(12) for eachK ⊆ L. For example, ifK = {1}, then

R({1}) = sup(c0 +0.9c1−0.9d1) ,

subject toc1,d1 ∈ R+, c0 ∈ R, c0 +(c1−d1)≤ 0.225,c0≤ 0.
HenceR({1}) = 0.2025. Similarly, we can getR({1,2}) = 0, R({2}) = 0,

R({∅}) = 0.2025. Let us solve problem (23)-(24)

R= sup(c0 +0.6c1−0.8d1+0.6c2−0.8d2) ,

subject toc1,d1,c2,d2 ∈ R+, c0 ∈R,

c0 +(c1−d1)+ (c2−d2)≤ 0,

c0 +(c1−d1)≤ 0.2025,

c0 +(c2−d2)≤ 0, c0≤ 0.2025.

HenceR= 0.0405. The upper stress-strength reliabilityR= 0.9996 can be com-
puted in the same way by taking into account that there holdsz= 1−s1(1− t1).

How to use the obtained interval? This depends on a decision maker and the
system purposes (consequences of failures). The values 0.0405 and 0.9996 can be
interpreted as pessimistic and optimistic assessments of the stress-strength relia-
bility, respectively. If consequences of the system failure are catastrophic (trans-
port systems, nuclear power plants), then the lower bound (pessimistic decision)
for the system reliability has to be determinative and is compared with a required
level of the system reliability. If the system failure does not imply major con-
sequences, then the upper bound (optimistic decision) can be used. Generally,
the decision maker may use a caution parameterη [1] on the basis of his (her)
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own experience, various conditions of the system functioning, etc. In this case,
the precise value of the system reliability is determined asthe linear combina-
tion ηR+ (1−η)R. At the same time, it can be seen from the example that the
obtained interval[R,R] is very wide and the results are too imprecise to make a
useful decision concerning the reliability.

8 Numerical Example 2

Suppose that information about the stress and strength is represented as the fol-
lowing set of confidence intervals for two moments: the first and second moments
of the stress are in intervals[7,8] and[40,50], respectively, with the confidence
probability 0.95; the first and second moments of the strength are in intervals
[12,13] and [150,160], respectively, with the confidence probability 0.9. By as-
suming that all values of the stress and strength are in the interval [0,50] (the
sample space), this information can be formally represented as

Pr{7≤ EX ≤ 8} ∈ [0.95,1], Pr{40≤ EX2≤ 50} ∈ [0.95,1],

Pr{12≤ EY ≤ 13} ∈ [0.9,1], Pr{150≤ EY2 ≤ 160} ∈ [0.9,1].

HereN = {1,2}, L = {1,2}. Results of computingz(J,K) for eachK andJ are
shown in Table 1.

Table 1: Values ofz(J,K)
K = {1,2} K = {1} K = {2} K = {∅}

J = {1,2} 0.62 0.122 0.04 0
J = {1} 0.265 0.085 0.03 0
J = {2} 0.5 0.12 0.042 0
J = {∅} 0 0 0 0

Let us solve (11)-(12) for eachK ⊆ L. For example, ifK = {1,2}, then

R({1,2}) = sup(c0 +0.95c1−1d1+0.95c1−1d1) ,

subject toc1,d1,c2,d2 ∈ R+, c0 ∈R,

c0 +(c1−d1)+ (c2−d2)≤ 0.62,

c0 +(c1−d1)≤ 0.265,

c0 +(c2−d2)≤ 0.5, c0≤ 0.

HenceR({1,2}) = 0.589. Similarly, we can getR({1}) = 0.116,R({2}) = 0.038,
R({∅}) = 0. Let us solve problem (23)-(24)

R= sup(c0 +0.9c1−1d1+0.9c2−1d2) ,
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subject toc1,d1,c2,d2 ∈ R+, c0 ∈R,

c0 +(c1−d1)+ (c2−d2)≤ 0.589,

c0 +(c1−d1)≤ 0.116,

c0 +(c2−d2)≤ 0.038, c0≤ 0.

HenceR= 0.487. The upper bound isR= 1. If we assume that the intervals for
moments of the stress and strength have probabilities 1 (thefirst-order model),
then lower and upper bounds for the stress-strength reliability are 0.62 and 1,
respectively.

9 Conclusion

The efficient algorithm for computing the stress-strength reliability by the second-
order initial information about the stress and strength hasbeen proposed in the pa-
per. This algorithm uses the imprecise stress-strength reliability models obtained
in [19]. Its main virtue is that complex non-linear optimization problem (5)-(6) is
reduced to a finite set of simple problems whose solution presents no difficulty.
Therefore, this approach might be a basis for developing similar algorithms for
reliability analysis of various systems where random variables describing the sys-
tem reliability behavior are independent. The upper bound for the stress-strength
reliability can be similarly computed. In this case, the “inf” is replaced by “sup”
in optimization problems and vice versa.

It should be noted also a shortcoming of the algorithm. The joint judgements
about the stress and strength can not be used because optimization problem (5)-
(6) in this case can not be decomposed into a set of linear programming problems.
Therefore, further study is needed to develop methods and efficient algorithms for
processing the second-order imprecise probabilities by this type of initial infor-
mation.
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Abstract

In this paper we consider decision making under hierarchical imprecise un-
certainty models and derive general algorithms to determine optimal actions.
Numerical examples illustrate the proposed methods.
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1 Introduction

Consider the basic model of decision theory: One has to choose anactionfrom a
non-empty, finite setA = {a1, ...,an} of possible actions. The consequences of ev-
ery action depend on the true, but unknownstateof natureϑ ∈Θ = {ϑ1, ...,ϑm}.
The corresponding outcome is evaluated by theutility function

u : (A×Θ)→ R
(a,ϑ) 7−→ u(a,ϑ)

and by the associated random variableu(a) on (Θ,Po(Θ)) taking the values
u(a,ϑ). Often it makes sense to study randomized actions, which canbe under-
stood as a probability measureλ = (λ1, ...,λn) on (A,Po(A)). Thenu(·) andu(·)
are extended to randomized actions by definingu(λ,ϑ) := ∑n

s=1u(as,ϑ)λs.
This model contains the essentials of every (formalized) decision situation

under uncertainty and is applied in a huge variety of disciplines. If the states
of nature are produced by a perfect random mechanism (e.g. anideal lottery),
and the corresponding probability measureπ(·) on ((Θ,Po(Θ))) is completely
known, the Bernoulli principle is nearly unanimously favored. One chooses that

547
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actionλ∗ which maximizes the expected utilityEπu(λ) := ∑m
j=1 (u(λ,ϑ j) ·π(ϑ j))

among allλ.
In most practical applications, however, the true state of nature can not be

understood as arising from an ideal random mechanism. And even if so, the cor-
responding probability distribution will be not known exactly. An efficient ap-
proach for solving this problem in the framework of imprecise probability theory
(Kuznetsov [13], Walley [18], Weichselberger [20]) has been proposed by Au-
gustin in [1, 2].

A related, quite commonly used, way to deal with complex uncertainty is to
applysecond-order uncertainty models(hierarchical uncertainty models). These
models describe the uncertainty of a random quantity by means of two levels.
Many papers are devoted to the theoretical [4, 5, 11, 14, 19] and practical [7, 9, 12]
aspects of second-order uncertainty models. A comprehensive review of hierar-
chical models is given in [6] where it is argued that the most common hierarchical
model is the Bayesian one [3, 10, 21]. At the same time, the Bayesian hierarchical
model is unrealistic in applications where there is available only partial informa-
tion about the system behavior.

Most proposed second-order uncertainty models assume thatthere is a precise
second-order probability distribution (or possibility distribution). Unfortunately,
such information is often absent and making additional assumptions may lead to
wrong results. A new hierarchical uncertainty model for combining different types
of evidence was proposed by Utkin [15, 16], where the second-order probabilities
can be regarded as confidence weights and the first-order uncertainty is modelled
by lower and upper previsions of different gambles. We will call these hierarchical
models second-order probabilities of type 1.

It is worth noticing that there are cases when the type of the probability distri-
bution of the states of nature is known, for example, from their physical nature, but
parameters or a part of the parameters of the distribution are defined by experts.
In reality, there is some degree of our belief to each expert’s judgement whose
value is determined by experience and competence of the expert. Therefore, it is
necessary to take into account the available information about experts to obtain
more credible decisions. This model can be also considered in the framework of
hierarchical models and will be called second-order probabilities of type 2.

Decision making for both models of type 1 and type 2 are studied in the pa-
per. In particular, we give general and efficient algorithmsfor calculating optimal
actions and illustrate them in detailed examples.

One should note explicitly that throughout the paper we assume the utility
and the description of the uncertainty on the state of natureare given. Alterna-
tively, there are quite sophisticated approaches directlyextending the Neumann-
Morgenstern point of view. Theyconstructseparated utility and imprecise prob-
ability from axioms on behaviour and preferences (see, e.g., the work of [8] and
the references therein).
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2 Second-Order Probabilities of Type 1

Suppose that there is a set of weighted expert judgements related to some mea-
sures of the states of natureE fi(ϑ j ), i = 1, ..., r, i.e., there are valuesbi , bi of lower
and upper previsions. Suppose that the credibility of each of r experts is charac-
terized by a subjective probabilityγi or interval of probabilities[γ

i
,γi ], i = 1, ..., r.

It should be noted that the second-order probabilitiesγ
i
andγi form an imprecise

probability, described by a setN of distributions on the setM of all distribu-
tions π on (Θ,Po(Θ)). We assume that the second-order imprecise probability
is avoiding sure loss, i.e.,N is not empty. Denote for any gamblef the lower
(upper) second-order expectations byLEN f (UEN f ), respectively. Generally, the
judgements can be written as follows:

Pr
{

bi ≤ Eπ fi ≤ bi
}
∈ [γ

i
,γi ], i = 1, ..., r, (1)

or
LEN IBi (Eπ fi)=γ

i
, UEN IBi (Eπ fi) = γi , i = 1, ..., r.

Here the set{bi , bi} contains the first-order previsions,Bi = [bi ,bi ], the set{γ
i
,γi}

contains the second-order probabilities andEπ fi = ∑m
j=1 fi(ϑ j )π(ϑ j).

The problem here is that the resulting set of distributions may be rather com-
plex because the functionsfi are different, especially, if the value ofm is large.

2.1 Decision Making

Since there exists the setN of distributions on the setM of all distributionsπ, the
expected utilityEπu(λ) can be considered as a random variable described by dis-
tributions fromN , and there exist lowerLEN (Eπu(λ)) and upperUEN (Eπu(λ))
expectations of this random variable, which depend on the action λ. These expec-
tations can be roughly called also by lower and upper “average” expected utilities.
With this respect, we can assert that every action is evaluated by its minimal “aver-
age” expected utility. By representing the interval[LEN (Eπu(λ)) ,U EN (Eπu(λ))]
by the lower interval limit alone, we can write the criterionof decision making.

Throughout the paper we evaluate interval-valued expectations by their lower
interval-limits only — more complex interval orderings area topic of further re-
search, see also Section 4. Therefore, an actionλ∗ is optimal iff for all λ

LEN (Eπu(λ∗))≥ LEN (Eπu(λ)) . (2)

Then the optimal actionλ∗ can be obtained by maximizingLEN (Eπu(λ)) subject
to ∑n

s=1 λs = 1, λs ≥ 0, s = 1, ...,n. In other words, the following optimization
problem has to be solved:

LEN (Eπu(λ))→max
λs
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under the constraints

n

∑
s=1

λs = 1, λs≥ 0, s= 1, ...,n.

Due to arguments similar to those used in [17], this problem can be rewritten as

LEN (Eπu(λ∗)) = max
c∈R,ck∈R+,dk∈R+,λs∈R+

{
c+

r

∑
k=1

(
ckγ

k
−dkγk

)}
(3)

subject to

c+
r

∑
k=1

(ck−dk) IBk (Eπ fk)≤ Eπu(λ), (4)

n

∑
s=1

λs = 1. (5)

By substituting the expressions forEπ fi andEπu(λ∗) into the constraints, we get

c+
r

∑
k=1

(ck−dk) IBk

(
m

∑
j=1

fk(ϑ j)π(ϑ j )

)
≤

m

∑
j=1

(u(λ,ϑ j) ·π(ϑ j)) , ∀π ∈M . (6)

It is worth noticing that the maximal number of different expressions for the left
sides of the constraints (6) is 2r because they involve indicator functions. Let
us write a vectori = (i1, ..., ir), i j ∈ {0,1}, whose values correspond to those
situations. In accordance with possible values of the binary vector i, the setM
can be divided into 2r subsetsM1, ...,M2r such that thei-th subset is formed by
the set of constraints

Eπ fk ∈
{

Bk, ik = 1
Bc

k, ik = 0
, k = 1, ..., r. (7)

HereBc
k = [inf Eπ fk,supEπ fk]\Bk is the (relative) complement of the intervalBk.

Introduce the setK j ⊆ {1, ..., r} corresponding to the setM j such that for
any π ∈ M j and k ∈ K j there holdsIBk (Eπ fk) = 1, and forl /∈ K j there holds
IBl (Eπ fl ) = 0.

Let π = (π(ϑ1), ...,π(ϑm)) be a probability distribution belonging toM j . It
should be noted that some elements from the set{M j , j = 1, ...,2r}may be empty,
i.e., there are no such distributionsπ that satisfy all constraints (7). This means
that the corresponding vector of indicesi provides inconsistent judgements (7)
and corresponding constraints (4) must be removed from the list of 2r constraints.
Therefore, as the first step, it is necessary to determine theconsistency of judge-
ments. The consistency of the set of constraints, corresponding to a realization of
the vectori, can be determined by solving a linear programming problem with
an arbitrary objective function and constraints (7). If anysolution exists, then the
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feasible region is non-empty and there exists at least one probability distribution
π satisfying all constraints (7), i.e.,M j 6= /0. Otherwise,M j = /0 and the corre-
sponding constraint (4) must be removed.

Let L ⊆ {1, ...,2r} be a set of indices for all consistent constraints or all non-
empty sets. Suppose thatπ1 ∈M j andπ2∈M j are two distributions fromM j , j ∈
L, such thatEπ1u(λ)≥ Eπ2u(λ). Sinceπ1 ∈M j andπ2 ∈M j , then the constraint

c+ ∑
k∈K j

(ck−dk)≤ Eπ1u(λ),

follows from the constraint

c+ ∑
k∈K j

(ck−dk)≤ Eπ2u(λ),

because the left sides of constraints are the same. This implies that from all con-
straints, corresponding to the setM j , we have to keep only one constraint

c+ ∑
k∈K j

(ck−dk)≤ min
π∈M j

Eπu(λ).

So, problem (3)-(5) becomes

LEN (Eπu(λ∗)) = max
c∈R,ck∈R+,dk∈R+,λs∈R+

{
c+

r

∑
k=1

(
ckγ

k
−dkγk

)}
(8)

subject to
c+ ∑

k∈K j

(ck−dk)≤ min
π∈M j

Eπu(λ), ∀ j ∈ L, (9)

n

∑
s=1

λs = 1. (10)

Write G j = minπ∈M j
Eπu(λ), j ∈ L. Then there holds

LEN (Eπu(λ∗)) = max
c∈R,ck∈R+,dk∈R+,λs∈R+,Gj

{
c+

r

∑
k=1

(
ckγ

k
−dkγk

)}
(11)

subject to
c+ ∑

k∈K j

(ck−dk)≤G j , (12)

Eπu(λ)≥G j , π ∈M j , ∀ j ∈ L,
n

∑
s=1

λs = 1. (13)

One can see that the variablesGk are linear for allk∈ L. This implies that the
optimization problem (11)-(13) is linear, but, in the way itis written, it contains
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infinitely many constraints. In order to overcome this difficulty, note, however,
that the set of distributionsM j for every j can be viewed as a simplex in a finite
dimensional space. According to some general results from linear programming
theory, an optimal solution to the above problem is achievedat extreme points of
the simplex, and the number of its extreme points is finite. This implies, similar
to the solution in the first-order decision problem [1, 2], that the infinite set of
constraints (13) is reduced to some finite number, and standard routines for linear
programming can be used to determine optimal actions. If onewants to concen-
trate on unrandomized actions (pure actions), whereλs ∈ {0,1}, then Boolean
optimization can be used.

2.2 Numerical Example

Suppose that 2 experts evaluate 3 states{1,2,3} of nature as follows: the proba-
bility that either the first state or the second one is true is less than 0.4; the mean
value of states is between 1 and 2. The belief to the first expert is 0.5. This means
that he (she) provides 50% of true judgements. The belief to the second expert
is between 0.3 and 1. This means that he (she) provides more than 30% of true
judgements. Values of the utility functionu(as,ϑ j ) are given in Table 1.

Table 1: Values of the utility functionu(as,ϑ j)

ϑ1 ϑ2 ϑ3

a1 6 3 1
a2 2 7 4

Table 2: Consistency of constraints
i set consistent

(1,1) EπI{1,2}(ϑ) ∈ [0,0.4], Eπϑ ∈ [1,2] no
(1,0) EπI{1,2}(ϑ) ∈ [0,0.4], Eπϑ ∈ [2,3] yes
(0,1) EπI{1,2}(ϑ) ∈ [0.4,1], Eπϑ ∈ [1,2] yes
(0,0) EπI{1,2}(ϑ) ∈ [0.4,1], Eπϑ ∈ [2,3] yes

The above judgements can be written in the formal form as follows:

Pr
{

0≤ EπI{1,2}(ϑ)≤ 0.4
}

= 0.5, Pr{1≤ Eπϑ≤ 2} ∈ [0.3,1].

Let us find the setL ⊆ {1,2,3,4}. It can be seen from Table 2 thatL = {2,3,4}.
Let us find the optimal strategiesλ∗1, λ∗2. For doing so, it is necessary to find
extreme points for subsetsM2, M3, M4.
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Subset 2:

{π1 = 0,π2 = 0,π3 = 1}
{π1 = 0,π2 = 0.4,π3 = 0.6}
{π1 = 0.4,π2 = 0,π3 = 0.6}

Subset 3:

{π1 = 1,π2 = 0,π3 = 0}
{π1 = 0,π2 = 1,π3 = 0}
{π1 = 0.5,π2 = 0,π3 = 0.5}

Subset 4:

{π1 = 0,π2 = 1,π3 = 0}
{π1 = 0.5,π2 = 0,π3 = 0.5}
{π1 = 0,π2 = 0.4,π3 = 0.6}
{π1 = 0.4,π2 = 0,π3 = 0.6}

So, the following optimization problem has to be considered:
LEN (Eπu(λ∗)) = max

c,ck,dk,λs,Gj

{c+0.5c1−0.5d1+0.3c2−1d2}

subject toci ≥ 0,di ≥ 0,λi ≥ 0, i = 1,2,

c+1 · (c1−d1)+0 · (c2−d2)≤G2,

c+0 · (c1−d1)+1 · (c2−d2)≤G3,

c+0 · (c1−d1)+0 · (c2−d2)≤G4,

(λ1 +4λ2) ·1≥G2,

(3λ1 +7λ2) ·0.4+(λ1+4λ2) ·0.6≥G2,

(6λ1 +2λ2) ·0.4+(λ1+4λ2) ·0.6≥G2,

(6λ1+2λ2) ·1≥G3,

(3λ1+7λ2) ·1≥G3,

(6λ1 +2λ2) ·0.5+(λ1+4λ2) ·0.5≥G3,

(3λ1+7λ2) ·1≥G4,

(6λ1 +2λ2) ·0.5+(λ1+4λ2) ·0.5≥G4,

(3λ1 +7λ2) ·0.4+(λ1+4λ2) ·0.6≥G4,

(6λ1 +2λ2) ·0.4+(λ1+4λ2) ·0.6≥G4,

λ1 + λ2 = 1.

Solution of the problem:c = 3.143,G2 = G3 = G4 = 3.143,c1 = c2 = d1 =
d2 = 0, λ1 = 0.2857,λ2 = 0.7143.
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3 Second-Order Probabilities of Type 2

Suppose that the states of nature are described by a discreteprobability distribu-
tion of a certain type, for example, binomial, hypergeometric or Poisson distri-
butions. The certain type of the distribution is often knownfrom some physical
properties of the considered object. However, the parameters of the corresponding
distribution may be uncertain. Denote byα = (α1, ...,αh) a vector of parameters
for some discrete distributionπ(ϑ,α). Consider a case of continuous real param-
eters, i.e.,αi ∈ R. If we suppose that the experts provide some evidence about
parameters, then the vectorα can be considered, just as in classical Bayesian
statistics, as a random variable. This is due to the following reasons: First, experts
may provide some information about statistical characteristics of parameters, for
example, about intervals of mean values or about some probability that the i-
th parameter is in an interval. Second, even if experts provide only information
about intervals of possible values of parameters, we can nottotally believe in the
experts because they may be unreliable. This implies that every expert is charac-
terized by a probability or by an interval-valued probability of producing correct
judgements. Generally, if we suppose that the vector of parameters is governed
by some unknown joint densityρ, then the expert judgements can be formally
written as follows:

γ
i j
≤ Eρ fi j (αi)≤ γi j , i = 1, ...,h, j = 1, ..., r i . (14)

Here r i is a number of judgements related toi-th parameter;fi j is a function
corresponding to information about thei-th parameter provided by thej-th expert.
For example, if an expert offers information about the probability that the i-th
parameter is in an intervalB, then fi j (αi) is the indicator function of the eventB,
i.e., fi j (αi) = IB(αi). If the expert provides the mean value of thei-th parameter,
then there holdsfi j (αi) = αi . The valuesγ

i j
andγi j are the bounds for the provided

characteristicEρ fi j (αi) of the i-th parameter1.

3.1 Decision Making

We assume that there are some bounds for all parameters[αi ,αi ], i = 1, ...,h. This
means that thei-th parameter belongs to the interval[αi ,αi ] with probability 1.
Inside this interval, the parameter is distributed according to an unknown proba-
bility densityρi .

So, we have some infinite set of discrete probability distributions π(ϑ j ,α)
defined by different parameters. Then the expected utility corresponding to one

1For simplicity, it is assumed that either experts with weights provide intervals for unknown pa-
rameters or experts without weights provide some statistical characteristics of random parameters. Of
course, we could consider more complex cases when experts with weights provide statistical charac-
teristics of random parameters, but the study of these, so-to-say third-order level, cases may hide the
main results behind complex notation.
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realization of the vectorα is

Eπu(λ,α) =
m

∑
j=1

(u(λ,ϑ j) ·π(ϑ j ,α)) .

By averaging the expected utilitiesEπu(λ,α) over all possible vectorsα, we get

EρEπu(λ,α) =

Z

Ωh

(
m

∑
j=1

(u(λ,ϑ j) ·π(ϑ j ,α))

)
ρ(α)dα.

HereΩh is a sample space andΩh = [α1,α1]× ...× [αh,αh].

Now we define an optimal action. An actionλ∗ is optimal iff

LEP (Eπu(λ∗,α))≥ LEP (Eπu(λ,α)) . (15)

HereP is a set of all possible density functionsρ(α) satisfying the constraints

γ
i j
≤ Eρ fi j (αi)≤ γi j , i = 1, ...,h, j = 1, ..., r i ,

or

γ
i j
≤

Z αi

αi

fi j (αi)ρi(αi)dαi ≤ γi j , i = 1, ...,h, j = 1, ..., r i .

Then the optimal actionλ∗ can be obtained by maximizingLEP (Eπu(λ,α))
subject to∑n

s=1 λs = 1,λs≥ 0,s= 1, ...,n. In other words, the following optimiza-
tion problem has to be solved:

LEP (Eπu(λ∗,α))→max
λs

(16)

under the constraints
n

∑
s=1

λs = 1, λs≥ 0, s= 1, ...,n. (17)

If we assume that there is no information about independenceof parameters, i.e.,
the joint densityρ(α) can not be represented as a product of marginal ones, then
problem (16)-(17) can be rewritten as

LEP (Eπu(λ∗,α)) = max
c∈R,ck j∈R+,dk j∈R+,λs

{
c+

h

∑
k=1

rk

∑
j=1

(
ck jγk j

−dk jγk j

)}
(18)

subject to

c+
h

∑
k=1

rk

∑
j=1

(
ck j−dk j

)
fk j(αi)≤ Eπu(λ,α), ∀α ∈Ωh, (19)

n

∑
s=1

λs = 1, λs≥ 0. (20)
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This is a linear programming problem having an infinite number of con-
straints. However, for many special cases problem (18)-(20) can be simplified. Let
us consider the most important and realistic case when experts provideh intervals
B1, ...,Br for unknown parameters and each expert is characterized by some prob-
ability γk j or interval-valued probability[γ

i j
,γi j ]. Moreover, in order to give the

reader the essence of the subject analyzed and make all the formulas more read-
able, we will also assume thath= 1 andα = (α), i.e., there is only one parameter
of the distributionπ(ϑ j ,α). We also denoter1 by r. In other words, constraints
(14) are represented as

γ
j
≤

Z α

α
IB j (α)ρ(α)dα ≤ γ j , j = 1, ..., r. (21)

Then problem (18)-(20) can be rewritten as

LEP (Eπu(λ∗,α)) = max
c∈R,ck∈R+,dk∈R+,λs

{
c+

r

∑
k=1

(
ckγ

k
−dkγk

)}
(22)

subject to

c+
r

∑
k=1

(ck−dk) IBk(α)≤ Eπu(λ,α), ∀α ∈ [α,α], (23)

n

∑
s=1

λs = 1, λs≥ 0. (24)

Denotei = (i1, ..., ir), i j ∈ {0,1}. In accordance with possible values of the
binary vectori, the intervalB= [α,α] of all valuesα can be divided into 2r subin-
tervalsB(1), ...,B(2r ) such that thei-th subinterval is formed by

B(i) =
r

\

k=1

{
Bk, ik = 1
Bc

k, ik = 0
. (25)

Let L⊆ {1, ...,2r} be a set of indices for all non-empty subintervalsB( j) 6= /0.
Then from all constraints corresponding to the subintervalB( j), we have to keep
only one constraint

c+
r

∑
k=1

(ck−dk) ik ≤ min
α∈B( j)

Eπu(λ,α).

So, problem (22)-(24) becomes

LEP (Eπu(λ∗,α)) = max
c∈R,ck∈R+,dk∈R+,λs

{
c+

r

∑
k=1

(
ckγ

k
−dkγk

)}
(26)
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subject to

c+
r

∑
k=1

(ck−dk) ik ≤ min
α∈B( j)

Eπu(λ,α), ∀i, (27)

n

∑
s=1

λs = 1, λs≥ 0. (28)

Let us introduce the variableG j = minα∈B( j) Eπu(λ,α). Then problem (26)-
(28) can be rewritten as

LEP (Eπu(λ∗,α)) = max
c∈R,ck∈R+,dk∈R+,λs,Gj

{
c+

r

∑
k=1

(
ckγ

k
−dkγk

)}
(29)

subject to

c+
r

∑
k=1

(ck−dk) ik ≤G j , ∀i, (30)

Eπu(λ,α)≥G j , ∀α ∈ B( j), ∀i, (31)
n

∑
s=1

λs = 1, λs≥ 0. (32)

In this case, we obtain the linear programming problem with infinite number
of constraints. However, if it is known that the functionEπu(λ,α) is monotone
with α, then it is sufficient to consider only boundary points of intervalsB( j).
Constraints (31) can be written as

m

∑
j=1

(
n

∑
s=1

(u(as,ϑ j )λs) ·π(ϑ j)

)
≤G j ,

or
n

∑
s=1

(
m

∑
j=1

(u(as,ϑ j)π(ϑ j ))

)
λs≤G j .

Hence it is obvious that the constraints are linear withλs.

3.2 Numerical Example

Suppose that 3 states{1,2,3} of nature are governed by the binomial distribution

π(ϑ j ,α) =

(
3−1
j−1

)
α j−1(1−α)3− j−1, j = 1,2,3.

Two experts provide their judgements about the parameterα ∈ [0,1] as follows:
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1. the parameterα is in interval[0.8,1];

2. the parameterα is in interval[0.7,1].

The belief in the correctness of the first expert is 0.5. The belief in the sec-
ond expert is between 0.3 and 1 (see Section 2.2). The above judgements can be
written in the formal form as follows:

Z 1

0
I[0.8,1](α)ρ(α)dα = 0.5,

Z 1

0
I[0.7,1](α)ρ(α)dα ∈ [0.3,1].

Let us find the setL⊆ {1,2,3,4}.

i intervals non-empty
(1,1) [0.8,1]∩ [0.7,1] yes
(1,0) [0.8,1]∩ [0,0.7] no
(0,1) [0,0.8]∩ [0.7,1] yes
(0,0) [0,0.8]∩ [0,0.7] yes

Table 3: Intersections of intervals

It can be seen from Table 3 thatL = {1,3,4}.
Let us findλ1, λ2. In this case, there holds

LEP (Eπu(λ∗,α)) = max
c∈R,ck∈R+,dk∈R+,λs,Gj

{c+0.5c1−0.5d1+0.3c2−1d2}

subject to

c+1 · (c1−d1)+1 · (c2−d2)≤G1,

c+0 · (c1−d1)+1 · (c2−d2)≤G3,

c+0 · (c1−d1)+0 · (c2−d2)≤G4,
(
α2−6α+6

)
λ1 +

(
10α−8α2+2

)
λ2≥G1, α ∈ [0.8,1],

(
α2−6α+6

)
λ1 +

(
10α−8α2+2

)
λ2≥G3, α ∈ [0.7,0.8],

(
α2−6α+6

)
λ1 +

(
10α−8α2+2

)
λ2≥G3, α ∈ [0,0.7],

λ1 + λ2 = 1, λ1≥ 0,λ2≥ 0.

By solving this problem approximately (for a finite number ofvalues ofα), we
get c = 3.636, G1 = 2.773, G3 = G4 = 3.636, c1 = c2 = d2 = 0, d1 = 0.864,
λ1 = 0.409,λ2 = 0.591.

4 Concluding Remarks

Two models of decision making based on different types of initial hierarchical
information about states of nature have been studied in the paper. We have shown
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that both models can be brought into a form which allows us to give general
algorithms to determine optimal solutions.

It should be noted that we have focused in this paper on the basic decision
problem. However, the fundamental ideas of this paper should be also applicable
to more complex decision problems, like multi-criteria decision making and data-
based decision problems. Another topic of furhter researchis to extend the results
obtained here to other optimality criteria which are more sophisticated than the
criteria from (2) and (15), which take into account only the lower interval limits.
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Graphical Representation of Asymmetric
Graphoid Structures

B. VANTAGGI
Universit̀a “La Sapienza,” Roma, Italy

Abstract

Independence models induced by some uncertainty measures (e.g. condi-
tional probability, possibility) do not obey the usual graphoid properties,
since they do not satisfy the symmetry property. They are efficiently rep-
resentable through directed acyclic l-graphs by using L-separation criterion.

In this paper, we show that in general there is not a l-graph which de-
scribes completely all the independence statements of a given model; hence
we introduce in this context the notion of minimal I-map and we show how
to build it, given an ordering on the variables. In addition,we prove that, for
any ordering, there exists an I-map for any asymmetric graphoid structure.

Keywords

conditional independence models, directed acyclic graph,L-separation criterion, I-map

1 Introduction

The use of graphs to describe conditional independence structures (the set of con-
ditional independence statements “X is independent ofY given Z”) induced by
probability distributions has a long and rich tradition; one can distinguish three
main classic approaches based onundirected graphs[12], directed acyclic graphs
[14], or chain graphs[15]. These graphical structure obey graphoid properties
(symmetry, decomposition, weak union, contraction, intersection). On the other
hand, the independence models based on the classic definition of stochastic in-
dependence in the usual probabilistic setting, have semi-graphoid structure (they
satisfy all graphoid properties except intersection). However, if the probability
distribution is strictly positive, the independence modelhas a graphoid structure.
Hence, the lack of intersection property is due to zero probability on some of
the possible events. Actually, it is well-known (see, for example, [4, 6]) that the
classic definition of stochastic independence presents counter-intuitive situations
when zero or one probability events are involved: for example, a possible event
with zero or one probability is independent of itself.

562
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We stress that zero probability values are interesting not only from a merely
theoretical point of view, but they are met in many real problems, for example in
medical diagnosis [7] , statistical mechanics, physics, etc. [11].

The counter-intuitive situations cannot be avoided withinthe usual framework
of conditional probability. In the more general framework (de Finetti [8], Du-
bins [9]), a definition of stochastic independence (called cs-independence), which
avoids these critical situations, has been introduced in [4] and the main properties
have been studied. We recall that the aforementioned definition agrees with the
classic one when the probabilities of the relevant events are different from 0 and 1.

The main properties connected with graphoid structures were proved in [16]:
these independence models generally are not closed with respect to the symmetry
property. Hence, the classic separation criterion are not apt to represent asym-
metric independence statements, so in [17] a new separationcriterion (called L-
separation) for directed acyclic l-graphs has been introduced. It has been shown
also that L-separation criterion satisfyasymmetric graphoidproperties (graphoid
properties except symmetry).

In this paper we deepen the problem of representing such cs-independence
model, together with the logical constraints, using L-separation criterion in di-
rected acyclic l-graphs. In particular, Example 1 shows that cs-independence struc-
tures are richer than the graphical ones, i.e. for some independence model there
is no graph able to describe all the independence statements. Hence, in Section 5
we define in this context (analogously to [14, 10]) the notionof minimal I-map
for a given independence modelM : a directed acyclic l-graph such that every
statement represented by it is inM , while the graph obtained by removing any
arrow from it would represent an independence statement notin M .

Moreover, in Section 5 we show how to build such minimal I-maps underling
the differences arising from the lack of symmetry property,and, in addition, we
prove that any ordering on the variables gives rise to an I-map for any indepen-
dence modelM obeying to asymmetric graphoid properties.

On the other hand, the ordering has a crucial role: in fact, ifa perfect I-map
(able to describe all the independence statements) exists,it can be built using only
some specific ordering on the variables.

2 Independence in a coherent probability setting

It is well known that the classic definition of stochastic independence of two
events

P(A∧B) = P(A)P(B) (1)

gives rise to counter-intuitive situations when one of the events has probability 0
or 1. For instance an eventA with P(A) = 0 is stochastically independent of itself,
while it is natural (due to the intuitive meaning of independence) to require for any
event to be dependent on itself. Other classic formulationsareP(A|B) = P(A) and
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P(A|B) = P(A|Bc), that are equivalent to (1) for events such that the probability
of B is different from 0 and 1, but in that “extreme” cases (without positivity
assumption) they may even lack meaning in the Kolmogorovianapproach.

Anyway, some critical situations related to logical dependence continue to
exist (see [16]) also considering the last stronger formulation in the more general
framework of de Finetti [8]:

Definition 1 Given a Boolean algebraA , a conditional probability onA ×A0

(with A0 = A \ { /0}) is a function P(·|·) into [0,1], which satisfies the following
conditions:
(i) P(·|H) is a finitely additive probability onA for any H∈ A0

(ii) P(H|H) = 1 for every H∈ A0

(iii) P(E∧A|H) = P(E|H)P(A|E∧H), whenever E,A∈ A and H,E∧H ∈ A0

Note that(iii ) reduces, whenH = Ω (whereΩ is thecertainevent), to the classic
“chain rule” for probabilityP(E∧A) = P(E)P(A|E). In the caseP0(·) = P(·|Ω)
is strictly positive onA0, any conditional probability can be derived as a ratio
(Kolmogorov’s definition) by this unique “unconditional” probabilityP0.

As proved in [6], in all other cases to get a similar representation we need to
resort to a finite familyP = {P0, . . . ,Pk} of unconditional probabilities:
- everyPα is defined on a proper set of events (takingA0 = A)

Aα = {E ∈ Aα−1 : Pα−1(E) = 0}
- for each eventB∈A0 there exists an uniqueα such thatPα(B) > 0 and for every

conditional eventE|H one hasP(E|H) = Pα(E∧H)
Pα(H) with Pα(H) > 0.

The class of probabilitiesP = {P0, . . . ,Pk} is said toagree with the condi-
tional probabilityP(·|·).

Such theory of conditional probability allows to handle also partial probabil-
ity assessment on an arbitrary set of conditional eventsF = {E1|H1, . . . ,En|Hn}
through the concept of coherence: an assessment iscoherentif it is the restriction
of a conditional probability defined onA×A0, whereA is the algebra generated
by {E1,H1, . . . ,En,Hn}. A characterization of coherence was proven in [3]:

Theorem 1 LetF be an arbitrary finite family of conditional events andC denote
the set of atoms Cr generated by the events E1,H1, . . . ,En,Hn. For a real function
P onF the following two statements are equivalent:
(i) P is a coherent conditional probability onF ;
(ii) there exists a class of unconditional probabilities{P0, . . . Pk}, with P0 de-
fined onA0 and Pα (α > 0) being defined onAα = {E ∈ Aα−1 : Pα−1(E) = 0},
such that for any Ei |Hi ∈ F there is a unique Pα, with Pα(Hi) > 0, and

P(Ei|Hi) =

∑
Cr⊆Ei∧Hi

Pα(Cr)

∑
Cr⊆Hi

Pα(Cr)
.
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The class of probabilitiesP = {P0, . . . ,Pk} agreeing with the given coherent as-
sessmentP is not unique. But, given one classP = {P0, . . . ,Pk}, for each eventH
there is a uniqueα such thatPα(H) > 0 andα is saidzero-layerof H according
toP , and it is denoted by the symbol◦(H). In particular, for every probability we
have◦(Ω) = 0, while we define◦( /0) = ∞. Thezero-layer of a conditional event
E|H is defined (see [4]) as

◦(E|H) = ◦(E∧H)−◦(H).

In the sequel, to avoid cumbersome notation, the conjunction symbol∧ among
events is omitted.

In this framework the following definition of stochastic independence has
been proposed in [4] and extended to conditional independence in [16]:

Definition 2 Given a coherent conditional probability P, defined on a family F
containingD = {A|BC,A|BcC,Ac|BC,Ac|BcC,B|AC,B|AcC,Bc|AC,Bc|AcC}, A is
conditionally independent of B given C with respect to P (in symbol A⊥⊥csB|C) if
both the following conditions hold:

(i) P(A|BC) = P(A|BcC) ;
(ii) there exists a class{Pα} of probabilities agreeing with the restriction of P

to the familyD, such that
◦(A|BC) = ◦(A|BcC) and ◦ (Ac|BC) = ◦(Ac|BcC) .

Note that if 0< P(A|BC) = P(A|BcC) < 1 (so 0< P(Ac|BC) = P(Ac|BcC) < 1),
then both equalities in condition (ii) are trivially satisfied

◦(A|BC) = 0 = ◦(A|BcC) and ◦ (Ac|BC) = 0 = ◦(Ac|BcC).

Hence, in this case condition (i) completely characterizesconditional cs-indepen-
dence, and, in addition, this definition coincides with the classic formulations
when alsoP(B|C) and P(C) are in (0,1). However, in the other cases (when
P(A|BC) is 0 or 1) condition (i) needs to be “reinforced” by the requirement that
also their zero-layers must be equal, otherwise we can meet critical situations
(see, e.g. [6]).

Observation 1 Even if different agreeing classes generated by the restriction of
P onD may give rise to different zero-layers, it has been proved in[5, 6] that
condition(ii) of Definition 2 either holds for all the agreeing classes of P or for
none of them.

Notice that for every eventA this notion of stochastic independence is always
irreflexive (also when the probability ofA is 0 or 1) because◦(A|A) = 0, while
◦(A|Ac) = ∞. Moreover, conditional independence of two possible eventsA andB
imply the logical independenceof A andB, i.e. all the events of the kindA∗∧B∗

is possible, withA∗ - analogouslyB∗ - is eitherA or Ac. (see [4]).
In [4, 16] theorems characterizing stochastic and conditional independence of

two logically independent eventsAandB in terms of probabilitiesP(B|C),P(B|AC)
andP(B|AcC) is given, giving up any direct reference to the zero-layers.
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Theorem 2 Let A,B be two events logically independent with respect to the event
C. If P is a coherent conditional probability such that P(A|BC) = P(A|BcC), then
A⊥⊥csB |C if and only if one of the following conditions holds:

(a) 0 < P(A|BC) < 1;

(b) P(A|BC) = 0 and the extension of P to B|C and B|AC satisfies one of the
following conditions

1. P(B|C) = 0, P(B|AC) = 0,
2. P(B|C) = 1, P(B|AC) = 1,
3. 0 < P(B|C) < 1, 0 < P(B|AC) < 1;

(c) P(A|BC) = 1 and the extension of P to B|C and B|AcC satisfies one of the
following conditions

1. P(B|C) = 0, P(B|AcC) = 0,
2. P(B|C) = 1, P(B|AcC) = 1,
3. 0 < P(B|C) < 1, 0 < P(B|AcC) < 1.

Indeed, in [16] the definition of cs-independence has been extended to the case of
finite sets of events and to finite random variables.

Definition 3 LetE1,E2,E3 be three different partitions ofΩ such thatE2 is not
trivial. The partitionE1 is stochastically independent ofE2 givenE3 with re-
spect to a coherent conditional probability P (in symbolsE1⊥⊥csE2|E3 [P]) iff
Ci1⊥⊥csCi2|Ci3 [P] for every Ci1 ∈ E1,Ci2 ∈ E2, Ci3 ∈ E3 such that Ci2 ∧Ci3 6= /0.

Let X = (X1, . . . ,Xn) be a random vector with values inRX ⊆ IRn. The partitionE
of the sure eventΩ generated byX is denoted byEX = {X = x : x∈ RX}.

Definition 4 Let (X,Y,Z) be a finite discrete random vector with values in R⊆
RX×RY×RZ andEX , EY, EZ be the partitions generated by X,Y and Z, respec-
tively. Let P be a coherent conditional probability onF containing{A|BC : A∈
EX, B∈ EY, C∈ EZ}: then X is stochastically cs-independent of Y given Z with
respect to P (in symbol X⊥⊥csY|Z [P]) iff EX⊥⊥csEY|EZ [P].

Note that in Definition 4 it is not required that the domain of the random vector
(X,Y,Z) must beR= RX ×RY×RZ, so logical constraints among the variables
can be considered.

The setMP of cs-independence statements induced by a coherent conditional
probabilityP of the formXI⊥⊥csXJ|XK , whereI , J andK are three disjoint subsets,
is calledcs-independence model.

Every cs-independence model induced byP is closed with respect to the fol-
lowing properties (for the proof see [16]):

Decomposition property

XI⊥⊥cs[XJ,XK ]|XW [P] =⇒ XI⊥⊥csXJ|XW [P];
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Reverse decomposition property

[XI ,XJ]⊥⊥csXW|XK [P]⇒ XI⊥⊥csXW|XK [P];

Weak union property

XI⊥⊥cs[XJ,XK ]|XW [P]⇒ XI⊥⊥csXJ|[XW,XK ] [P];

Contraction property

XI⊥⊥csXW|[XJ,XK ] [P]& XI⊥⊥csXJ|XK [P]⇒ XI⊥⊥cs[XJ,XW]|[XK ] [P];

Reverse contraction property

XI⊥⊥csXW|[XJ,XK ] [P]& XJ⊥⊥csXW|XK [P] ⇒ [XI ,XJ]⊥⊥csXW|[XK ] [P];

Intersection property

XI⊥⊥csXJ|[XW,XK ] [P] & XI⊥⊥csXW|[XJ,XK ] [P] ⇒ XI⊥⊥cs[XJ,XW]|[XK ] [P];

Reverse intersection property

XI⊥⊥csXW|[XJ,XK ] [P]& XJ⊥⊥csXW|[XI ,XK ] [P]⇒ [XI ,XJ]⊥⊥csXW|[XK ] [P].

Hence, these models satisfy all graphoid properties (see [14],[15]) except the
symmetry property

XI⊥⊥csXJ|XK [P]⇒ XJ⊥⊥csXI |XK [P]

and reverse weak union property

[XJ,XW]⊥⊥csXI |[XK ] [P]⇒ XJ⊥⊥csXI |[XW,XK ] [P].

In [16] the models closed with respect to reverse weak union property, but not
necessarily with respect to symmetry, (calleda-graphoid) were classified. The
possible lack of symmetry is not counterintuitive (see [4, 6]). Obviously, when
the probabilityP is strictly positive on possible events, the cs-independence model
induced byP is closed with respect to graphoid properties.

3 Basic graphical concepts

A l-graph G is a triplet(V,E,B), whereV is a finite set ofvertices, E is a set of
edges(i.e. a subset of ordered pairs of distinct vertices ofV×V \{(v,v) : v∈V})
andB is a family (possibly empty) of subsets of vertices. The elements of the fam-
ily B = {B , B⊆V} are represented graphically by boxes enclosing the vertices
in B. If B is empty, then the l-graph is a graph.

The attention in the sequel will be focused ondirected acyclicl-graphs, and
to introduce this kind of l-graphs we need to recall some basic notion from graph
theory. A directed l-graph is a l-graph whose set of verticesE satisfies the follow-
ing property:(u,v) ∈ E⇒ (v,u) 6∈ E. A directed edge(u,v) ∈ E is represented by
an arrow pointing fromu to v, u→ v. We say thatu is aparentof v andv a child
of u. The set of parents ofv is denoted bypa(v) and the set of children ofu by
ch(u).
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A pathfrom u to v is a sequence of distinct verticesu = u1, . . . ,un = v, n≥ 1
such that eitherui → ui+1 or ui+1→ ui for i = 1, . . . ,n−1. A directed pathfrom
u to v is a sequenceu = u1, . . . ,un = v of distinct vertices such thatui → ui+1

for all i = 1, . . . ,n−1. If there is a directed path fromu to v, we say thatu is an
ancestor ofv or v a descendant ofu and we writeu 7→ v. The symbolsan(v) and
ds(u) denote the set ofancestorsof v and the set ofdescendantsof u (vertices
thatu∈ an(v) andv∈ ds(u)), respectively. Note that, according to our definition,
a sequence consisting of one vertex is a directed path of length 0, and therefore
every vertex is its own descendent and ancestor, i.e.u∈ an(u),u∈ ds(u).

A reverse directed pathfrom u to v is a sequenceu= u1, . . . ,un = v of distinct
vertices such thatui ← ui+1 for all i = 1, . . . ,n−1.

A n-cycle is a sequence ofu1, . . . ,un, with n > 3, such thatun → u1 and
u1, . . . ,un is a directed path. A directed graph isacyclicif it contains no cycles.

Given an acyclic directed graphG, the relation7→ defines apartial ordering
≺G on the set of vertices, in particular for anyu,v∈V we have that ifu∈ an(v),
thenu≺G v, while if u∈ ds(v), thenv≺G u.

3.1 L-graphs and logical constraints

In Section 2 the relationship between logical independenceand stochastic cs-
independence has been shown, so we need to visualize which variables are linked
by a logical constraint, and for this purpose we refer to the familyB of subsets of
vertices. Since, given a random vectorX = (X1, . . . ,Xn), a vertexi is associated
with each random variableXi , by means of the boxesB∈ B , we visualize the sets
of random variables linked by a logical constraint (more precisely, a logical con-
straint involves the events of the partitions generated by the random variables).
Recall that the partitionsE1, . . . ,En arelogically independentif for every choice
Ci ∈ Ei , with i = 1, ...,n, the conjunctionC1∧ . . .∧Cn 6= /0.

Obviously, if n partitions are logically independent, then arbitrary subsets of
these partitions are logically independent.

However,n partitionsE1, . . . ,En need not be logically independent, even if
everyn−1 partitions can be logically independent; it follows that there is alog-
ical constraintsuch that an event of the kindC1∧ . . .∧Cn is impossible, with
Ci ∈ Ei . For example, supposeE1 = {A,Ac}, E2 = {B,Bc} andE3 = {C,Cc} are
three distinct partitions ofΩ with A∧B∧C = /0. All the couples of that partitions
are logically independent, but they are not logically independent. Actually, the
partitionE1 is not logically independent of the partition generated by{E2,E3}.
The same conclusion is reached replacingE1 byE2 orE3.

Given n partitions and some logical constraints among such partitions, it is
possible, for each constraint, to find theminimal subset{E1, . . . ,Ek} of partitions
generating it. Actually,E1, . . . ,Ek are such thatC1∧ . . .∧Ck = /0, with Ci ∈ Ei ,
and, in addition, for allj = 1, . . . ,k, C1∧ . . .∧Cj−1∧Cj+1∧ . . .∧Ck 6= /0. Such set
of partitions{E1, . . . ,Ek} is said theminimal setgenerating the given logical con-
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straint, and it is singled-out graphically by the boxB= {1, . . . ,k}, which includes
exactly the vertices associated to the corresponding random variablesX1, . . . ,Xk.
Then, in the sequel we call the boxesB∈ B logical components.

4 Separation criterion for directed acyclic graphs

To represent conditional cs-independence models we need torecall L-separation
criterion . In fact, the classic separation criterion for directed acyclic graphs (see
[14]), known as d-separation (where d stands for directional), is not suitable for
our purposes, because it induces a graphoid structure, and so it is not useful to
describe a model where symmetry property may not hold (see Example 1).

Definition 5 Let G be an acyclic directed graph. A path u1, . . . ,un, n≥ 1 in G is
blocked by a set of vertices S⊂V, whenever there exists1 < i < n such that one
of the following three condition holds:

1. ui+1→ ui → ui−1 (i.e. ui−1,ui ,ui+1 is the reverse directed path) and ui ∈ S

2. ui−1← ui → ui+1 and ui ∈ S

3. ui−1→ ui ← ui+1 and ds(ui) 6∈ S

The three conditions of Definition 5 are illustrated by Figure 1 (the grey vertices
belong toS).

i

iu

u

i+1

i−1
u

i+1 u u

uu
u

u
ds(u  )

i

ii−1

i−1

i+1

Figure 1: Blocked paths

Note that the definition of blocked path strictly depends on the direction of
the path, in fact the main difference between our notion and that used in d-
separation criterion [14] consists essentially in condition 1. of Definition 5. The
pathui−1,ui ,ui+1 drawn in the left-side of Figure 1 is blocked byui , while its
reverse is not blocked byui because of the direction. Hence, the reverse path of a
blocked one is not necessarily blocked according to our definition, so the blocking
path notion does not satisfy the symmetry property.

The second and third cases of Definition 5 are like in d-separation criterion.
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Definition 6 Let G be a directed acyclic l-graph and let U, W and S be three
pairwise disjoint sets of vertices of V . We say that U is L-separated from W by
S in G and write symbol(U,W|S)l

G, whenever every path in G from U to W is
blocked by S and moreover, the following “logical separation” condition holds

∀B∈ B s.t. B⊆U ∪W∪S one has either B∩U = /0 or B∩W = /0. (2)

Figure 2 clarifies when condition (2) holds (the set of verticesVi andSare repre-
sented as ovals).

V1
V2S

B1

B2

V1 S V2

B

Figure 2: Representation of logical components: in the left-sideV1 andV2 are not
connected, in the right-side they are connected byB

Since the notion of blocked path is not necessarily symmetric, it follows that
(U,W|S)l

G 6⇒ (W,U |S)l
G. Actually, the lack of symmetry property depends on the

notion of blocked path and not on the condition of logical separation (2).

Theorem 3 [17] Let G = (V,E,B) be a graph. The following properties hold
1. (Decomposition property)

(U,W∪Z|S)l
G =⇒ (U,W|S)l

G

2. (Reverse decomposition property)
(U ∪Z,W|S)l

G =⇒ (U,W|S)l
G

3. (Weak union property)
(U,W∪Z|S)l

G =⇒ (U,W|Z∪S)l
G

4. (Reverse weak union property)
(U ∪Z,W|S)l

G =⇒ (U,W|Z∪S)l
G.

5. (Contraction property)
(U,W|S)l

G & (U,Z|W∪S)l
G =⇒ (U,W∪Z|S)l

G

6. (Reverse contraction property)
(U,W|S)l

G & (Z,W|U ∪S)l
G =⇒ (U ∪Z,W|S)l

G

7. (Intersection property)
(U,W|Z∪S)l

G & (U,Z|W∪S)l
G =⇒ (U,W∪Z|S)l

G

8. (Reverse intersection property)
(U,W|Z∪S)l

G & (Z,W|U ∪S)l
G =⇒ (U ∪Z,W|S)l

G
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5 Minimal I-map

Given an independence modelM over a set of variables (possibly) linked by a
set of logical constraints, we look for a directed acyclic l-graphG describing all
the statementsT in M and localizing the set of variables involved in some logi-
cal constraint. But, generally, it is not always feasible tohave such graphG (i.e.
describing all the independence statements) for a givenM as shown by the fol-
lowing example.

Example 1.Let (X1,X2,X3,X4) be a random vector such that the range ofXi is
{0,1}, let us denoteAi = (Xi = 1) (soAc

i = (Xi = 0)), and suppose thatA1⊂ A2.
Consider the following coherent conditional probability

P(A1A2) = 1
5, P(Ac

1A2) = 3
10, P(Ac

1Ac
2) = 1

2,

P(A3A4|A1A2) = P(A3A4|Ac
1A2) = P(A3Ac

4|A1A2) = P(A3Ac
4|Ac

1A2) = 0,

P(Ac
3A4|A1A2) = 2

5 = P(Ac
3A4|Ac

1A2),

P(Ac
3Ac

4|A1A2) = 3
5 = P(Ac

3Ac
4|Ac

1A2),

P(A4|A2A3) = 2
5, P(A4|Ac

2A3) = 3
20, P(A2|A3) = 1

5,

P(A1|A2A3A4) = 1
2, P(A1|A2A3Ac

4) = 2
5.

SinceP(A1|A2) = 2
5, it follows from condition (b) 3. of Theorem 2 the validity of

the statementsA3A4⊥⊥csA1|A2 andA3Ac
4⊥⊥csA1|A2; moreover from condition (a)

of the same theorem it follows that alsoAc
3A4⊥⊥csA1|A2 andAc

3Ac
4⊥⊥csA1|A2 hold,

so we have (by Definition 3 and Definition 4) that(X3,X4)⊥⊥csX1|X2.
While, the statementX1⊥⊥cs(X3,X4)|X2 does not hold underP, in fact we have

P(A1|A2A3A4) = 1
2 6= P(A1|A2).

The validity of the two conditional independence statementsX3⊥⊥csX4|X2 and
X4⊥⊥csX3|X2 follows from these equalitiesP(A3|A2A4) = 0 = P(A3|A2Ac

4) and
P(A4|A2) = 0.4 = P(A4|A2A3) = P(A4|A2Ac

3).
Note thatP(A3|A4) = 0= P(A3|Ac

4) andP(A4) = 0.2= P(A4|A3) = P(A4|Ac
3),

soX4⊥⊥csX3 and its symmetric statement hold underP.
Therefore, the independence modelMP (which has a-graphoid structure)

contains the statements(X3,X4)⊥⊥csX1|X2 , X3⊥⊥csX4|X2 , X3⊥⊥csX4|(X1,X2) ;
X4⊥⊥csX3|X2 , X4⊥⊥csX3|(X1,X2) , X3⊥⊥csX4 , X4⊥⊥csX3.

Note thatMP is not completely representable by a directed acyclic l-graph.

Hence, we need to introduce, analogously as in [14], the notion of I-map.

Definition 7 A directed acyclic l-graph G is an I-map for a given independence
modelM iff every independence statement represented by means of L-separation
criterion in G is also inM .

Thus an I-mapG forM may not represent every statement ofM , but the ones
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it represents are actually inM , it means that the setMG of statements described
by G is contained inM .

An I-mapG for M is saidminimal if removing any arrow from the l-graphG
the obtained l-graph will no longer be an I-map forM .

Given an independence modelM over a random vector(X1, ...,Xn), let
π = (π1, ...,πn) be any ordering of the given variables, and, in addition, forany
j, let Uπ j = {π1, ...,π j−1} be the set of indexes beforeπ j , andDπ j the minimal
subset ofUπ j such thatXπ j⊥⊥csXRπ j

|XDπ j
whereRπ j = Uπ j \Dπ j ; moreover, let

Wπ j = {v∈Uπ j : v∈ Dπk ∩Dπi , i 6= k, i ≤ j , k≤ j} andSπ j the maximal subset
of Uπ j such thatXSπ j

⊥⊥csXπ j |XWπ j
.

The subsetΘπ = {Xπ j⊥⊥csXRπ j
|XDπ j

, XSπ j
⊥⊥csXπ j |XWπ j

: j = 1, ...n} is said

the basic list of M relative toπ. From the basic listΘπ and the set of logical
componentsB , a directed acyclic l-graphG (related toπ) is obtained by draw-
ing the boxesB ∈ B and designatingDπ j as parents of vertexπ j (for any vertex
v∈Dπ j , an arrow goes fromv to π j ), moreover, for any vertexπi ∈Uπ j \Sπ j such
thatπi ∈ ds(w), with w∈Wπ j , butπi 6∈ an(π j) draw an arrow fromπi to π j .

This construction ofG from the basic list differs from the classic construc-
tion given for directed acyclic graphs with d-separation [14] essentially for the
second part, which is useful to avoid the introduction of symmetric statements
not in the given independence model. For example, consider the independence
modelM = {X1⊥⊥csX3|X2} and considering the orderingπ = (2,3,1), the related
directed acyclic l-graph is obtained following these steps: draw an arrow from 2 to
3, then consider the vertex 1 and draw an arrow from 2 to 1; now since 3∈ ds(2)
(i.e. D3 = {2}), but 3 6∈ an(1) and, since the statementX3⊥⊥csX1|X2 is not inM ,
we must draw an arrow from 3 to 1.

Now, we must prove that such directed acyclic l-graph obtained from the basic
list Θπ is an I-map forM .

Theorem 4 Let M be an independence model over a set of random variables
linked by a set of logical constraints. Given an orderingπ on the random vari-
ables, ifM is an a-graphoid, then the directed acyclic l-graph G generated by the
basic listΘπ is an I-map forM .

Proof: For an a-graphoid of one variable it is obvious that the directed acyclic
l-graph is an I-map. Suppose for a-graphoid structure with less thank variables
that the directed acyclic l-graph is an I-map.

Let M be an independence model underk variables. Given an orderingπ on
the variables, letXn be the last variable according toπ (n denotes the vertex inG
associated toXn), M ′ the a-graphoid formed by removing all the independence
statements involvingXn from M andG′ the directed acyclic l-graph formed by
removingn and all the arrows going ton (they cannot depart fromn because is
the last vertex) inG.

SinceXn is the last variable in the orderingπ, it cannot appear in any set of
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parentsDπ j (with j < k), and the basic listΘ′ = Θ \ {Xn⊥⊥csXRn|XDn} generates
G ′. SinceM ′ hask−1 variables,G ′ is an I-map of it.

G is an I-map ofM iff the setMG of the independence statements represented
in G by L-separation criterion is also inM .

If Xn does not appear inT, then, beingT = (XI⊥⊥csXJ|XK) ∈MG , T must be
represented also inG ′, if it were not, then there would be a path inG ′ from I to
J that is not blocked (according to L-separation) byK. But then it must be not
blocked also inG, since the addition of a vertex and some arrows going to the
new vertex cannot block a path. SinceG ′ is an I-map for ofM ′, T must be an
element of it, butM ′ ⊂M , soT ∈M .

Otherwise (ifXn appears inT), T falls into one of the following three situa-
tions:

1. suppose thatT = ((XI ,Xn)⊥⊥csXJ|XK) ∈MG, let Xn⊥⊥csXRn|XDn ∈M (by
construction). ObviouslyJ andDn have no vertices in common, otherwise
we would have a path from a vertex inj ∈ J∩Dn pointing to n, so by
L-separationn would not be separated fromJ givenK in G.

Since there is an arrow from every vertex inDn to n and every path fromn
to J is blocked byK in G, then every path fromDn to J must be blocked by
K in G. Therefore, every path from bothDn andI to J are blocked byK in
G. Now, if there is a logical componentB∈ B such thatB⊆ Dn∪ I ∪J∪K
and bothB∩(Dn∪ I) andB∩J are not empty, then remove a suitable vertex
in B from Dn, w.l.g. Hence, the statement(XI ,XDn)⊥⊥csXJ|XK belongs to
MG. This statement does not contain the variableXn, hence, beingG′ an
I-map forM ′ ⊂M , then(XI ,XDn)⊥⊥csXJ|XK ∈M .

SinceM is closed under a-graphoid properties, (by weak union property)
Xn⊥⊥csXJ|(XI ,XDn,XK)∈M and it follows(XI ,XDn,Xn)⊥⊥csXJ|XK ∈M (us-
ing reverse contraction property), so(XI ,Xn)⊥⊥csXJ|XK ∈M by decompo-
sition property.

2. suppose thatT = (XI⊥⊥cs(XJ,Xn)|XK) ∈MG, it means, by definition of L-
separation and from the assumption thatn is the last vertex in the ordering,
that every path going fromI to J∪n is L-separated byK. Therefore, if there
is no path as in condition 1. of Definition 5, then in the remaining two cases,
also the statementT1 = ((XJ,Xn)⊥⊥csXI |XK) ∈MG, so the proof goes in the
same line of that in step 1.

Otherwise, (if there is a path as in condition 1 of Definition 5), then
I 6⊆ an(n). Therefore, there is a subsetWn⊆Un such that every path between
n andI ∪K is blocked byWn. Note that,Wn = W1∪W2 (W1 or W2 can be
empty) withW2 ⊆ Dn andW1 ⊆ an(Dn). Moreover, letJ = J1∪ J2∪ J3

(J1 or J2 or J3 can be empty) withJ1 ⊆ ds(W)∩ an(K), while J2 ⊆W
and J3 = J \ (J1 ∪ J2), so for any j ∈ J3 one has that eitherj ∈ an(W)
or j ∈ ds(W)∩an(n).
By construction, one has that every path betweenn∪ J3 andI ∪K ∪ J1 is
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blocked byWn. Hence, one has that(XI ,XK ,XJ1)⊥⊥cs(Xn,XJ3)|XWn and its
symmetric statement belong toM .

Therefore, one hasXI⊥⊥cs(Xn,XJ3)|(XWn,XK ,XJ1)∈M by weak union prop-
erty. Since alsoT2 = (XI⊥⊥cs(XWn,XJ1)|XK) ∈MG and since that statement
T2 does not involven, T2∈M , so the statementXI⊥⊥cs(Xn,XWn,XJ1,XJ3)|XK)
belong toM (by contraction property), and it follows thatXI⊥⊥cs(Xn,XJ)|XK

belongs toM (by reverse decomposition).

3. suppose thatT = (XI⊥⊥csXJ|(XK ,Xn)) ∈MG. It must be the case thatI is
L-separated byJ givenK in G for if it were not, then there would be a path
from some vertex inI to some vertex inJ not passing troughK. But I is
separated byJ givenn andK, so this path would pass throughn; but n is
the last vertex in the ordering, so all arrows go on it. Hence,it cannot block
any unblocked path, and soT1 = (XI⊥⊥csXJ|XK) ∈MG.

The statementsT1 and T imply that either (XI ,Xn)⊥⊥csXJ|XK or
XI⊥⊥cs(XJ,Xn)|XK holds inG: in fact, if both I andJ are connected ton,
sincen is the last vertex (fromn an arrow cannot leave), then there is a
directed path fromI to n and another fromJ to n, so that one would get
XI⊥⊥csXJ|(XK ,Xn) 6∈MG. So, the conclusion follows by step 1 and 2.

✷

Example 1(continued) – The following pictures show the minimal I-mapob-
tained by means of the proposed procedure for two possible orderings:(1,2,3,4)
on the left-side and(3,4,1,2) on the right-side

2

4

1

4

3 3

12

Figure 3: Two possible I-Maps for the independence modelMP of Example 1

Actually, the picture in the left-side represents the independence statements
(X3,X4)⊥⊥csX1|X2 , X3⊥⊥csX4|X2 , X4⊥⊥csX3|X2 and those implied by a-graphoid
properties; while that one on the right-side describes the statementX3⊥⊥csX4 and
its symmetric one. Note that these two graphs actually are minimal I-maps; in fact
removing any arrow from them, we may read independence statements not inMP.
The blockB = {1,2} localizes the logical constraintA1⊂ A2.

If for a given independence model overn variables there exists a perfect map
G, then (at least) one ofn! orderings among the variables will generate the l-graph
G. More precisely, such orderings, which give rise toG, are all the orderings
compatible with the partial order induced byG.
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6 Conclusions

The L-separation criterion for directed acyclic graphs hasbeen recalled together
with its main properties. This is very useful for effective description of indepen-
dence models induced by different uncertainty measures [1,2, 4, 5, 6, 13, 16,
18, 19]. In fact, these models cannot be represented efficiently by the well-known
graphical models [12, 14], because the related separation criteria satisfy the sym-
metry property.

In this paper, we have considered the L-separation criterion introduced in [16],
which satisfies asymmetric graphoid properties. We have shown that for some
independence models there is not a perfect map even using L-separation criterion.

Therefore, the notion of minimal I-map has been redefined in this context and
we have shown how to build it given an ordering on the variables. In addition, we
have proved that for any ordering on the variables there is a minimal I-map for a
given independence model obeying to asymmetric graphoid properties.
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Design of Iterative Proportional Fitting
Procedure for Possibility Distributions∗

JI ŘINA VEJNAROVÁ
Laboratory for Intelligent Systems, Prague, Czech Republic

Abstract

We design an iterative proportional fitting procedure (parameterized by a
continuoust-norm) for computation of multidimensional possibility distri-
butions from its marginals, and discuss its basic properties.

Keywords

multidimensional possibility distributions, marginal problem, triangular norm, iterative
proportional fitting procedure

1 Introduction

The complexity of practical problems that are of primary interest in the field of
artificial intelligence usually results in the necessity toconstruct models with the
aid of a great number of variables: more precisely, hundredsor thousands rather
than tens. However, distributions of such dimensionality are usually not available;
the global knowledge (joint distribution) must be integrated on the basis of its
local pieces (marginal distributions). This problem type is often referred to as a
marginal problem. More precisely, the marginal problem addresses the question of
whether or not a common extension exists for a given set of marginal distributions.

In [14] we introduced a possibilistic marginal problem and found necessary
and sufficient conditions, respectively. This contribution is a natural continuation
of our work — it tries to solve a practical problem: how to compute the values of
an extension. Its aim is to introduce a possibilistic version of Iterative Proportional
Fitting Procedure and to discuss its basic properties.

Iterative Proportional Fitting Procedure (IPFP) was originally designed by
Deming and Stephan [3] in 1940 for adjustment of frequenciesin contingency
tables. Later, IPFP was applied to several problems in different domains; e.g. for

∗This work has been partially supported by the GAČR Grant No. 201/02/1269 and the GA AV̌CR
Grant No. A1075104.
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maximum likelihood estimate in a hierarchical model, or forcomputation of val-
ues of joint probability distributions in a probabilistic expert system [6] (for other
applications see [9]).

This contribution is organized as follows. First an overview, followed by the
basic notions (Section 2); then in Section 3 we briefly recalla possibilistic marginal
problem, introduce possibilistic IPFP and demonstrate, ona simple example, how
its computations are performed. In Section 4 we find a sufficient condition for its
convergence and present two counterexamples.

2 Basic Notions

The purpose of this section is to give, as briefly as possible,an overview of basic
notions of De Cooman’s measure-theoretical approach to possibility theory [2],
necessary for understanding the paper. We will start with the notion of a triangular
norm, since most notions in this paper are parameterized by it.

2.1 Triangular Norms

A triangular norm (or a t-norm) T is an isotonic, associative and commutative
binary operator on[0,1] (i.e.T : [0,1]2→ [0,1]) satisfying the boundary condition:
for anyx∈ [0,1]

T(1,x) = x.

Let x,y ∈ [0,1] and T be a t-norm. We will call an elementz ∈ [0,1]
T-inverseof x w.r.t. y if

T(z,x) = T(x,z) = y. (1)

It is obvious that ifx≤ y then there are noT-inverses ofx w.r.t. y. TheT-residual
y△Tx of y by x is defined as

y△Tx = sup{z∈ [0,1] : T(z,x)≤ y}.

A t-norm T is calledcontinuousif T is a continuous function. Within this
paper, we will only deal with continuoust-norms, since for continuoust-norms
y△Tx is the greatest solution of the equation (1) inz (if it exists).

Example 1 The most important examples of continuoust-norms are:

(i) Gödel’s t-norm: TG(x,y) = min(x,y);

(ii) product t-norm: TΠ(x,y) = x ·y;

(iii) Lukasziewicz’s t-norm: TL(x,y) = max(0,x+y−1);

and the corresponding residuals forx > y (otherwisey△Tx = 1 for anyt-norm):

(i) y△TGx = y;
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(ii) y△TΠx = y
x ;

(iii) y△TL x = y−x+1.

Because of its associativity, anyt-normT can be extended to ann-ary operator
Tn : [0,1]n→ [0,1], namely in the following way

T2(a1,a2) = T(a1,a2),

Tn(a1, . . . ,an) = T(Tn−1(a1, . . .an−1),an),

for n≥ 3.

2.2 Possibility Measures and Distributions

Let X be a finite set calleduniverse of discoursewhich is supposed to contain
at least two elements. Apossibility measureΠ is a mapping from the power set
P (X) of X to the real unit interval[0,1] satisfying the following requirement: for
any family{A j , j ∈ J} of elements ofP (X)

Π(
[

j∈J

A j) = max
j∈J

Π(A j)
1.

Π is callednormal if Π(X) = 1. Within this paper we will always assume thatΠ
is normal.

For anyΠ there exists a mappingπ : X → [0,1], called adistribution of Π,
such that for anyA∈ P (X), Π(A) = maxx∈A π(x). This function is a possibilistic
counterpart of a density function in probability theory. Inthe remaining part of
this contribution we will deal with distributions rather than with measures.

Let X1 andX2 denote two finite universes of discourse provided by possibility
measuresΠ1 andΠ2 (with distributionsπ1 andπ2), respectively. The possibility
distributionπ onX1×X2 is calledT-product possibility distributionof π1 andπ2

if for any (x1,x2) ∈ X1×X2

π(x1,x2) = T(π1(x1),π2(x2)). (2)

Considering an arbitrary possibility distributionπ defined on a product uni-
verse of discourseX×Y, its marginal possibility distributionon X is defined by
the equality

πX(x) = max
y∈Y

π(x,y) (3)

for anyx∈ X.

1max must be substituted by sup ifX is not finite.
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2.3 Conditioning

Let T be at-norm on[0,1]. For any possibility measureΠ onX with distribution
π, we define the following binary relation on the setG(X) = {h : X −→ [0,1]}
of all fuzzy variables onX: For h1 andh2 in G(X) we say thath1 andh2 are

(Π,T)-equal almost everywhere(and writeh1
(Π,T)
= h2) if for any x∈ X

T(h1(x),π(x)) = T(h2(x),π(x)).

This notion is very important for the definition ofconditional possibility dis-
tribution, which is defined (in accordance with [2]) asanysolution of the equation

πXY(x,y) = T(πY(y),πX|
T

Y(x|
T

y)), (4)

for any(x,y) ∈ X×Y. Continuity of at-normT guarantees the existence of a so-
lution of this equation. This solution is not unique (in general), but the ambiguity
vanishes when almost-everywhere equality is considered. We are able to obtain a
representative of these conditional possibility distributions (if T is a continuous
t-norm) by taking the residualπXY(x, ·)△TπY(·) since

πX|
T

Y(x|
T
·) (ΠY,T)

= πXY(x, ·)△TπY(·). (5)

This way of conditioning brings a unifying view on several conditioning rules
[4, 5, 7], i.e., its importance from the theoretical viewpoint is obvious. On the
other hand, its practical meaning is not so substantial. Although De Cooman [2]
claims that conditional distributions are never usedper se, there exist situations
in which it is necessary to be careful to choose an appropriate representative of
the set of solutions (cf. Example 5 in [14]). Therefore, in this contribution we also
use residuals rather than general conditionals.

2.4 Independence

Two variablesX andY (taking their values inX andY, respectively) arepossi-
bilistically T -independent[2] if for any FX ∈ X−1(P (X)), FY ∈Y−1(P (Y)),

Π(FX ∩FY) = T(Π(FX),Π(FY)),

Π(FX ∩FC
Y ) = T(Π(FX),Π(FC

Y )),

Π(FC
X ∩FY) = T(Π(FC

X ),Π(FY)),

Π(FC
X ∩FC

Y ) = T(Π(FC
X ),Π(FC

Y )),

whereAC denotes the complement ofA.
From this definition it immediately follows that the independence notion is

parameterized byT. More specifically, it means that ifX andY are independent
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with respect to Gödel’st-norm, they need not be, for example, independent with
respect to productt-norm. This fact is reflected in most definitions and assertions
that follow.

In [11] we generalized this notion and in the following way: Given a possibil-
ity measureΠ on X×Y×Z with the respective distributionπ(x,y,z), variables
X andY arepossibilistically conditionally T -independent2 given Z (in symbols
IT(X,Y|Z)) if, for any pair(x,y) ∈ X×Y,

πXY|
T

Z(x,y|
T
·) (ΠZ,T)

= T(πX|
T

Z(x|
T
·),πY|

T
Z(y|

T
·)). (6)

Let us stress again that we do not deal with the pointwise equality but with the
almost everywhere equality. This definition unifies, in a sense, several notions
of conditional noninteractivity and that of conditional independence (for more
details see [12]). Although it may seem to be controversial from the epistemic
point of view [1], it is very suitable for our purpose, since it is closely connected
(for more details see [13]) with a principal notion of multidimensional models —
the notion of factorization.

We will say that a possibility distributionπ factorizes3 with respect to a system
A and at-normT, if, for all complete subsetsA∈ A , there exist fuzzy variables
fA of xA such thatπ has the form

π(x) = T |A |( fA1(xA1), . . . , fA|A |(xA|A |)). (7)

The functionsfA are not uniquely determined (in general), since they can be “mul-
tiplied” in several ways, cf. Example 14 in [13].

3 Iterative Proportional Fitting Procedure

In this section we define (in the most general way) an iterative proportional fitting
procedure for possibility distributions and show, on a simple example, how it
works.

Before doing that, let us recall what is possiblistic marginal problem.

3.1 Possibilistic Marginal Problem

Let us assume thatX i , i ∈N, 1≤ |N|< ∞ are finite universes of discourse,K is a
system of nonempty subsets ofN andS = {πK ,K ∈K } is a family of possibility
distributions, where eachπK is a distribution on a product space

XK =×i∈KX i .

2Let us note that a similar definition of conditional independence can be found in [8].
3Factorization is usually defined with respect to a graph, butthis definition is more appropriate for

the purpose of this contribution.
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The problem we are interested in is the existence of anextension, i.e., a distribu-
tion π on

X =×i∈NX i .

whose marginals are distributions fromS ; or, more generally, the set

P = {π(x) : π(xK) = πK(xK),K ∈ K }

is of interest.
The necessary condition (but not sufficient, as shown in [14]) for the existence

of an extension is the pairwise projectivity of distributions fromS . Let us recall
that two possibility distributionsπI andπJ areprojectiveif they have common
marginals, i.e. if

πI (xI∩J) = πJ(xI∩J).

Since IPFP is able to solve a marginal problem (if a solution exists) within a
probabilistic setting, it seems to be useful to design an analogous procedure for
possibility distributions.

3.2 Design of Iterative Proportional Fitting Procedure

Let S = {πi, i = 1, . . .m} be a sequence of low-dimensional normal possibility
distributions, which will be referred to as aninput sequence. Let

ρ(0) ∈ R = {ρ : X −→ [0,1];max
x∈X

ρ(x) = 1}

be aninitial possibility distribution.
The iterative proportional fitting procedure with respect to a t-norm T

(IPFP(T)) is a computational process defined forx∈ X and for j = 1,2, . . . and
k = ((( j−1) modm)+1) by the following formula:

ρ( j)(x) = T(ρ( j−1)(x)△T ρ( j−1)(xKk),πk(xKk)). (8)

Formula (8) has the following meaning: at every stepj we udate distribution
ρ( j−1) simply by “multiplying” the marginalπk, k = ((( j −1) mod m) + 1) by
the residual ofρ( j−1) in order to obtain distributionρ( j) such that

ρ( j)(xKk) = πk(xKk).

It is completely analogous to probability theory, where (8)has form

Q( j)(x) = Pk(xKk)
Q( j−1)(x)

Q( j−1)(xKk)
,

which is a generalization of the original procedure by Deming and Stephan [3].
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3.3 Example

The following simple example illustrates how the computations of IPFP(T) are
performed.

Example 2 Let X1,X2 and X3 be three binary variables with values inX1, X2

andX3, respectively (X1 = X2 = X3 = {0,1}), and let the input sequence con-
sist of two possibility distributionsπ1(x1,x2) andπ2(x2,x3) onX{1,2} andX{2,3},
respectively.

• The initial distributionρ(0) ∈ R is the least informative distribution on
X{1,2,3}, i.e. ρ(0) ≡ 1 (initial and input distributions can be found at Fig-
ure 1).

ρ(0)(x1,x2,x3)
1

1 1

1 1

1

1 1

π1(x1,x2)
1 .5

.8 .3

π2(x2,x3)

.7

1

.8

.4

Figure 1: Initial and input distributions of IPFP(T)

• The operation offitting the first input distributionπ1(x1,x2) brings joint
possibility distributionρ(1) such that

ρ(1)(x1,x2) = π1(x1,x2),

as can be seen from Figure 2.

• Fitting the second input distributionπ2(x2,x3) gives the joint possibility
distribution

ρ2(x1,x2,x3) = T(π2(x2,x3),ρ(1)(x1,x2,x3)△Tρ(1)(x2,x3))

with the propertyρ(2)(x2,x3) = π2(x2,x3) (cf. Figure 3).

From Figure 3 one can see that due to the projectivity ofπ1 and π2, ρ(2)

preserves its marginal from previous step, i.e.

ρ(2)(x1,x2) = ρ(1)(x1,x2) = π1(x1,x2).
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ρ(1)(x1,x2,x3)
1

1 .5

.8 .3

.5

.8 .3

ρ(1)(x1,x2)
1 .5

.8 .3

ρ(1)(x2,x3)

1

1

.8

.8

Figure 2: Joint distributionρ(1) and its marginals after fittingπ1

ρ(2)(x1,x2,x3)
1

.7 .5

.8 .3

.5

.4 .3

ρ(2)(x1,x2)
1 .5

.8 .3

ρ(2)(x2,x3)

.7

1

.8

.4

Figure 3: Joint distributionρ(2) (with respect to Gödel’st-norm) and its marginals
after fittingπ1 andπ2

1

.7 .35

.8 .3

.5

.4 .15

1

.7 .2

.8 .3

.5

.4 0

Figure 4: Joint distributionρ(2) (with respect to product and Lukasziewicz’t-
norms, respectively) after fittingπ1 andπ2
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It is evident that there is no reason to fitπ1(x1,x2) again, since it cannot bring any
change toρ(2).

From this simple example, one can conclude that if the input set consists of
two projective possibility distributions and the initial possibility distribution is
ρ(0) ≡ 1, IPFP(T) stops after one cycle for any continuoust- normT. Neverthe-
less, the resulting distribution depends on the choice of the t-norm, which can be
seen from Figures 3 and 4.

4 On Convergence of Possibilistic IPFP

In this section we will generalize the observation from the end of the foregoing
section and find a sufficient condition for the convergence ofpossibilistic IPFP.
Before doing that, let us briefly recall the notions of operators of composition of
possibility distributions (introduced in [10]), which seem to be a useful technical
tool for proofs.

4.1 Operators of Composition

Considering a continuoust-norm T, two subsetsK1,K2 of N and two normal
possibility distributionsπ1(xK1) and π2(xK2),

4 we define theoperator of right
compositionof these possibilistic distributions by the expression

π1 (xK1)⊲T π2(xK2) = T (π1(xK1) ,π2 (xK2)△Tπ2(xK1∩K2)) ;

analogously theoperator of left compositionis defined by the expression

π1 (xK1)⊳T π2(xK2) = T (π1 (xK1)△Tπ1(xK1∩K2) ,π2 (xK2)) .

If K1∩K2 = /0 then obviously

π1(xK1)⊲T π2 (xK2) = π1 (xK1)⊳T π2 (xK2) = T (π1(xK1) ,π2 (xK2)) ,

which means that the operators of composition generalize, in a sense,T- product
possibility distributions defined by (2).

It is evident that bothπ1⊲T π2 andπ1⊳T π2 are (generally different) possibility
distributions of variables(Xi)i∈K1∪K2. In fact, the first one is an extension ofπ1,
while the second ofπ2, in a special case of both, as the following lemma suggests.

Lemma 1 Consider two distributionsπ1(xK1) andπ2(xK2). Then

(π1 ⊲T π2)(xK1∪K2) = (π1 ⊳T π2)(xK1∪K2)

for any continuous t-norm T if and only ifπ1andπ2 are projective.

4Let us stress that for the definition of these operators we do not require projectivity of distributions
π1 andπ2.
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The following lemma (proven in [14]) expresses the relationship between the
operators of composition and conditionalT-independence.

Lemma 2 Let T be a continuous t-norm andπ1 andπ2 be projective possibility
distributions onXK1 andXK2, respectively. Then the distributionπ of XK1∪K2

π(xK1∪K2) = π1 (xK1)⊲T π2(xK2) = π1(xK1)⊳T π2 (xK2)

if and only if XK1\K2
and XK2\K1

are conditionally independent, given XK1∩K2.

4.2 Perfect Sequences

Now, we will recall how to apply the operators iteratively. Consider a sequence of
distributionsπ1(xK1),π2(xK2), . . . ,πm(xKm) and the expression

π1 ⊲T π2 ⊲T . . . ⊲T πm.

Before presenting its properties, let us note that in the part that follows, we always
apply the operators from left to right, i.e.,

π1 ⊲T π2 ⊲T π3 ⊲T . . . ⊲T πm = (. . . ((π1 ⊲T π2)⊲T π3)⊲T . . . ⊲T πm).

This expression defines a multidimensional distribution onXK1∪...∪Km. There-
fore, for any permutationi1, i2, . . . , im of indices 1, . . . ,m the expression

πi1 ⊲T πi2 ⊲T . . . ⊲T πim

determines a distribution on the same universe of discourse. However, for different
permutations these distributions can differ from one another. Some of them seem
to possess the most advantageous properties.

An ordered sequence of possibility distributionsπ1,π2, . . . ,πm is said to be
T-perfectif for any j = 2, . . . ,m

π1 ⊲T · · ·⊲T π j = π1 ⊳T · · ·⊳T π j .

The notion ofT-perfectness suggests that a sequence perfect with respectto
onet-norm needn’t be perfect with respect to anothert-norm, similarly to (condi-
tional)T-independence.

Let us present two assertions, which will be used later.

Lemma 3 Let T be a continuous t-norm. The sequenceπ1,π2, . . . ,πm is T -perfect,
if and only if the pairs of distributions(π1⊲T · · ·⊲T πk−1) andπk are projective for
all k = 2,3, . . . ,m.

Theorem 1 The sequenceπ1,π2, . . . ,πm is T -perfect if and only if all the distri-
butionsπ1,π2, . . . ,πm are marginal to distributionπ1 ⊲T π2 ⊲T . . . ⊲ πm.
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Now, let us recall the notion ofrunning intersection property(RIP) and the
related results from [14]. A sequence of setsK1,K2, . . . ,Kn is said to meet RIP if

∀i = 2, . . . ,n ∃ j(1≤ j < i) (Ki ∩ (K1∪ . . .∪Ki−1))⊆ K j .

Lemma 4 If π1,π2, . . . ,πm is a sequence of pairwise projective low-dimensional
distributions such that K1, . . . ,Km meets RIP, then this sequence is T-perfect for
any continuous t-norm T.

4.3 Convergence of IPFP(T)

Theorem 2 If there is an orderingπ1, . . . ,πm of possibility distributions fromS
such thatπ1, . . . ,πm form a T-perfect sequence for some continuous t-norm T
andρ(0)≡ 1, then IPFP(T) converges in one cycle. Furthermore, distributionρ(m)

factorizes with respect toK and T.

Proof.First, let us note that (8) forπ1, . . . ,πm can be rewritten using an operator
of left composition, i.e.,

ρ( j)(x) = T(ρ( j−1)(x)△Tρ( j−1)(xKk),πk(xKk))

= ρ( j−1)(x)⊳T πk(xKk)

for any j = 1, . . .; especially forj = 1, . . . ,n (which means thatk = j) we obtain

ρ( j)(x) = ρ( j−1)(x)⊳T π j (xK j )

= (ρ( j−2)(x)⊳T π j−1(xK j−1))⊳T π j(xK j )

· · ·
= (. . .(ρ(0)(x)⊳T π1(xK1))⊳T . . . ⊳T π j−1(xK j−1))⊳T π j(xK j )

= (. . .T(ρ(0)(xN\∪ j
k=1Kk

),π1(xK1))⊳T . . . ⊳T π j−1(xK j−1))⊳T π j (xK j ),

sinceρ(0) ≡ 1. In particular we have

ρ(m)(x) = (. . .(π1(xK1)⊳T π2(xK2) . . . ⊳T πm−1(xKm−1))⊳T πm(xKm). (9)

Sinceπ1, . . . ,πm is aT-perfect sequence of possibility distributions, everyπk is a
marginal to the distribution on the right-hand side of (9). Therefore,

ρ(m)(xKk) = πk(xKk)

for all k = 1, . . . ,m, which implies

ρ( j)(xKk) = ρ(m)(xKk)

for any j = m+ 1, . . .. To prove factorization it is enough to find fuzzy variables
fK1, . . . , fKm such that

ρ(m)(x) = Tm( fK1(xK1), . . . , fKm(xKm)).
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But, due toT-perfectness ofπ1, . . . ,πm

ρ(m)(x) = π1(xK1)⊲T π2(xK2)⊲T . . . ⊲ πm(xKm),

which can be rewritten in the form

ρ(m)(x) = Tm(π1(xK1),π2(xK2)△Tπ2(xK2∩K1), . . .

. . . ,πm(xKm)△Tπm(xKm∩(K1∪...∪Km−1
)),

which concludes the proof.
First, let us stress that perfectness with respect to at-norm implies conver-

gence with respect to the samet-norm (andnot with respect to any) as can be
seen from the following simple example.

Example 3 Let X1,X2 andX3 be three binary variable as in Example 2 andπ1,π2

andπ3 onX{1,2},X{2,3} andX{1,3} be defined by Table 1.

π1 X2 0 1
X1 = 0 1 .8
X1 = 1 .6 .4

π2 X3 0 1
X2 = 0 1 .5
X2 = 1 .3 .8

π3 X3 0 1
X1 = 0 1 .8
X1 = 1 .6 .5

Table 1: Distributions forming min-perfect sequence

ρ( j) j
(x1,x2,x3) 0 1 2 3 4 5 6
(0,0,0) 1 1 1 1 1 1 1
(0,0,1) 1 1 .5 .5 .5 .5 .5
(0,1,0) 1 .8 .8 .8 .8 .8 .8
(0,1,1) 1 .8 .8 .8 .8 .8 .8
(1,0,0) 1 .6 .6 .6 .6 .6 .6
(1,0,1) 1 .6 .5 .5 .5 .5 .5
(1,1,0) 1 .4 .3 .3 .3 .3 .3
(1,1,1) 1 .4 .4 .4 .4 .4 .4

Table 2: Convergence of IPFP with respect to Gödel’st-norm

Sequenceπ1,π2,π3 is min-perfect (due to Lemma 3), sinceπ1(x2) = π2(x2)
and(π1 ⊲TG π2)(x1,x3) = π3(x1,x3). Starting fromρ(0) ≡ 1, IPFP(TG) converges
after one cycle as can be seen from Table 2 while IPFP(TΠ) and IPFP(TL) converge
after four and five cycles, respectively (cf. Tables 3 and 4).

Corollary 1 If there is a permutation Ki1, . . . ,Kin of sets fromK such that Ki1, . . . ,Kin
meets RIP,{πi1, . . . ,πin} is an input sequence of pairwise projective possibility
distributions andρ(0) ≡ 1 then IPFP(T) converges in one cycle for any continu-
ous t-norm T andρ(m) factorizes with respect to the corresponding t-norm T.
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ρ( j) j
(x1,x2,x3) 0 1 2 3 4, 5 6 7, 8 9 10,11,12
(0,0,0) 1 1 1 1 1 1 1 1 1
(0,0,1) 1 1 .5 .5 .5 .5 .5 .5 .5
(0,1,0) 1 .8 .3 .3 .3 .3 .3 .3 .3
(0,1,1) 1 .8 .8 .8 .8 .8 .8 .8 .8
(1,0,0) 1 .6 .6 .6 .6 .6 .6 .6 .6
(1,0,1) 1 .6 .3 .375 .375 .46875 .46875 .5 .5
(1,1,0) 1 .4 .15 .15 .12 .096 .096 .096 .09
(1,1,1) 1 .4 .4 .5 .4 .5 .4 .427 .4

Table 3: Convergence of IPFP with respect to productt-norm

ρ( j) j
(x1,x2,x3) 0 1 2 3 4, 5 6 7, 8 9 10, 11 12 13, 14, 15

(0,0,0) 1 1 1 1 1 1 1 1 1 1 1
(0,0,1) 1 1 .5 .5 .5 .5 .5 .5 .5 .5 .5
(0,1,0) 1 .8 .3 .3 .3 .3 .3 .3 .3 .3 .3
(0,1,1) 1 .8 .8 .8 .8 .8 .8 .8 .8 .8 .8
(1,0,0) 1 .6 .6 .6 .6 .6 .6 .6 .6 .6 .6
(1,0,1) 1 .6 .1 .2 .2 .3 .3 .4 .4 .5 .5
(1,1,0) 1 .4 .0 .0 .0 .0 .0 .0 .0 .0 .0
(1,1,1) 1 .4 .4 .5 .4 .5 .4 .5 .4 .5 .4

Table 4: Convergence of IPFP with respect to Lukasziewicz’t-norm

Proof follows directly from Theorem 2 and Lemma 4.

Let us also mention thatρ(0) ≡ 1 is not only a technical requirement that
makes the proof of Theorem 2 so simple; it may be substantial for convergence as
can be seen from the following example.

Example 4 Let X1,X2,X3 andπ1(x1,x2), π2(x2,x3) be as in Example 2 andρ(0)

be defined as follows:

ρ(0)(0,0,0) = ρ(0)(0,1,1) = ρ(0)(1,0,1) = ρ(0)(1,1,0) = 1,

values of remaining combinations being equal toα ∈ [0,1]. The convergence de-
pends on the value ofα — the results of our experiments can be found in Table 5.

The reason for this behaviour lies in the tendency of IPF procedure to find a
distribution with given marginals which, moreover, factorizes with respect to the
systemK and is “as close as possible” toρ(0). It is evident thatρ(0)≡ 1 factorizes
with respect toanysystem of cliques. Therefore, it is the “safe”, although perhaps
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α Convergence of IPFP(T)
TG TΠ TL

1 1 1 1
.5 2 2 2
.1 cycles 4 3
0 cycles cycles 3

Table 5: Convergence of IPFP(T) depends onα

not always an optimal, initial distribution. The more “distant” the structure of
the starting distribution is from factorization with respect toK andT, the more
problematic the convergence of IPFP(T) is.

5 Conclusions

We introduced a possibilistic version of IPF procedure withthe aim of using it
as a tool for marginal problem solving. This procedure is parameterized by a
continuoust-norm and its behaviour (convergence) is strongly dependent on it.
Another important finding is that convergence of IPFP(T) substantially depends
on the choice of an input distribution.

Nevertheless, there are still many problems that remain to be solved. The most
important is the proof of the convergence of IPFP(T) in a general case. Another
question is whether the resulting distribution is independent of the ordering of
input distributions. We should also study the behaviour of IPFP(T) in inconsistent
cases.
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Bi-elastic Neighbourhood Models

A. WALLNER
Ludwig-Maximilians-University Munich, Germany

Abstract

We extend Buja’s concept of “pseudo-capacities”, which comprises the
neighbourhood models for classical probabilities commonly used in robust
statistics. Although systematically developing various directions for general-
izing that model, we especially show that robust statisticscan be freed from
the severe restriction to 2-monotone capacities by employing the more natu-
ral framework of coherent or F-probabilities. Our main new tool for doing
this is to use bi-elastic instead of convex functions.

Keywords

interval probability, robust statistics, neighbourhood models, distorted probability,
pseudo-capacity, convex and bi-elastic functions

1 Introduction

The major concept in robust statistics for “robustifying” statements concerning
classical distributions is to constructneighbourhoodsof precise probabilities,
which are calledcentral distributionsin this context. There is a famous method,
due to Buja, accommodating, up to now, many of the corresponding neighbour-
hood models: Letp be some fixed classical probability, letf : [0; 1]→ [0; 1] be a
function with f (0) = 0 and f (1) = 1, and define

L = f ◦ p. (1)

By Denneberg (see [4], p. 17), a set functionL constructed like this, is called a
distorted probability, if f is increasing. In casef (x)≤ x, ∀x∈ [0; 1], L can be seen
as thelower boundof an interval probability, which creates a neighbourhood of
p in the sense thatL(A)≤ p(A)≤U(A) := 1−L(¬A) for all eventsA.

Now in robust statistics the standard requirement concerning f is to be indeed
convex. We suspect that nobody knows a reasonable philosophical argument, why
this strong assumption is made. Instead it seems to have meremathematical ori-
gins: “Only if f is convex, thenL becomes an algebraic pushover.” We want to
convince the reader that not even this technical argument istrue. Strictly speaking,
the word “Only” should be replaced by “Not only”.

593
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If f is convex, then by Buja (cf. [3]) a set functionL constructed in accordance
with (1) is called apseudo-capacity.1 Now every pseudo-capacity is a2-monotone
set function (see Theorem 1, model 5, and also [4], p. 17), andthis fact seems
to be the technical advantage. But from a philosophical point of view there are
no visible reasons to restrict the frameworks of interval probability as well as
of robust statistics to 2-monotonicity. Instead it is more natural to consider the
wider class of Walley’scoherent probabilities(cf. [8]), which are closely related
to F-probabilitiesin the sense of Weichselberger (see [10] or [11]).

We will show that the formulation (1) is also useable for constructing the
lower boundL of an F-probability, which is not necessarily 2-monotone. For this
we have to weaken the condition of convexity forf and replace it by a new as-
sumption:bi-elasticity.

Just as there exist 2-monotone set functionsL, which cannot be described
by (1) using convex functionsf , we, of course, are not able to produce the whole
class of F-probabilities by only employing the definition (1), lettingp vary over all
classical probabilities andf vary over all bi-elastic functions. But we will explain
that bi-elasticity is exactly theappropriaterequirementwhendefining F-proba-
bilities via (1) (see Section 6). Moreover, from an algebraical point of view the
generated subclass of F-probabilities is as easy manageable as the corresponding
subclass of 2-monotone set functions, i.e. the class of pseudo-capacities.

In Section 2 we introduce the notion of bi-elasticity. In Section 3 a language
for interval probability is fixed: As far as needed, we outline Weichselberger’s
formal and methodological framework. But this should be no restriction. Since,
in particular,σ-additivity (instead of additivity) of classical probabilities does not
play any role, the concepts developed could also be applied to other theories of
imprecise probabilities, especially to Walley’s theory. In Section 4 we go into
the details of the convex and bi-elastic neighbourhood models described above,
resulting in Theorem 1. There we, in fact, will not use the phrasing of equation
(1): Since sometimes it is necessary to apply methods of robustness to interval
probability itself2 and, anyway, it is a natural mathematical task to look for closure
properties, we consider the more generalized form

L = f ◦L0, (2)

whereL0 is the lower bound of some giveninterval-valued central distribution.
Learning from Theorem 1, we also deal with a modified version of it, which is
stated in Theorem 2. Its formulation serves, in essence, as amotivation for Section
5, i.e. for Theorems 3 and 4, which significantly generalize the neighbourhood
models developed before. Section 6 is reserved for concluding remarks.

To give reasons for the successive steps, the structure of this technical paper
is rather heuristic. Hence the proofs are postponed repeatedly — until the proof
of the last theorem.

1See [2] for more detailed information.
2See [1], pp. 229ff, for a discussion of this topic.
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2 Convex and Bi-elastic Functions

What is bi-elasticity? Suppose we concentrate on a functionf : [0; 1]→ [0; 1]
with f (0) = 0 and f (1) = 1 and imagine that three points off ’s graph, namely
(x, f (x)), (y, f (y)), and(z, f (z)) with 0≤ x < y < z≤ 1, arestanding in convex
position. Obviously, by this terminology we mean that the following local com-
parison of quotients of differences is valid:

f (y)− f (x)
y−x

≤ f (z)− f (y)
z−y

. (3)

If this inequality is globally true, i.e.for all suchx, y, z, we usually say thatf is
convex. Now fix x = 0, and let justy andz vary. Then it is easily seen that we get
equivalently

f (y)
y
≤ f (z)

z
, ∀y, zwith 0 < y≤ z≤ 1, (4)

i.e. that theaverage of f is increasing. In economic sciences this behaviour off
is calledelastic(e.g. see [5]).

So, what’sbi-elasticity? For this new concept (introduced in [9], Chapter 6),
let first f be elastic, and secondly setz= 1 in (3) and letx andy vary. After simple
transformations we get

1− f (x)
1−x

≤ 1− f (y)
1−y

, ∀x, y with 0≤ x≤ y < 1, (5)

as an equivalent form, which, in turn, is equivalent to

1− f (1−y)
y

≤ 1− f (1−x)
x

, ∀x, y with 0 < x≤ y≤ 1. (6)

Thus, additionally, theconjugate function of f, i.e.x 7→ 1− f (1−x), has to have
decreasing average. We summarize:

Definition 1 Let f : [0; 1]→ [0; 1] with f (0) = 0 and f (1) = 1. Thenf is called
1. convex, if (3) holds for allx, y, zwith 0≤ x < y < z≤ 1,

2. bi-elastic, if (4) and (6) are valid. ✷

Corollary 1 Let f: [0; 1]→ [0; 1] with f(0) = 0 and f(1) = 1.
1. f is convex iff f((1−λ)x+ λy)≤ (1−λ) f (x)+ λ f (y), ∀x, y, λ ∈ [0; 1].

2. f is bi-elastic iff f(λx)≤ λ f (x) andλ(1− f (1−x))≤ 1− f (1−λx),∀x, λ∈
[0; 1].

3. If f is convex, then f is bi-elastic.

4. If f is bi-elastic, then f(x)≤ x, ∀x∈ [0; 1].3 ✷

Proof. 1.) and 2.) can be shown straightforwardly. For 3.) see above, for 4.) puty = x and
z= 1 in (4). ✷

3Moreover, every bi-elastic function is monotone in[0; 1] and continuous in[0; 1[.
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Figure 1:An example of a bi-elastic functionf . Bi-elasticity of f can be described equiva-
lently as follows: For each pointA= (xA, f (xA)) on the graph off , the graph off between
0 andxA nowhere is lying above the line between(0, 0) andA, and betweenxA and 1 it
nowhere is lying above the line betweenA and(1, 1).

3 Basic Definitions of Interval Probability accord-
ing to Weichselberger

Here we report the main concepts of Weichselberger’s theoryof interval proba-
bility (see [10] or [11]), adding some slight modifications.For the following letΩ
be a fixedsample spaceandA a fixedσ-algebraoverΩ. Hence(Ω; A) is fixed
measurable space.

Definition 2 A set functionp: A → [0; 1] is called aK-function(classical proba-
bility) on (Ω; A), if it satisfies the axioms of Kolmogorov. The set of all K-func-
tions on(Ω; A) is denoted byK (Ω; A). ✷

Definition 3

1. A tripleO = (Ω; A ; L) is called anadjusted O-field, if L: A→ [0; 1] is a set
function, which isnormed, i.e. L( /0) = 0 andL(Ω) = 1. The setM (O) =
{p∈ K (Ω; A) | L(A)≤ p(A), ∀A∈ A} is called thestructure ofO.

2. An adjusted O-fieldR is called anadjusted R-(probability) field, if
M (R ) 6= /0.
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3. An adjusted R-fieldF = (Ω; A ; L) is called anF-(probability) field, if it
satisfies the axiomL(A) = infp∈M (F ) p(A), ∀A∈ A .4

4. An adjusted R-fieldF = (Ω; A ; L) is called anF0-(probability) field, if it
satisfies the axiomL(A) = minp∈M (F ) p(A), ∀A∈ A .

5. An adjusted O-field(Ω; A ; L) is called aCA-field, if L is 2-monotone, i.e.
L(A)+L(B)≤ L(A∪B)+L(A∩B), ∀A, B∈ A .

6. A CA-field is called aC-(probability) field, if it is an F-field.

7. A CA-field is called aC0-(probability) field, if it is an F0-field.

8. A triple (Ω; A ; p) is called aK-(probability) field, if p is a K-function. ✷

Since(Ω; A) is fixed, every adjusted O-fieldO = (Ω; A ; L) is determined by
the “lower bound”L. Subsequently we always “associate” the “upper bound”U
of O via conjugationof L, i.e.U(.) = 1−L(¬.).

Some comments on Definition 3 are useful:

• Weichselberger’s original definition of anR-field is that of a quadruple
R = (Ω; A ; L, U) having a non-empty structureM (R ) = {p∈K (Ω; A) |
L(A) ≤ p(A) ≤U(A), ∀A∈ A}. In this setting neitherL is normed neces-
sarily, norL andU have to be conjugate, what both is not appropriate for
our purposes.

• In [1], Corollary 2.13, it is shown that everycontinuousF-field is an
F0-field. (Hence, in particular, every F-field on a finite measurable space
has the F0-property.) Since, on the one hand, we don’t want to discuss
topological features here, but, on the other hand, intend todeal with clo-
sure properties concerning F-fields as well as F0-fields, we distinguish both
cases by introducing these two terms.

• It is known that every CA-field is a C0-field, and hence a C-field, in case the
sample spaceΩ is finite. For the general case, usually additional topolog-
ical assumptions are made to enforce the F-(or F0-)property, in particular,
for defining2-monotone capacities(cf. [7]). But, as mentioned above, we
want to abstain from topological aspects here. So the CA-property, i.e., es-
sentially, the 2-monotonicity of the lower bound, should beconsidered as
the extracted pure algebraic part of the definition of C-(or C0-)fields. There
are some closure properties, we want to emphasize later, only concerning
this algebraic part. Therefore the definitions of CA-, C-, and C0-fields are
organized as stated.

4The definitions of adjusted R-fields and of F-fields are closely related to Walley’savoiding sure
lossandcoherencerespectively (cf. [8]).
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For later use we record the following corollary, which can beproven straight-
forwardly.

Corollary 2

1. IfO = (Ω; A ; L) is an adjusted O-field and U(.) = 1−L(¬.), thenM (O) =
{p∈ K (Ω; A) | p(A)≤U(A), ∀A∈ A}.

2. If (Ω; A ; L) is an F- or a CA-field, then L and its conjugate U aremono-
tone, i.e., forΨ ∈{L, U} we have∀A, B∈ A : A⊆ B =⇒Ψ(A)≤Ψ(B).

3. If O1 = (Ω; A ; L1) andO2 = (Ω; A ; L2) are adjusted O-fields, then

L1(.)≤ L2(.) =⇒M (O2)⊆M (O1). ✷

As a mnemonic device concerning the definitions above, we getthe following
clear picture:

CA-f.∧F0-f.⇒ F0-field
m ⇓

K-field ⇒ C0-field F-field⇒ adj. R-field⇒ adj. O-field.
⇓ ⇑

C-field ⇔ CA-f.∧F-f.

4 Convex and Bi-elastic Neighbourhood Models

For constructingneighbourhoodsof classical probabilities, in robust statistics
mainly metrics are used to define appropriate topologies over the spaceK (Ω;A)
(e.g. see [6]). Here we do not rely on the term “neighbourhood” in some topolog-
ical sense, and that is why we give the trivial

Definition 4 For adjusted O-fieldsO0 = (Ω; A ; L0),O = (Ω; A ; L) and a K-func-
tion p, we say that

• O is aneighbourhood ofO0, if L(.)≤ L0(.),

• O is aneighbourhood of p, if O is a neighbourhood of(Ω; A ; p). ✷

Therefore,O is a neighbourhoodof the K-functionp iff simply p is an element
of the structure ofO, and henceO is an adjusted R-field. In general, we have
M (O0)⊆M (O), if O is a neighbourhood ofO0 (cf. Corollary 2, 3.)).

Now we come to a first category of neighbourhood models motivated in Sec-
tion 1. Inspired by the notions ofpseudo-capacities(the starting point of our de-
velopments),bi-elastic functions(generalizing convex functions), andinterval-
valued central distributions(including precise central distributions as a specific
case), we get
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Theorem 1 (First class of neighbourhood models) Let L0: A → [0; 1] be a set
function, f: [0; 1]→ [0; 1] a function with f(0) = 0 and f(1) = 1, L = f ◦ L0,
O0 = (Ω; A ; L0), andO = (Ω; A ; L). Then we have:5

1. If O0 is an adjusted O-field, then so isO.

2. If f(x)≤ x, ∀x∈ [0; 1], andO0 is an adjusted R-field, then so isO.

3. If f is bi-elastic, andO0 is an F-field, then so isO.

4. If f is bi-elastic, andO0 is an F0-field, then so isO.

5. If f is convex, andO0 is a CA-field, then so isO.

6. If f is convex, andO0 is a C-field, then so isO.

7. If f is convex, andO0 is a C0-field, then so isO.

Moreover, in the cases 2.)–7.)O is a neighbourhood ofO0. ✷

Proof. 1.) and 2.) are obvious. For 3.)–7.) see Theorem 2 below.6 The “Moreover”-
statement follows from Corollary 1, 3.) and 4.). ✷

From now on we concentrate on the most interesting cases, namely F-, F0-,
CA-, C-, and C0-fields. Our goal is to generalize models 3–7 of Theorem 1 in two
steps, which leads to Theorems 2, 3, and 4.

Thefirst stepis just a small one and is based on an elementary observation.
Let us for the moment consider model 5 of Theorem 1: In order tomaintain the
2-monotonicity, we, in essence, made two assumptions: the definition of L, i.e.
L = f ◦L0, and the convexity off . By Definition 1, 1.), this implies

L(B)−L(A)

L0(B)−L0(A)
≤ L(C)−L(B)

L0(C)−L0(B)
, (7)

for all A, B, C ∈ A with L0(A) < L0(B) < L0(C). Now it is natural to suspect
that it doesn’t matter, howf is defined on[0; 1] \ {L0(A) | A ∈ A}. It should
be sufficient for our CA-model to presuppose the inequalities (7). Similarly, we
expect that models 3 and 4 of Theorem 1 could be modified analogously: The
corresponding inequalities given by bi-elasticity are (cf. (4) and (5))

L(A)

L0(A)
=

f (L0(A))

L0(A)
≤ f (L0(B))

L0(B)
=

L(B)

L0(B)
,

for all A, B ∈ A with 0 < L0(A) ≤ L0(B), and, additionally, usingU0(.) = 1−
L0(¬.) andU(.) = 1−L(¬.),
U(B)

U0(B)
=

1−L(¬B)

1−L0(¬B)
=

1− f (L0(¬B))

1−L0(¬B)
≤ 1− f (L0(¬A))

1−L0(¬A)
=

1−L(¬A)

1−L0(¬A)
=

U(A)

U0(A)
,

for all A, B∈A with L0(¬B)≤ L0(¬A) < 1, i.e., equivalently, 0<U0(A)≤U0(B).
These considerations are summed up in

5Models 5–7 reflect the concept of pseudo-capacities, in caseof a precise central distributionO0.
6For the moment, we can say that 6.) is a consequence of 3.) and 5.), and 7.) is a consequence of

4.) and 5.), since convexity implies bi-elasticity (cf. Corollary 1, 3.)).
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Theorem 2 (Second class of neighbourhood models) LetO0 = (Ω; A ; L0) and
O = (Ω; A ; L) be adjusted O-fields, U0(.) = 1−L0(¬.), and U(.) = 1−L(¬.).

1. Suppose thatO0 is an F-field and that the following two conditions hold:

(a) L(A) ·L0(B)≤ L0(A) ·L(B), ∀A, B∈ A with L0(A)≤ L0(B); (8)

(b) U0(A) ·U(B)≤U(A) ·U0(B), ∀A, B∈ A with U0(A)≤U0(B). (9)

ThenO is an F-field, too.

2. Suppose thatO0 is an F0-field and that conditions (8) and (9) hold. ThenO
is an F0-field, too.

3. Suppose thatO0 is a CA-field and that the following condition holds:7

(L(B)−L(A)) · (L0(C)−L0(B)) ≤ (L0(B)−L0(A)) · (L(C)−L(B)),

∀A, B, C∈ A with L0(A)≤ L0(B)≤ L0(C).
(10)

ThenO is a CA-field, too.

4. Suppose thatO0 is a C-field and that condition (10) holds. ThenO is a
C-field, too.

5. Suppose thatO0 is a C0-field and that condition (10) holds. ThenO is a
C0-field, too.

Moreover, in all five cases we have:O is a neighbourhood ofO0, and the
“functional connection”

∀A, B∈ A : L0(A) = L0(B) =⇒ L(A) = L(B) (11)

between L0 and L is valid. ✷

Proof. It is straightforward that from condition (10) we can deriveconditions (8) and (9)
(for (8) putA= /0 in (10), for (9) setC = Ω in (10)8). Hence, on the one hand, 4.) is a direct
consequence of 1.) and 3.), and 5.) is a consequence of 2.) and3.). On the other hand, the
“Moreover”-statement can be deduced from (8): By puttingB = Ω, we get

L(A)≤ L0(A), ∀A∈ A, (12)

which is the statement thatO is a neighbourhood ofO0. To prove (11), letL0(A) = L0(B).
By (12), we can assumeL0(B) > 0. But then, two applications of (8) lead toL(A) ·L0(B) =
L0(A) ·L(B) = L0(B) ·L(B), thusL(A) = L(B).

Summarizing, we have shown all parts of Theorem 2 — with the exception of its heart:
statements 1.), 2.), and 3.). For this we refer to Theorem 3 below, since in the situations
of 1.), 2.), and 3.) the set functionsL0 andU0 are monotone (cf. Corollary 2, 2.)). To be
complete, we have to prove the additional premise (15) in Theorem 3. But this is an easy
result of (11) (just setB = Ω), which is proved already. ✷

7In (10) it’s not sufficient to use quotients as above, excluding the possibility that the denominator
is 0.

8We can argue in a manner similar to the proof sketch, given at the beginning of Section 2, where
we deduced bi-elasticity from convexity.
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Clearly, the most important case of Theorem 2 is that the central distribution
O0 is some K-field(Ω; A ; p0). For this we give an example, which — historically
— led to all generalized neighbourhood models presented here.

Example 1 Let (Ω; A) = (Ωk; P (Ωk)) be a finite measurable space, where
|Ωk|= k∈ IN andP (Ωk) is the power set ofΩk. We consider the consequences of
Theorem 2 for the caseO0 = (Ωk; P (Ωk); pk

0), in whichpk
0 is theclassical uniform

probability on (Ωk; P (Ωk)), i.e. pk
0(A) = |A|

k , ∀A⊆ Ωk. Let O = (Ωk; P (Ωk); L)
be some adjusted O-field. From (11) we conclude

∀A, B⊆Ωk : |A|= |B| =⇒ L(A) = L(B), (13)

which means that the only possibility in generatingO as a neighbourhood ofpk
0

with the methods of Theorem 2, we have to restrict ourselves to uniform interval
probability. Hence we assume (13) and write fori = 0, . . . , k: L(i) = L(A), if i = |A|
for someA⊆Ωk, and consistentlyU (i) = 1−L(k−i). Additionally, we concentrate
on considering models 1 and 2 of Theorem 2, the F- and the F0-model, which are
the same, sinceΩk is finite. Conditions (8) and (9) are equivalent to the chain

L(1)

1
≤ L(2)

2
≤ ·· · ≤ L(k−1)

k−1
≤ 1

k
≤ U (k−1)

k−1
≤ ·· · ≤ U (2)

2
≤ U (1)

1
. (14)

Therefore, model 1 of Theorem 2 says: Every adjusted uniformO-field O =
(Ωk; P (Ωk); L) is an F-field — an “uniform F-field” —, if it obeys the chain (14).
In [11], Lemma 4.3.5, it is shown over and above that, that (14) is also necessary
for O to be an uniform F-field on(Ωk; P (Ωk)). ✷

Theorem 2 is only a very slight generalization of the models 3–7 in Theorem
1. For example, if condition (10) holds, it always is possible to construct a convex
function f : [0; 1] → [0; 1] with f (0) = 0 and f (1) = 1 such thatL = f ◦ L0.
Similarly for (8) and (9) on the one hand and bi-elastic functions defined on[0; 1]
on the other hand.

Theorem 2 should rather be seen as a motivation for Theorem 3 given in the
next section.

5 Generalized Convex and Bi-elastic Neighbour-
hood Models

The inequalities, working as premises in conditions (8), (9), and (10) do not seem
to be very natural. For example, in (8) it would be nice to replace “L0(A)≤ L0(B)”
by “A⊆ B”, since then, e.g., we would have a connection to conditional interval
probability (see Section 6).

Let us formulate this bigsecond stepof generalizing the neighbourhood mod-
els, fundamentally first presented in [9], Chapter 6:
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Theorem 3 (Third class of neighbourhood models, part 1) LetO0 = (Ω; A ; L0)
andO = (Ω; A ; L) be adjusted O-fields,U0(.)= 1−L0(¬.), andU(.)= 1−L(¬.).
Assume additionally that we have9

∀A∈ A : L0(A) = 1 =⇒ L(A) = 1. (15)

1. Suppose thatO0 is an F-field and that the following two conditions hold:

(a) L(A) ·L0(B)≤ L0(A) ·L(B), ∀A, B∈ A with A⊆ B; (16)

(b) U0(A) ·U(B)≤U(A) ·U0(B), ∀A, B∈ A with A⊆ B. (17)

ThenO is an F-field, too.

2. Suppose thatO0 is an F0-field and that conditions (16) and (17) hold. Then
O is an F0-field, too.

3. Suppose thatO0 is a CA-field and that the following condition holds:

(L(B)−L(A)) · (L0(C)−L0(B)) ≤ (L0(B)−L0(A)) · (L(C)−L(B)),

∀A, B, C∈ A with A⊆ B⊆C.
(18)

ThenO is a CA-field, too.

4. Suppose thatO0 is a C-field and that condition (18) holds. ThenO is a
C-field, too.

5. Suppose thatO0 is a C0-field and that condition (18) holds. ThenO is a
C0-field, too.

Moreover, in all five cases we have:O is a neighbourhood ofO0, and the
“functional connection”

∀A, B∈ A : A⊆ B∧ L0(A) = L0(B) =⇒ L(A) = L(B) (19)

between L0 and L is valid. ✷

Proof. LetO0 andO be adjusted O-fields as denoted. First we prove:

1. (16)=⇒ L(A)≤ L0(A), ∀A∈ A.

2. (16)=⇒
(
∀A, B∈ A : A⊆ B∧ L0(A)≤ L0(B) =⇒ L(A)≤ L(B)

)
.

3. (15)∧ (16)∧ (17)=⇒ (19).

9It can easily be seen that the models don’t work, if we drop this additional condition. (15) is
equivalent with∀A∈ A : U0(A) = 0⇒U(A) = 0, and hence with

∀A∈ A : (∀p0 ∈M (O0). p0(A) = 0) =⇒ (∀p∈M (O). p(A) = 0),

which means thatO is absolutely continuous with respect toO0.
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For a), just letB = Ω in (16). For b) assumeA⊆ B and L0(A) ≤ L0(B), where by
a) w.l.o.g.L0(A) > 0. Together with (16) we getL(A) · L0(A) ≤ L(A) · L0(B) ≤ L0(A) ·
L(B), henceL(A)≤ L(B). For c) suppose (15), (16), (17),A⊆ B, andL0(A) = L0(B), thus
also¬B⊆ ¬A andU0(¬A) = U0(¬B). By (15), w.l.o.g. we can assumeL0(B) < 1, hence
U0(¬B) > 0. Now (17) givesU0(¬B) ·U(¬A)≤U(¬B) ·U0(¬A) = U(¬B) ·U0(¬B), thus
U(¬A)≤U(¬B), i.e.L(B)≤ L(A). Together with b) we inferL(A) = L(B).

Now we give the proof of Theorem 3. First it can easily be seen that (18) implies
(16) and (17) (letA = /0 or C = Ω in (18)). Therefore, on the one hand, the “Moreover”-
statement is a trivial conclusion of a) and c), and, on the other hand, 4.) is a consequence
of 1.) and 3.), and 5.) is a consequence of 2.) and 3.).

For 1.) and 2.) we refer to Theorem 4 (see below).
So here we just have to prove 3.), i.e., we have to show that condition (18) transfers

2-monotonicity fromL0 to L. For this, let (18) be valid andL0 be 2-monotone. Then,
according to Corollary 2, 2.),L0 is monotone 2, and by b) we also infer the monotonicity
of L. Now letA, B∈ A be given. We have to show that

L(A)+L(B)≤ L(A∪B)+L(A∩B). (20)

If L0(A∩B) = L0(A), then by (19)L(A∩B) = L(A), hence (20) follows from the mono-
tonicity of L. Thus we assumeL0(A∩B) < L0(A) and, symmetrically,L0(A∩B) < L0(B).
But then, by the 2-monotonicity ofL0 we haveL0(A) < L0(A∪B) andL0(B) < L0(A∪B).
Together with (18), we infer forX ∈ {A, B}:

0 ≤ x(X) :=
L(X)−L(A∩B)

L0(X)−L0(A∩B)
≤ L(A∪B)−L(X)

L0(A∪B)−L0(X)
=: y(X).

Now, by symmetric reasons, we suppose thaty(A) ≤ y(B), hencex(A) ≤ y(B). Finally,
the 2-monotonicity ofL0 leads toL(A)−L(A∩B) = x(A) · (L0(A)−L0(A∩B)) ≤ x(A) ·
(L0(A∪B)−L0(B))≤ y(B) · (L0(A∪B)−L0(B)) = L(A∪B)−L(B), thus (20) holds. ✷

The proof of Theorem 3 is not complete, because models 1 and 2 are waiting
for verification. The reason for this is that we want to emphasize that these models
are, in fact,local models with respect to the F- and F0-property respectively.10

This is the content of the following Theorem 4, the last one inthe sequence of
theorems.

Definition 5 Let A∈ A be fixed. An adjusted R-fieldR = (Ω; A ; L) is called

1. anF(A)-field, if it satisfies the axiomL(A) = infp∈M (R ) p(A),

2. anF0(A)-field, if it satisfies the axiomL(A) = minp∈M (R ) p(A). ✷

The trivial connection with Definition 3, 3.) and 4.), is given by

Corollary 3 LetR = (Ω; A ; L) be an adjusted R-field. Then we have:

1. R is an F-field iff for all A∈ A , R is an F(A)-field.

2. R is an F0-field iff for all A∈ A , R is an F0(A)-field. ✷

10This also is true for the F- and F0-models in Theorems 1 and 2.
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Theorem 4 (Third class of neighbourhood models, part 2) Let A∈ A be fixed.
LetO0 = (Ω; A ; L0) andO = (Ω; A ; L) be adjusted O-fields, U0(.) = 1−L0(¬.),
and U(.) = 1−L(¬.). Assume that (15), (16), and (17) hold. Then we have:

1. If O0 is an F(A)-field, then so isO.

2. If O0 is an F0(A)-field, then so isO.
Moreover, in both casesO is a neighbourhood ofO0, and the “functional

connection” (19) between L0 and L is valid. ✷

Proof. The “Moreover”-statement can be shown like a) and c) in the proof of Theorem 3.
So we only have to prove statements 1.) and 2.), where we restrict ourselves to model 1.11

For this let all the corresponding premises be given, especially let A∈ A be fixed andO0
be an F(A)-field. SinceO is a neighbourhood ofO0, we have

L(.)≤ L0(.) andU0(.)≤U(.), and thus M (O0)⊆M (O). (21)

(Hence the R-property moves fromO0 toO.) Now we concentrate on proving the F(A)-pro-
perty ofO, where by (21) w.l.o.g. we assumeL(A) < L0(A). Together with (15) we infer

U(¬A) > U0(¬A) > 0. (22)

Let ε > 0, w.l.o.g.
ε < U(¬A)−U0(¬A). (23)

We have to show that there existsp∈M (O) with p(A)≤ L(A)+ ε. Define

δ =
U0(¬A)

U(¬A)
· ε. (24)

Then, by (22),δ > 0. SinceO0 is an F(A)-field, there is

p0 ∈M (O0) with p0(A)≤ L0(A)+δ. (25)

Together with (22), (23), and (24) we get by easy calculations

0 < U0(¬A)−δ ≤ p0(¬A) ≤ U0(¬A) < U(¬A)− ε ≤ 1. (26)

Therefore

1 ≤ U(¬A)− ε
p0(¬A)

≤ U(¬A)− ε
U0(¬A)−δ

=
U(¬A)

U0(¬A)
, (27)

where (24) is used for the equality. In addition, (26) implies thatp0(A) and p0(¬A) have
positive values, and hence it is possible to define the classical conditional probabilities

p0(. | A) =
p0(A∩ .)

p0(A)
and p0(. | ¬A) =

p0(¬A∩ .)

p0(¬A)
.

Now we let
p(.) = (L(A)+ ε) · p0(. | A)+(U(¬A)− ε) · p0(. | ¬A), (28)

which (using (26)) is a convex combination ofp0(. | A) and p0(. | ¬A). Hencep is a
well-defined K-function on(Ω; A). Moreover, we havep(A) = L(A)+ ε.

To verify that p is an element of the structure ofO, let B ∈ A. We have to prove
that p(B)≥ L(B), where w.l.o.g.L(B) > 0. But then, by (21) we also haveL0(B) > 0. In

addition,L0(A∪B) > 0.12 From (16) we deriveL(A∪B)
L0(A∪B) ≥

L(B)
L0(B) , thus with (25),

11Modifying the following arguments by settingε = δ = 0, we also get a proof of model 2.
12Note that we are not able to infer this inequality fromL0(B) > 0 by monotonicity ofL0, since
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p0(B) · L(A∪B)

L0(A∪B)
≥ L(B). (29)

Furthermore, using the abbreviation

∆ = U0(¬A∩¬B)− p0(¬A∩¬B) = p0(A∪B) − L0(A∪B), (30)

we get the following inequalities, where (31) follows from (27) and (17), (32) is a conse-
quence of (25), and (33) is implied by (27) and (21):

U0(¬A∩¬B) · U(¬A)− ε
p0(¬A)

≤ U(¬A∩¬B) , (31)

∆ ≥ 0, (32)

U(¬A)− ε
p0(¬A)

≥ L(A∪B)

L0(A∪B)
. (33)

If L(A)+ε
p0(A) >

L(A∪B)
L0(A∪B) ,13 we calculate

p(B)
(28)
= p0(A∩B) · L(A)+ ε

p0(A)
+ p0(¬A∩B) · U(¬A)− ε

p0(¬A)

(33)
≥ p0(A∩B) · L(A∪B)

L0(A∪B)
+ p0(¬A∩B) · L(A∪B)

L0(A∪B)

= p0(B) · L(A∪B)

L0(A∪B)

(29)
≥ L(B).

Therefore, we can assume
L(A)+ ε

p0(A)
≤ L(A∪B)

L0(A∪B)
. (34)

Now we receive

p(B) = 1− p(¬B)

(28)
= 1− (L(A)+ ε) · p0(A∩¬B)

p0(A)
− (U(¬A)− ε) · p0(¬A∩¬B)

p0(¬A)

(30)
= 1−U0(¬A∩¬B) · U(¬A)− ε

p0(¬A)
+ ∆ · U(¬A)− ε

p0(¬A)
− p0(A∩¬B) · L(A)+ ε

p0(A)

(31)–(34)
≥ 1−U(¬A∩¬B) + ∆ · L(A∪B)

L0(A∪B)
− p0(A∩¬B) · L(A∪B)

L0(A∪B)

(30)
= p0(B) · L(A∪B)

L0(A∪B)

(29)
≥ L(B).

Hence Theorem 4 is proven. ✷

we did not presuppose this monotonicity. But we can argue as follows: AssumeL0(A∪B) = 0. Then
U0(¬A∩¬B) = 1, thus by (21),U(¬A∩¬B) = 1. Using (17), we getU(¬A) =U0(¬A∩¬B) ·U(¬A)≤
U(¬A∩¬B) ·U0(¬A) = U0(¬A), contradicting (22).

13Concerning the modified proof of model 2 mentioned above, note that due to (16) this case does
not occur, ifε = 0.
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6 Concluding Remarks

To start with a topic raised in Section 1, consider again equation (2), that is
L = f ◦L0, with the standard assumption thatf : [0; 1]→ [0; 1] is a function with
f (0) = 0 and f (1) = 1. Already in [2], Proposition 5.2, it is shown that via (2)
everyconvex ftransfers any given F-fieldO0 = (Ω; A ; L0) to a neighbourhood
O = (Ω; A ; L), which is an F-field too. But in a strict sense, this neighbourhood
model is not “appropriate”, since by Theorem 1, model 3, there is a weaker con-
dition on f doing the same — namely the condition of bi-elasticity. The question
arises, whether this requirement is “appropriate” instead. Indeed, bi-elasticity is
even the weakest assumption onf ensuring that via (1), i.e.L = f ◦ p, every
K-function p∈ K (Ω; A) is transfered to an F-neighbourhoodO = (Ω; A ; L), if
we are allowed to vary the underlying measurable space(Ω; A). For this, there is
a quick argument, if additionally it is assumed that our functions f are continuous
on ]0; 1[. In this case it is even sufficient to consider allfinite measurable spaces
and, for each of them, onlyonecentral distributionp “testing” equation (1):

Let f be fixed, being continuous on]0; 1[ and having the above-mentioned
property of generating F-neighbourhoods via (1). We restrict ourselves in deriving
condition (4), where, by continuity, it is possible to assume that in therey andz
are rational numbers:y = i

k andz= j
k for 0 < i ≤ j ≤ k. Now, for thisk∈ IN, we

walk up to the finite measurable space(Ωk; P (Ωk)) and employ the corresponding
classical uniform probabilityp = pk

0 as central distribution, generating via (1) an
F-neighbourhoodO = (Ωk; P (Ωk); L) (cf. Example 1). HenceO is an uniform
F-field on(Ωk; P (Ωk)), which — according to the last sentence in Example 1 —
obeys the chain (14), especially its left part. Finally, an easy transformation leads
to the desired inequality in (4).

Apart from this — last — positive result given here, many questions concern-
ing the role of bi-elasticity within the theory of interval probability remain open.
For example, theconcept of conditional interval probabilityis still debated (see
[10] or [12] and the references therein). In particular, Weichselberger’s notion of
thecanonical concepthas the disadvantage that some constructions are not closed
w.r.t. the F-property. Using the corresponding notationΨ(A | B) = Ψ(A)

Ψ(B)
for every

A, B∈A with A⊆ B such thatΨ(B) 6= 0, whereΨ can be a K-function as well as
the lower or the upper bound of a probability field, it is possible to rephrase sen-
sitively Theorem 3, models 1 and 2, and Theorem 4. Considering the outcome, it
perhaps is feasible to modify these theorems in a way, which is profitable for a
better understanding of the phenomenon of conditional interval probability.

Summarizing, the results presented in this article can be seen as the formal ba-
sis for joining together robust statistics and interval probability in its most expres-
sive form, i.e., the concept of coherent or F-probabilities. The systematic develop-
ment of distorted probabilities should be able to initiate avariety of applications
in robust statistics and beyond.
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Abstract

This paper argues in favor of the thesis that two different concepts of con-
ditional interval probability are needed, in order to servethe huge variety of
tasks conditional probability has in the classical settingof precise probabili-
ties. We compare the commonly used intuitive concept of conditional interval
probability with the canonical concept, and see, in particular, that the canon-
ical concept is the appropriate one to generalize the idea oftransition kernels
to interval probability: only the canonical concept allowsreconstruction of
the original interval probability from the marginals and conditionals, as well
as the powerful formulation of Bayes Theorem.

Keywords

conditional interval probability, intuitive concept of conditional interval probability,
canonical concept of conditional interval probability, conditioning, updating, theorem of

total probability, Markov chains, Bayes theorem, decisiontheory

1 Introduction

In the last years a comprehensive theory of interval probability has been devel-
oped which systematically generalizes Kolmogorov’s axiomatic approach to clas-
sical probability. Just as in Kolmogorov’s approach, the basic axioms have to be
supplemented by appropriate concepts of independence and by a definition of
conditional probability.

The goal of the theory of interval probability is not only thecreation of meth-
ods for dealing with imprecise probability but also a systematic one: the establish-
ment of a body of definitions and results comparable to the analogous elements of

∗We thank Anton Wallner for his valuable remarks and his support.
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the classical theory with respect to rigidity and efficiencybut with a much wider
field of appropriate application.

While the system of axioms describing the properties of probability assign-
ments is thoroughly discussed in [27] (see also [25] and [26]), the necessary sup-
plements concerning independence and conditional probability are not included in
that volume. A report summarizing basic aspects results in the statement that there
is need for two different definitions of conditional probability associated with dif-
ferent roles in employing interval probability: the intuitive concept of conditional
probability and the canonical concept of conditional probability ([26]).

The intuitive concept of conditional probability is widelyused as the only gen-
eralization of classical conditional probability to imprecise probability in general
(for a recent study in the context of numerical possibility theory, see [8], section
6). This way of generalizing conditional probability was rigorously justified by
Walley [22], who derived it from coherence considerations between gambles and
contingent gambles. It is almost exclusively used in statistical inference with im-
precise probabilities: In particular, it underlies Walley’s imprecise Dirichlet model
(cf. [23], see also, e.g., [3] and [31]), and it is often understood as self-evident in
robust Bayesian inference (e.g. [24], [18]).

Mainly in the area of artificial intelligence, often anotherdefinition of condi-
tional interval probability is applied. It dates back to Dempster [10] and his pro-
posed method of statistical inference. Since Shafer [19] itis often used isolated
from its original motivation asDempster’s rule of conditioning. It has experienced
many modifications, see [30] for a comparison of different proposals.

Only very few authors have argued in favor of a symbiosis of different con-
cepts of conditional probabilities. Dubois and Prade [11] use the intuitive concept
for what they call ‘focusing’, and Dempster’s rule for ‘conditioning’. Halpern and
Fagin [12] stress that there are different ways to understand belief functions, a
fact which naturally leads to different concepts of conditional probability.

Weichselberger argues that the intuitive concept has to be supplemented by
the canonical concept, which in rare situations produces the same result as the
concept proposed by Dempster. Although in many situations the canonical con-
cept does not qualify for being interpreted as an assignmentof interval probability
itself, it serves as the inevitable bearer of information for solving important prob-
lems. This is not surprising, since even in classical theoryconditional probability
has two different roles: sometimes as an information of its own value, but in other
cases as a tool allowing the derivation of other quantities.In the theory of interval
probability canonical conditional probability and canonical conditional expecta-
tion can be used for such purposes, irrespective of their qualification as interval
probability or as interval expectation. The relation between the two concepts of
conditional interval probability with respect to different situations is the subject of
the present article. After introducing basic requirementsin Section 2, in Sections
3 to 6 we compare the consequences of the employment of each concept with re-
spect to some relevant aspect of conditioning. Section 7 contains the conclusions
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which can be drawn.

2 Basic Concepts

Every probability measure in the usual sense, i.e. every setfunction p(.) satisfy-
ing Kolmogorov’s axioms, is called aclassical probability. The set of all classical
probabilities on a measurable space(Ω;A) will be denoted byK (Ω;A). Ac-
cording to [27] axioms for interval probabilityP(.) = [L(.),U(.)] can be obtained
by describing the relation between the non-additive set functionsL(.) andU(.)
and the set of classical probabilities being in accordance with them. Set functions
P(.): A→ Z0 := {[L;U ] |0≤ L≤U ≤ 1}, A 7→ P(A) = [L(A);U(A)], withM :=
{p(.) ∈ K (Ω;A) | L(A)≤ p(A)≤U(A), ∀A∈ A} 6= /0 are calledR-probability
with structureM . If additionally infp(.)∈M p(A) = L(A), and supp(.)∈M p(A) =
U(A), ∀A∈ A , hold, thenP(.) is F-probability. (With allowance to the different
attitudes of Kolmogorov and de Finetti towardsσ-additivity R-probability mate-
rially corresponds to a probability assignment ‘avoiding sure loss’ described by
interval limits and F-probability to a ‘coherent’ assignment by interval limits.)
The tripleF = (Ω;A ;L(.)) is called anF-probability field.

A non-empty subsetV of M is called aprestructureof F = (Ω; A ; L(.))
if the following equations hold: infp(.)∈V p(A) = L(A), supp(.)∈V p(A) = U(A),

∀A∈ A . The concept of independence1 is introduced by

Definition 1 Let F = (Ω; A ; L(.)) be an F-probability field with structureM
and letCi , i = 1, 2, be partitions ofΩ. ThenC1 andC2 aremutually independent,
if the setMI = {p(.)∈M | p(A1∩A2) = p(A1) · p(A2), ∀Ai ∈ Ci , i = 1, 2} serves
as a prestructure of the fieldF . ✷

In [26] this definition is illustrated in the case of a fourfold-table. As also
mentioned there, apart from cases for which at least one of the marginal prob-
abilities is a classical probability, the structureM will always contain classical
probabilities with some dependence ofC1 andC2 in the classical sense.

The classical concept of conditional probability can be generalized to interval
probability in two different ways, generating on the one hand the intuitive concept,
on the other hand the canonical concept of conditional probability, two concepts
with different properties in many respects.

1The question how to generalize the notion of independence has received considerable attention
(see, e.g., [4] for a survey and [13] for a comprehensive treatment in the context of random sets).
Recently, in particular the concepts of epistemic irrelevance and independence, introduced by Walley
[22], have been investigated in detail (see, among others, [7], [14], [16], [17], [21], [20]).

In the context studied here the most natural definition is to call two partitions independent if the
structure of the underlying F-probability field is generated by the set of independent classical probabil-
ities (cf. [25], [26]). This way of defining independence corresponds to the notion of strong extension
([4], [6]).
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Definition 2 Let F = (Ω; A ; L(.)) be an F-probability field with structureM ,
andC be a partition ofΩ where U(C) > 0, ∀C ∈ C . WithMC := {p(.) ∈M |
p(C) > 0} the intuitive concept of conditional probabilityis given by defining
iPC (A | C) = [iLC (A | C); iUC (A | C)], where

iLC (A | C) = inf
p(.)∈MC

p(A∩C)

p(C)
, iUC (A | C) = sup

p(.)∈MC

p(A∩C)

p(C)
,∀A∈ A , ∀C∈ C .

✷

It can be demonstrated that this definition generates a conditional F-field for
everyC with U(C) > 0. The motivation of employing the intuitive concept is
straightforward: As long asL(C) > 0 it may be understood as the transition from
the structureM to the structureiMC (. | C) = {p(. | C) | p(.) ∈M }, which con-
sists exactly of all classical conditional probabilities corresponding to elements
of the original structureM . The conditional interval expectation of any gain
function G(.) — defined for all elementsE of Ω — therefore is calculated as
iE(G(.) | C) = [iL(G(.) | C); iU(G(.) | C)] = {Ep(G(.)) | p(.) ∈ iMC (. |C)}.

Weichselberger ([25], [26]) argues that the intuitive concept has to be supple-
mented by a concept, which is derived from a canon of desirable properties, and
therefore is called thecanonical concept of conditional interval probability.

Definition 3 LetF = (Ω; A ; L(.)) be an F-probability field andC be a partition
of Ω where L(C) > 0, ∀C∈ C . The canonical concept of conditional probability

is given by LC (A | C) := L(A∩C)
L(C) and UC (A | C) := U(A∩C)

U(C) , ∀A∈ A , ∀C∈ C .

The canonical concept of conditional expectation of the gain function G(.) for
each C∈ C with L(C) > 0 is defined asE[G(.) | C] := [L(G(.) | C); U(G(.) | C)]

with L(G(.) | C) := L(G(.)∩C)
L(C) , U(G(.) | C) := U(G(.)∩C)

U(C) and L(G(.)∩C) =

infp∈M ∑E⊆AG(E) · p(E), U(G(.)∩C) = supp∈M ∑E⊆AG(E) · p(E). ✷

Three simple examples demonstrate the different types of conditional proba-
bility according to the canonical concept. Each is constructed from an F-prob-
ability field on Ω = E1 ∪ E2 ∪ E3 with A = P (Ω), and the same partition
C = (C1, C2) with C1 = E1∪E2, C2 = E3 is considered. Example 1 describes
a constellation(F ; C ) with conditional F-probability according to the canonical
concept.

Example 1 An F-probability fieldF (1) is given by

P(E1) = [0.10; 0.30]
P(E2) = [0.20; 0.45]
P(E3) = [0.40; 0.60]

P(E1∪E2) = [0.40; 0.60]
P(E1∪E3) = [0.55; 0.80]
P(E2∪E3) = [0.70; 0.90]

Because of L(C1) = 0.40, U(C1) = 0.60 the conditional probability according to
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the canonical concept is given by

PC (E1 | C1) = [0.25; 0.50]
PC (E2 | C1) = [0.50; 0.75]
PC (E3 | C1) = [0]

PC (E1 | C2) = [0]

PC (E2 | C2) = [0]

PC (E3 | C2) = [1]

It is easily seen that in this case both conditional probability fields are F-prob-
ability. In addition the results may be compared with those from applying the
intuitive concept:

iPC (E1 | C1) = [0.182; 0.600]
iPC (E2 | C1) = [0.400; 0.818]
iPC (E3 | C1) = [0]

iPC (E1 | C2) = [0]

iPC (E2 | C2) = [0]

iPC (E3 | C2) = [1] ✷

It can be shown that interval limits resulting from the intuitive concept cannot
be narrower than those arising from the canonical one (cf., e.g., [22], p. 301). In
general for allC ∈ C , iPC (Ei | C) % PC (Ei | C) holds. Both concepts coincide if
the marginals consist of classical probabilities.2 Example 2 shows a constellation
(F ; C ) for which the conditional probability according to the canonical concept
possesses R-quality but not F-quality.

Example 2 The F-fieldF (2) is given by

P(E1) = [0.10; 0.25]
P(E2) = [0.20; 0.40]
P(E3) = [0.40; 0.60]

P(E1∪E2) = [0.40; 0.60]
P(E1∪E3) = [0.60; 0.80]
P(E2∪E3) = [0.75; 0.90]

The conditional probability according to the canonical concept now reads as fol-
lows:

PC (E1 | C1) = [0.250; 0.417]
PC (E2 | C1) = [0.500; 0.667]
PC (E3 | C1) = [0]

PC (E1 | C2) = [0]

PC (E2 | C2) = [0]

PC (E3 | C2) = [1]

The fact, that LC (E1 | C1)+UC (E2 | C1) 6= 1 and LC (E2 | C1)+UC (E1 | C1) 6= 1
makes it clear, that PC (. | C1) is not F-probability. On the other hand the assign-
ment pC (E1 | C1) = 0.4, pC (E2 | C1) = 0.6, pC (E3 | C1) = 0.0 is an element of
the structure of this field: The canonical concept here produces an R-field, but not
an F-field. Again the intuitive concept produces an F-probability-field with wider
interval limits: iPC (E1 | C1) = [0.200; 0.556] and iPC (E2 | C1) = [0.444; 0.800]
completed by the same trivial interval limits as in Example 1. ✷

Example 3 describes a constellation for which canonical conditional probabil-
ity has not even R-quality, since it contains intervals for whichL > U holds.

2For an attractive example for this special situation see thenonparametric predictive inference
discussed in [2].
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Example 3 The F-fieldF (3) is given through

P(E1) = [0.16; 0.18]
P(E2) = [0.22; 0.42]
P(E3) = [0.40; 0.60]

P(E1∪E2) = [0.40; 0.60]
P(E1∪E3) = [0.58; 0.78]
P(E2∪E3) = [0.82; 0.84]

The canonical concept produces: PC (E1 | C1) = [0.40; 0.30] and PC (E2 | C1) =
[0.55; 0.70] and the same trivial interval limits as the foregoing examples. Since
LC (E1 | C1) > UC (E1 | C1), it is impossible to find K-functions in accordance
with the interval limits: A structure does not exist. Concerning the intuitive con-
cept, there are no problems: iPC (E1 | C1) = [0.276; 0.450] and iPC (E2 | C1) =
[0.550; 0.724]. ✷

It is obvious that in a case like this the outcome of the canonical concept
cannot be interpreted as interval probability in the usual sense. In order to allow
the employment of the wordprobability, the usage of this expression has to be
extended.

Definition 4 Given a sample spaceΩ and aσ-field A of random events inΩ,
P(A) = [L(A); U(A)], ∀A ∈ A , is namedO-probability, if 0≤ L(A), U(A) ≤ 1,
∀A∈ A . ✷

P(A), A∈A , need not be intervals,L(A) may be larger thanU(A). It will be shown
in the following sections that the canonical concept produces results which are
bearers of important information, even they do not qualify for being interpreted
as R-probability or as interval expectation.

3 Independence and Conditional Probability

In the classical theory mutual independence of two partitionsC1 andC2 can be
characterized by

p(A1 | A2) = p(A1), ∀A1 ∈ C1, ∀A2 ∈ C2 : p(A2) 6= 0. (1)

If the intuitive concept of conditional interval probability and the definition of
independence along the lines of Definition 1 are applied, this appealing property
does not hold in general. This fact led to the introduction ofthe notions of epis-
temic irrelevance and epistemic independence (see the references in footnote 1),
which use variants of (1) to define independence.

In contrast, (1) extends to interval probability if the canonical concept of
conditional probability is employed (andL(A2) 6= 0). According to Definition 1
L(A1∩A2) = L(A1) ·L(A2) andU(A1∩A2) = U(A1) ·U(A2) hold. This leads to

Theorem 1 If F = (Ω; A ; L(.)) is an F-probability field andC1, C2 ⊆ A are
partitions ofΩ, the statements a) and b) are equivalent:
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1. PC2(A1 | A2) = P(A1), ∀A1 ∈ C1, A2 ∈ C2 : L(A2) 6= 0.

2. C1 andC2 are mutually independent. ✷

It is, therefore, in this case guaranteed that the canonicalconcept produces
conditional F-probability fields. On the other hand: Since the interval limits of the
intuitive concept are generally wider than that of the canonical one, in the case
of mutual independenceiPC2(A1|A2) % P(A1) must be expected. Employing the
model of double-dichotomy this phenomenon is demonstratedin Example 4.

Example 4 LetF = (Ω; A ; L(.)) be an F-probability field withΩ4 = E1∪E2∪
E3∪E4, A = P (Ω4) and

P(E1) = [0.08; 0.21]
P(E2) = [0.06; 0.18]
P(E3) = [0.28; 0.49]
P(E4) = [0.21; 0.48]

P(E1∪E2) = [0.20; 0.30]
P(E1∪E3) = [0.40; 0.70]
P(E1∪E4) = [0.33; 0.66]

(The remaining components of this F-field follow from L(A)+U(¬A) = 1,∀A∈
A .) Let two partitions be given byC1 = (A1, ¬A1), where A1 = (E1∪E2), and
C2 = (A2, ¬A2), where A2 = (E1∪E3). By means of a four-fold table indepen-
dence ofC1 andC2 is directly controlled:

P(E1)=[0.08; 0.21] P(E1)=[0.06; 0.18] P(E1∪E2)=[0.20; 0.30]
P(E3)=[0.28; 0.49] P(E4)=[0.21; 0.48] P(E3∪E4)=[0.70; 0.80]

P(E1∪E3)=[0.40; 0.70] P(E2∪E4)=[0.30; 0.60] P(Ω4)=[1]

L(E1∪E4)=max(L(E1)+L(E4), 1−U(E2)−U(E3))=0.33
U(E1∪E4)=min(U(E1)+U(E4), 1−L(E2)−L(E3)) =0.66.

The canonical concept of conditional probability produces:

LC2(A1 | A2)=LC2(E1∪E2 | E1∪E3)=
L(E1)

L(E1∪E3)
= 0.08

0.40=0.20=L(E1∪E2)

UC2(A1 | A2)=UC2(E1∪E2 | E1∪E3)=
U(E1)

U(E1∪E3)
= 0.21

0.70=0.30=U(E1∪E2).

The intuitive concept leads to

iLC2(A1 | A2)=infM p(E1 | E1∪E3) = 0.08
0.08+0.49=0.140< 0.20

iUC2(A1 | A2)=supM p(E1 | E1∪E3)=
0.21

0.21+0.28=0.429> 0.30.
✷

The conclusion from these results is evident: If it is of importance, that in the
case of mutual independence conditional and marginal probability are equal, then
the canonical concept of conditional probability must be employed.
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4 Updating with Conditional Probability

The essential aspects concerning updating by means of conditional interval prob-
ability already become clear in the simple case of two states, A1 andA2, and two
(or later, three) possible diagnoses,B1 andB2 (and later,B3). If the overall prob-
ability is given by an F-fieldF = (Ω; P (Ω); L(.)) with |Ω|= 4, one has

P(A1∩B1)=[L11; U11] P(A1∩B2)=[L12; U12] P(A1)=[L1.; U1.]
P(A2∩B1)=[L21; U21] P(A2∩B2)=[L22; U22] P(A2)=[L2.; U2.]

P(B1)=[L.1; U.1] P(B2)=[L.2; U.2] P(Ω4)=[1]

While the prior probability of stateA1 is given byP(A1), updating in case of diag-
nosisB1 produces the conditional probability of(A1∩B1) givenB1. If more than
two diagnoses are possible, it is important to ensure that the process of updating
is associative: Does stepwise learning lead to the same result as instantaneous
learning? In the case of classical probability the answer isaffirmative.

An F-probability fieldF = (Ω; P (Ω); L(.)) with |Ω|= 6 is given by:

P11 P12 P1S P13 P1.

P21 P22 P2S P23 P2.

P.1 P.2 P.S P.3 [1]

where

Pi j := P(Ai ∩B j)
Pi. := P(Ai), i = 1, 2
P. j := P(B j), j = 1, 2, 3
PiS := P(Ai ∩ (B1∪B2))
P.S := P(B1∪B2)

and in an analogous way forL andU .
Let instantaneous learning immediately transfer the information fromΩ to B1,

while stepwise learning leads fromΩ to B1∪B2 and from there toB1. A method
of updating can only be accepted, if the final result is equal in both cases.

For the intuitive concept it is sufficient to remember that for classical proba-
bility the equationp(A | B1) = p(A∩B1|B1∪B2)

p(B1|B1∪B2)
is valid. This is not only the reason,

why associativity holds for updating with the classical conditional probability; it
also means thatiM (. | B1) =

{
p(. | B1) | p(.) ∈ iM (. | B1∪B2)

}
must be true

and updating with the intuitive concept of conditional probability produces the
same results for instantaneous and for stepwise learning.

With respect to the canonical concept the first step of information (“B1∪B2”)
produces the conditional probability field with the following interval limits:

[
L11

L.S
;

U11

U.S

] [
L12

L.S
;

U12

U.S

] [
L1S

L.S
;

U1S

U.S

]

[
L21

L.S
;

U21

U.S

] [
L22

L.S
;

U22

U.S

] [
L2S

L.S
;

U2S

U.S

]

[
L.1

L.S
;

U.1

U.S

] [
L.2

L.S
;

U.2

U.S

]
[1]
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The second step of information (“B1”) leads to the interval limitsL11
L.S

: L.1
L.S

= L11
L.1

,
U11
U.S

: U.1
U.S

= U11
U.1

, which are the same as if the information “B1” had been given at
once. Therefore the canonical concept satisfies the necessary condition for rea-
sonable updating as well.

It may be concluded that in principle each of the two conceptscan be em-
ployed for updating. Since the intuitive concept guarantees the F-property of the
outcome it should be preferred under usual circumstances.

5 Transfer of Information

The idea of conditional probability often is employed in designing new mod-
els, combining marginal probability derived from one source of information, with
conditional probability gained from another source. In particular the theory of
Markov chains relies on this principle: The dynamic evolution is completely de-
scribed by specifying an initial distribution and a matrix of transition probabilities,
consisting of the conditional probabilities to reach a state i given statej.

A necessary condition for the qualification of any concept ofconditional prob-
ability with respect to such transfer obviously is the possibility to reconstruct an
F-probability field by means of marginal probability and conditional probabil-
ity. It was demonstrated in [26], that this reconstruction need not be possible if
the intuitive concept is employed: different F-fields may beequal with respect to
marginal probability and to intuitive conditional probability for a certain partition.
This phenomenon is quite common for the intuitive concept: There are very rare
borderline cases where it is possible to determine an F-fielduniquely by means of
marginal probability and the respective intuitive conditional probability.

On the other hand, reconstruction of an F-probability field using the marginal
probability of a partition together with the canonical conditional probability is
practicable, if a so calledlaminar constellationin the following sense is given.

Definition 5 i) (AL, AU) is named asupportof the F-fieldF = (Ω; A ; L(.))
with structureM , if the set of equations: L(A) ≤ p(A),∀A ∈ AL, and p(A) ≤
U(A),∀A∈ AU , is sufficient to determineM .

ii) A constellation(F , C ), consisting of an F-fieldF = (Ω; A ; L(.)) and
a partition C of Ω, is named alaminar constellation, if there exists a support
(AL, AU) ofF , so that for each A∈ AL∪AU one of the two following conditions
is satisfied:

1. ∃C(1), . . . ,C(q) ∈ C : A =
Sq

i=1C(i).

2. ∃C∈ C : A⊂C. ✷

This definition characterizes constellations, where all information about the struc-
tureM — and therefore aboutF itself — is contained only in the marginal prob-
ability onC or in events which are subsets of single elements of the partition.
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If laminarity of the constellation is given, reconstruction of the original F-field
by means of marginal probability ofC and the canonical conditional probabilities
for all C ∈ C is possible, irrespective of the quality of the canonical conditional
probabilities, since for eachA satisfying condition a) the interval limits are de-
termined by the marginal probability and for eachA satisfying condition b) the
interval limits are to be reconstructed byL(A) = LC (A | C) · L(C) = L(A)

L(C) · L(C)

andU(A) = UC (A | C) ·U(C) = U(A)
U(C) ·U(C).

The reconstruction of an F-field using conditional O-probability is demon-
strated in Example 5 for a sample space of size 3.

Example 5 Let an F-fieldF = (Ω3; P (Ω3); L(.)) be given by:

P(E1) = [0.16; 0.21] P(E2) = [0.22; 0.42] P(E3) = [0.40; 0.60].

The partitionC = (C1, C2) with C1 = E1∪E2 and C2 = E3 leads to P(C1) =
[0.40; 0.60], P(C2) = [0.40; 0.60]. It is obvious, that this is a laminar constella-
tion: E1 and E2 obey condition b), E3 satisfies condition a). The interval limits of
conditional probability according to the canonical concept are:

LC (E1 |C1)=0.40 UC (E1 |C1)=0.35
LC (E2 |C1)=0.55 UC (E2 |C1)=0.70
LC (E3 |C2)=1 UC (E3 |C2)=1.

Therefore PC (E1 |C1) = [0.40; 0.35], PC (E2 |C1) = [0.55; 0.70] is an assignment
which can not be interpreted as a generalization of classical probability, but it is
useful for reconstructingF :

L(E1)=LC (E1 |C1) ·L(C1) =0.40·0.40=0.16

U(E1)=UC (E1 |C1) ·U(C1)=0.35·0.60=0.21

L(E2)=LC (E2 |C1) ·L(C1) =0.55·0.40=0.22

U(E2)=UC (E2 |C1) ·U(C1)=0.70·0.60=0.42

L(E3)=LC (E3 |C2) ·L(C2) = 1 ·0.40=0.40

U(E3)=UC (E3 |C2) ·U(C1)= 1 ·0.60=0.60.

Because of the laminarity of the constellation(F , C ) these interval limits are
sufficient to reconstructF . ✷

The Theorem of Total Probability can be formulated as

Corollary 1 If (F ; C ) is a laminar constellation, the F-fieldF is uniquely de-
termined by the marginal probability field forC and by the canonical conditional
probability fields resulting for eachC∈ C , irrespective of the F- or R- or O-quality
of the conditional fields. ✷
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This result allows interpretations:

1. If the conditional probabilities do not possess F-(R-)quality, therecannot
be any setof conditional F-(R-)probabilities which allows to reconstruct
the given F-field through the given marginal F-probability.

2. If the process of matching a given marginal F-probabilitywith given canon-
ical conditionals results in a field not possessing F-(R-)quality, it is impos-
sible to findan F-(R-)field with this marginal and with these conditionals.

Therefore, the results of transfer of information from one model to another to
some extent can be foreseen:

1. If PC (. | .) describes an F-field, matching with marginal F-probabilityal-
ways produces an F-field.

2. If PC (. | .) describes an R-field, matching with marginal F-probabilitypro-
duces either an F-field or an R-field which does not possess theF-quality.

3. If PC (. | .) does not fit to an R-field, nothing can be predicted about quality
of the outcome, if it is matched with marginal F-probability.

6 The Theorem of Bayes

The Theorem of Bayes is an important result of classical probability theory. While
it is of highest significance for any subjectivistic school,even the objectivistic
view sometimes finds conditions, under which it is legitimate to accept a certain
prior information which is described by classical probability. On the other hand
even the subjectivist cannot deny that in most practically relevant cases the choice
of a particular classical prior is at least highly debatable.

Therefore this is a situation inviting to propose the employment of interval
probability. If a successful transfer of the Theorem of Bayes into the theory of
interval probability can be achieved, a strong argument favouring the efficiency
of this theory is presented.3 Ambiguity, however, — distinguishing interval and
classical probability — does not obey to those laws which arethe basis of the
Theorem of Bayes in the classical theory. It should therefore not be expected that
the roles of this theorem in classical probability and in generalized probability
are the same. References to the obvious limitations for the efficiency of particular
types of this theorem have been given only recently ([29], [1]).

In classical probability the Theorem of Bayes results from the properties of
the concept of conditional probability. Therefore it has tobe expected that in the

3The Theorem of Bayes and the problem of computing posterior probabilities or posterior expec-
tations is a frequent subject in literature dealing with generalized probability: In his fundamental book
[22], Walley derived the ‘Generalized Bayes Rule’, which also is used in the robust Bayesian approach
(see, f.i., [5], [24], [15], [18]).
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theory of interval probability the role of conditional probability — and especially
of the concept employed — proves to be decisive. The transition from prior prob-
ability to posterior probability necessarily consists of two steps:

1. Derivation of an F-probability field for which the prior ismarginal proba-
bility and the conditional probability is given.

2. Derivation of conditional probability relative to the actual observation.

For the first step the method to be applied in case of interval probability is
obvious: Marginal probability and conditional probability (due to the canonical
concept) have to be combined by means of the Cartesian product of two structures.
This generates the product rulesL(A∩Z) = L(A) ·L(A | Z) andU(A∩Z) =U(A) ·
U(A | Z). In Example 6 this procedure is demonstrated introducing a special case
of double-dichotomy which will be employed in all of the examples to come.

Example 6 Let the F-field describing the probability for a dichotomy ofstates of
nature be given by P(Z1) = [0.2; 0.3], P(Z2) = [0.7; 0.8], and the probability of
the outcome of a certain trial in case of state Z1 be given by the F-field P(A1 |
Z1) = [0.6; 0.7], P(A2 | Z1) = [0.3; 0.4] in case of state Z2 by the F-field P(A1 |
Z2) = [0.1; 0.2], P(A2 | Z2) = [0.8; 0.9]. Interpreting the first of the three fields
as marginal probability and the two others as conditional probability according
to the canonical concept one arrives at the following components of an F-field
describing the combined probability of the states and outcomes:

P(A1∩Z1)=[0.12; 0.21] P(A2∩Z1)=[0.06; 0.12] P(Z1)=[0.2; 0.3]
P(A1∩Z2)=[0.07; 0.16] P(A2∩Z2)=[0.56; 0.72] P(Z2)=[0.7; 0.8]

P(A1) P(A2) P(Ω4)=[1]

This is partial determinate F-probability and the process of normal completion
has to be employed in order to calculate the components P(A1) and P(A2). In
the present situation the results are gained easily: Let p(Z1) = a be a K-function
belonging to the structure of the prior probability, p(A1 | Z1) = b and p(A1 |
Z2) = c be K-functions belonging to the structures of two marginalprobabilities.
Therefore:0.2≤ a≤ 0.3; 0.6≤ b≤ 0.7; 0.1≤ c≤ 0.2. The possible values of
a · b produce P(A1∩Z1), those of(1− a) · c produce P(A1∩Z2) and the values
of a·b+(1−a) · c produce P(A1). It is easily controlled, that a= 0.2, b = 0.6,
c = 0.1 render the minimum of a· b+ (1− a) · c, so that L(A1) = 0.20 results,
and a= 0.3, b = 0.7, c = 0.2 render U(A1) = 0.35. Since an F-field possesses
conjugate interval limits, one arrives for A1 = ¬A2 at L(A2) = 0.65, U(A2) =
0.80. The last line of the table above reads:

P(A1) = [0.20; 0.35] P(A2) = [0.65; 0.80] P(Ω4) = [1].

The results of the procedure described are those componentsof the combined F-
field which are relevant with respect to posterior probability. The components still
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lacking would be calculated in an analogous manner, for instance P[(A1∩Z1)∪
(A2∩Z2)] = [0.76; 0.86]. ✷

While the canonical concept is inevitable for step 1, there is a possibility to
choose between the concepts as far as step 2 is concerned: thecalculation of the
posterior probability for each observation. The decision in favour of the intuitive
concept is quite common and promises some remarkable advantages:

1. The F-quality of the posterior probability is guaranteed.

2. The structure of this F-field can be interpreted as the Cartesian product of
the structures of the marginal probability and of the conditional F-probabi-
lity belonging to the actual observation.

On the other hand, use of the canonical concept includes the risk that the
outcome cannot be interpreted as a generalization of a classical probability, since
the resulting intervals do not define a structure.

It is therefore advisable to calculate posterior probability by means of the in-
tuitive concept, if this posterior constitutes the only andfinal goal of the analysis.
However, in the following it will be demonstrated, that there are good reasons for
the opposite decision, if the posterior probability is to beemployed as a basis for
further analysis. Two situations will be considered:

1. The posterior probability of one trial is used as prior probability for another
trial which is independent from the first one.

2. The posterior probability is the basis of a decision between different ac-
tions.

As to thefirst of the two aspects: In classical theory it is seen as one of the
most important merits attributed to the employment of Bayes’ theorem that the
transition from the prior probability to the posterior is a definitive one: After the
trial the posterior takes over the role of the prior. If a nexttrial is independent from
the first one the posterior of the former trial, therefore, isthe prior of the next.
Obviously the following must be seen as a substantial criterion for a successful
transfer of Bayes’ theorem to interval probability: The results have to be the same,
whether two mutually independent trials are combined to onetrial, or the posterior
of the first one is used as prior for the second one. It can be shown that these
requirements are met, provided that the Theorem of Bayes is executed by means
of the canonical concept of conditional probability. For brevity the proof will be
limited to the case of two states of nature and two possible observations.

Proposition 1 Let (Z1, Z2) be a dichotomy of the states of nature with the prior
F-probability given by P(Z1) = [L; U ].

A first trial with possible outcome A1 or A2 is characterized by F-probabilities
given by P(A1 | Z1) = [l11; u11], P(A1 | Z2) = [l21; u21]. A second trial which
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is independent from the first one, has the outcomes B1 and B2. The ruling F-
probabilities are given by P(B1 | Z1) = [l12; u12], P(B1 | Z2) = [l22; u22]. If in the
Theorem of Bayes the canonical concept of conditional probability is employed,
a trial which originates from a combination of the observations A. and B. renders
the same posterior probability as the procedure, in which the posterior probability
of the first trial is taken as prior probability for the secondone. ✷

For theproof of this proposition it is sufficient to show that both procedures produce the
same probability componentsP(Ai ∩B j ∩Zr) andP(Ai ∩B j), since the final probability is
derived from the interval limits of these components. The demonstration will be given for
P(A1∩B1∩Zr), r = 1, 2, andP(A1∩B1).

1. In case of a combined trial, because of mutual independence of the trials one arrives
at P(A1∩B1 | Z1) = [l11 · l12; u11 · u12], P(A1∩B1 | Z2) = [l21 · l22; u21 ·u22] and
together with the marginal probability of the states of nature: P(A1∩B1∩Z1) =
[l11 · l12 · L; u11 · u12 ·U ], P(A1∩B1∩Z2) = [l21 · l22 · (1−U); u21 · u22 · (1− L)].
These two components are sufficient to calculateP(A1∩B1).

2. If the first trial is executed separately, conditional probability and marginal probabil-
ity produceP(A1∩Z1) = [l11 ·L; u11 ·U ], P(A1∩Z2) = [l21 · (1−U); u21 · (1−L)].
The component of the union of these events4 is designated byP(A1) = [L1; U1]. The
posterior probability of the first trial in case of observationA1 — which will be used
as prior for the second trial — is defined by the canonical conditional probability as

P(Z1 | A1) =
[

l11·L
L1

; u11·U
U1

]
, P(Z2 | A1) =

[
l21·(1−U)

L1
; u21·(1−L)

U1

]
. Hence, conditional

to A1 the probability-components for the observationB1 of the second trial read as

P(B1∩Z1 |A1) =
[

l12·l11·L
L1

; u12·u11·U
U1

]
, P(B1∩Z2 |A1) =

[
l22·l21·(1−U)

L1
; u22·u21·(1−L)

U1

]
.

In order to arrive at the components of the eventsA1∩B1∩Z1 andA1∩B1∩Z2,
canonical conditional and marginal probability must be combined:
L(A1∩B1∩Z1) = L(B1∩Z1 | A1) ·L(A1) = l11·l12·L

L1
·L1 = l11 · l12 ·L,

U(A1∩B1∩Z1) = U(B1∩Z1 | A1) ·U(A1) = u11·u12·U
U1

·U1 = u11 ·u12 ·U
and corresponding procedures forZ2. Both components are equal to those result-
ing from the combined trial and consequently as wellP(A1∩B1) as the canonical
conditional probability are alike: Both methods produce the same posterior. ✷

In Example 7 this equivalence is demonstrated in the case of the F-probability
field introduced in Example 6.

Example 7 For the prior probability and the conditional probability of
Example 6 the posterior probability — defined by the canonical concept results
as

P(Z1 | A1) =
[

0.12
0.20; 0.21

0.35

]
= [0.60; 0.60]

P(Z2 | A1) =
[0.07

0.20; 0.16
0.35

]
= [0.35; 0.46].

These two components can be interpreted as R-probability, since
p(Z1|A1) = 0.60, p(Z2 | A1) = 0.40, is a K-function in accordance with all

4The appropriate method of calculation is demonstrated in Example 6.
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interval limits. It will be seen that despite the lack of F-quality this assignment
can be used as a prior for a next trial. Let

P(B1 | Z1) = [0.7; 0.9]

P(B1 | Z2) = [0.2; 0.4]

P(B2 | Z1) = [0.1; 0.3]

P(B2 | Z2) = [0.6; 0.8].

Combined with the new prior produced by observation A1:

P(B1∩Z1 | A1)=[0.42; 0.54] P(B2∩Z1 | A1)=[0.06; 0.18] P(Z1 | A1)=[0.60; 0.60]
P(B1∩Z2 | A1)=[0.07; 0.184] P(B2∩Z2 | A1)=[0.21; 0.37] P(Z2 | A1)=[0.35; 0.46]

In order to calculate components of the absolute probability, the component
P(A1) = [0.20; 0.35] according to Example 6 has to be multiplied — which is
executed only for the events produced by observation B1:

L(A1∩B1∩Z1) = 0.42·0.20= 0.084
L(A1∩B1∩Z2) = 0.07·0.20= 0.014

U(A1∩B1∩Z1) = 0.54·0.35= 0.189
U(A1∩B1∩Z2) = 0.184·0.35= 0.064.

If, on the other hand, the mutually independence trials werecombined, the com-
ponents of A1∩B1 would be:

P(A1∩B1 | Z1) = [0.6 ·0.7; 0.7 ·0.9] = [0.42; 0.63]
P(A1∩B1 | Z2) = [0.1 ·0.2; 0.2 ·0.4] = [0.02; 0.08].

With respect to the marginal probability P(Z1) = [0.2; 0.3], P(Z2) = [0.7; 0.8] the
outcome of the combined trial is partially described by the components

P(A1∩B1∩Z1) = [0.42·0.2; 0.63·0.3] = [0.084; 0.189]
P(A1∩B1∩Z2) = [0.02·0.7; 0.08·0.8] = [0.014; 0.064]

demonstrating the conformity of the two procedures with regard to probability of
the observations. ✷

It should be noted that the procedure described in Proposition 1 and demon-
strated in Example 7 is not a mere transfer of the procedures customary in clas-
sical theory. The posterior probability resulting from thefirst trial is conditional
probability relative to the actual observation. Prior probability is always marginal
probability, hence total probability, not a conditional one. Therefore total proba-
bility has to be reconstructed by means of the marginal component of the actual
observation in the first trial. This step does not influence the result in classical
theory — and is left out therefore — but it is inevitable for interval probability!

Concerning thedecision-theoretic approachit has been shown recently ([1])
that with regard to the optimization of decisions in the general case of interval
probability the Theorem of Bayes — at least as far as it employs the intuitive con-
cept — does not render what its counterpart for classical probability renders: that
the Bernoulli-optimal action with respect to the posteriorprobability generated by
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the actual observation produces the corresponding branch of the optimal decision
function. Hence the so called ‘Main Theorem of Bayesian Decision Analysis’
does not hold for interval probability.

It can be demonstrated that in the general case of interval probability this phe-
nomenon is inevitable — beyond all questions about the methodology of Bayes’
theorem. In classical theory the branch of a decision function attributed to a cer-
tain observation produces an expected gain not depending onthe circumstances
related to the other possible observations. Therefore thisexpectation can be com-
pared directly with those of respective branches belongingto other — competing
— decision functions, a task, which is achieved easily via the Theorem of Bayes.

In presence of ambiguity the situation is different: If the expected gain of a
decision function is calculated, each of the partial sums generated by an observa-
tion can be influenced by circumstances which originally refer to any of the other
possible observations.This is a rule of thumb for decision functions:

Classical probability — only the actual observation counts.
Interval probability — all possible observations count.
Example 8, related to Examples 6 and 7, shows: If two gain functions differ

only for observationA2, nevertheless the contribution of observationA1 to the
interval expectation of the total gain may be influenced by this difference.

Example 8 Z1, Z2 are two states of nature and A1, A2 are two possible obser-
vations, where the marginal probability P(Z1), P(Z2) and the canonical condi-
tional probabilities P(A1 | Z1), P(A2 | Z1), P(A1 | Z2), P(A2 | Z2) are given in
Example 1. Remember, that for K-functions of the respectivestructures

p(Z1) = a, p(A1 | Z1) = b, p(A1 | Z2) = c

the interval limits are given by

0.2≤ a≤ 0.3, 0.6≤ b≤ 0.7, 0.1≤ c≤ 0.2.

The structure of the resulting F-field then consists of K-functions with the compo-
nents given by

p(A1∩Z1) = a·b p(A2∩Z1) = a· (1−b) p(Z1) = a
p(A1∩Z2) = (1−a) ·c p(A2∩Z2) = (1−a) · (1−c) p(Z2) = 1−a
p(A1) = a·b+(1−a) ·c p(A2) = a· (1−b)+(1−a) · (1−c) p(Ω4) = [1]

producing the interval limits of these components as

P(A1∩Z1)=[0.12; 0.21] P(A2∩Z1)=[0.06; 0.12] P(Z1)=[0.2; 0.3]
P(A1∩Z2)=[0.07; 0.16] P(A2∩Z2)=[0.56; 0.72] P(Z2)=[0.7; 0.8]

P(A1)=[0.20; 0.35] P(A2)=[0.65; 0.80] P(Ω4)=[1]

A first decision function D1(.) is characterized by the following gains

D1(A1∩Z1) = 4
D1(A1∩Z2) = 8

D1(A2∩Z1) = 6
D1(A2∩Z2) = 2.
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The expected gain e(D1(.)) for a K-function described by a, b and c is given as

e(D1(.))= 4ab+8(1−a)c+6a(1−b)+2(1−a)(1−c)= 2+2a(2−b−3c)+6c.

Since e(D1(.)) is minimal for a= 0.2, b= 0.7, c= 0.1 andE(D1(.)) = [3.0; 3.68].
For every K-function, e(D1(.)) can be divided into the two branches: e(D1(.)) =
e(D1(.)∩A1)+e(D1(.)∩A2) where

e(D1(.)∩A1) = 4ab+8(1−a)c, e(D1(.)∩A2) = 6a(1−b)+2(1−a)(1−c).

With respect to the roles of the two branches in determining e(D1(.)) they have
to be evaluated in the same way as e(D1(.)) itself, i.e., using a= 0.2, b = 0.7,
c = 0.1 to produce the two parts ofL(D1(.)) = 3.0: L∗(D1(.) ∩ A1) = 1.20,
L∗(D1(.)∩A2) = 1.80, and a= 0.3, b = 0.6, c = 0.2 to produce the respective
parts ofU(D1(.)) = 3.68: U∗(D1(.)∩A1) = 1.84, U∗(D1(.)∩A2) = 1.84. As far
as comparisons with other decision functions are concerned, the branch of D1(.)
determined by the observation A1 therefore is represented by[1.20; 1.84]. Now let
a second decision function D2(.) be given by

D2(A1∩Z1) = 4
D2(A1∩Z2) = 8

D2(A2∩Z1) = 3
D2(A2∩Z2) = 2.

This leads to

e(D2(.)) = 4ab+8(1−a)c+3a(1−b)+2(1−a)(1−c)= 2+a(1+b−6c)+6c

and this is minimal for a= 0.2, b= 0.6, c= 0.1 and maximal for a= 0.3, b= 0.7,
c = 0.2, producingE(D2(.)) = [2.8; 3.35]. If this interval expectation is divided
into the two branches generated by the observation of A1 and A2, one arrives at

e(D2(.)∩A1) = 4ab+8(1−a)c, e(D2(.)∩A2) = 3a(1−b)+2(1−a)(1−c)

together with the results for a= 0.2, b = 0.6, c = 0.1: L∗(D2(.)∩A1) = 1.12,
L∗(D2(.)∩A2) = 1.68, and for a= 0.3, b= 0.7, c= 0.2: U∗(D2(.)∩A1) = 1.96,
U∗(D2(.)∩A2) = 1.39.

There are two striking findings:

1. U∗(D2(.) ∩ A2) < L∗(D2(.) ∩ A2). Obviously L∗(D2(.)∩A2) and
U∗(D2(.) ∩ A2) may not be confounded with the lower and upper in-
terval limits for the expectation of D2(.)∩ A2, which can be calculated
as L(D2(.) ∩ A2) = 1.39 (produced by a= 0.3, b = 0.7, c = 0.2) and
U(D2(.)∩A2) = 1.68 (produced by a= 0.2, b= 0.6, c = 0.1). In the case
of decision function D2(.) therefore that constellation of K-functions, which
leads to the maximal e(D2(.)), results in the smallest possible value of
e(D2(.)∩A2), and that constellation, which minimizes e(D2(.)), happens
to maximize the value of e(D2(.)∩A2).
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2. L∗(D2(.)∩A1) 6= L∗(D1(.) ∩A1) and U∗(D2(.)∩A1) 6= U∗(D1(.)∩A1).
Both interval limits describing the contribution of branchA1 to the expected
gain are different for decision function D1(.) and decision function D2(.)
— although all of the data describing branch A1 are equal for both deci-
sion functions. The differences between the contributionsof branch A1 are
caused by differences concerning the gains in case of observation A2. ✷

This phenomenon demonstrates the impossibility of qualifying the contribu-
tion of the branch attributed to the actual observation onlyby the circumstances of
this observation without consideration of data related to other possible observa-
tions. In interval probability a decision function can onlybe judged or compared
with others as a whole — not piecewise for each branch separately. Any kind
of Theorem of Bayes, however, bases its calculation of the posterior probabil-
ity only upon the circumstances of the actual observation — irrespective of the
circumstances relating to other observations. Therefore no posterior probability
contains enough informationto qualify a branch of a decision function in com-
parison with the corresponding branches of competing decision functions.

The situation is different, if the problem considered is characterized by a very
special type of gain function: Gains different from zero aresupposed to be pos-
sible only if the actual observation isA1. Therefore decision functionsD(.∩ .)
are admissible for competition only if satisfying the requirementsD(Ai ∩Z j) =
0, ∀i 6= 1,∀ j. In this case the expected total gain and the expected gain for the
branchA1 are identical for every K-function:e(D(.)) = e(D(.) ∩ A1). Conse-
quently the following relations hold:L(D(.)∩A1) = L(D(.)) andU(D(.)∩A1) =
U(D(.)). While at first this assumption seems to be very unrealistic,its systematic
application to every actual observationAi — instead ofA1 — generates a strat-
egy which obviously is suboptimal in the general case, but may be understood as
a kind of approximation to the optimal strategy: For each actual observationAi

that actionD(.)∩Ai is chosen, which is best w.r.t.[L(D(.)∩Ai); U(D(.)∩Ai)],
irrespective of all observations which could have been madeand the gains which
would have been possible, if this observations had occured.

This strategy is much simpler than that founded on the complete decision
function. It is an imitation of the proceeding in classical probability. In Example
9 it is demonstrated using the data of Example 8.

Example 9 In the case of observation A1 for the branch D1(A1∩Z1) = D2(A1∩
Z1) = 4, D1(A1∩Z1) = D2(A1∩Z2) = 8 the decisive interval-expectation is given
by

L(D1(.)∩A1) = L(D2(.)∩A1) = 1.12 (a = 0.2, b = 0.6, c = 0.1)
U(D1(.)∩A1) = U(D2(.)∩A1) = 1.96 (a = 0.3, b = 0.7, c = 0.2).

In case of observation A2: For D1(A2∩Z1) = 6, D1(A2∩Z2) = 2 one arrives at

L(D1(.)∩A2) = 1.64 (a = 0.2,b = 0.7,c= 0.2)
U(D1(.)∩A2) = 1.98 (a = 0.3,b = 0.6,c= 0.1),
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for D2(A2∩Z1) = 3, D2(A2∩Z2) = 2:

L(D2(.)∩A2) = 1.39 (a = 0.3,b = 0.7,c= 0.2)
U(D2(.)∩A2) = 1.68 (a = 0.2,b = 0.6,c= 0.1). ✷

Two remarks are useful:
Expectations belonging to different observations are based on contradictory

assumptions. Therefore they are not suitable for being combined.
Comparison of actions which are characterized by means of interval expec-

tation depends on the attitude of the decision-maker towards ambiguity. It may
be described by the choice ofηL(G)+ (1−η)U(G), 0≤ η ≤ 1, as the decisive
quantity. Since it can be understood, that the larger value of gain G always is
preferred,η is interpreted as a measure of caution.

Because of the goal of this section it is asked whether a posterior probability
generated by the Theorem of Bayes can be employed in calculating the expecta-
tion [L(D(.)∩A1); U(D(.)∩A1)] produced by the actual observationA1.

Using again the data of Example 9 it will be demonstrated in Example 10
that with respect to that type of Theorem of Bayes, which employs the intuitive
concept of conditional probability, the answer to this question must be negative.

Example 10 The intuitive conditional probability iP(Z1 | A1), iP(Z2 | A1) obvi-
ously is determined by iL(Z1 | A1) = min

M

ab
ab+(1−a)c, iU (Z1 | A1) = max

M

ab
ab+(1−a)c

with
M = {pa,b,c(.); 0.2≤ a≤ 0.3; 0.6≤ b≤ 0.7; 0.1≤ c≤ 0.2}.

It is easily seen, that the minimum is produced by a= 0.2, b= 0.6, c= 0.2 and the
maximum by a= 0.3, b = 0.7, c = 0.1. The resulting i-conditional F-probability
field is given by iP(Z1 | A1) = [0.429; 0.750], iP(Z2 | A1) = [0.250; 0.571]. The
i-conditional expectation of the gain function produced bythe decision function
D(.) = D1(.) = D2(.) with D(A1∩Z1) = 4, D(A1∩Z2) = 8 is determined by

iL(D(.) | A1) = 0.750·4+0.250·8= 5
iU(D(.) | A1) = 0.429·4+0.571·8= 7.429.

To achieve the interval-expectation of D(.)∩A1, conditional expectation must be
combined with the corresponding component of marginal probability: P(A1) =
[0.20; 0.35]. Therefore iL(D(.)∩ A1) = 5·0.20, iU(D(.)∩ A1) = 7.429·0.35and
iE(D(.)∩ A1) = [1.00; 2.60] instead of the true interval expectation, as calculated
in Example 9:E(D(.)∩ A1) = [1.12; 1.96]. Like in other situations, employment
of the intuitive concept generates a loss in sharpness of theresult. ✷

If, however, the canonical concept is applied, the conditional expectation of
the gain produced by the decision functionD(.) for the observationA1, due to the

definition described in Section 2, reads asE(D(.) | A1) =
[

L(D(.)∩A1)
L(A1)

; U(D(.)∩A1)
U(A1)

]
.
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Combined with the component[L(A1); U(A1)] of the marginal probability this
conditional expectation producesE(D(.) ∩ A1) = [L(D(.)∩A1); U(D(.)∩A1)],
due to the simplified optimal strategy, as it was described above (Example 11).

It is, therefore, justified to use the designation ‘IntervalBayes-Strategy’ for
the method of selecting in case of observationA1 that action which produces the
largest expected gain — judged by means of the individual caution — with respect
to the posterior probability generated by the Theorem of Bayes with the canonical
concept of conditional probability.

Example 11 Because ofE(D(.)∩ A1) = [1.12; 1.96] (Example 9) and P(A1) =
[0.20; 0.35] (Example 8), the conditional expectation results asL(D(.) | A1) =
1.12
0.20, U(D(.) | A1) = 1.96

0.35 or E(D(.) | A1) = [5.60; 5.60]. The quality of the result
is not affected by the fact, that this interval possesses length zero. ✷

Hence, use of the canonical concept allows the Interval Bayes-Strategy, dis-
tinguished from the strategy based upon the optimal decision function only by
neglecting any information concerning observations whichdid not occur. If the
omission of such ‘counterfactual information’ is acceptedon principle, the Inter-
val Bayes-Strategy must be regarded as optimal.

7 Conclusions

This paper contributes to the question of defining conditional interval probability
appropriately. A symbiosis of the intuitive and the canonical concept of condi-
tional probability is proposed, resulting in recommendations which of the con-
cepts should be used for what propose.

The results of Sections 3–6 can for short be interpreted to favour the em-
ployment of the intuitive concept in any situation where conditional probability
is seen as a goal in itself, therefore in updating, whether itis achieved directly or
by means of the Theorem of Bayes: the final result should be described by the
intuitive concept of conditional probability.

The canonical concept proves to be superior always when conditional prob-
ability is used as a tool for further analysis. This applies to the transfer of infor-
mation from one model to another and to the derivation of a posterior probability
by means of the Theorem of Bayes, if this posterior is employed as prior for an
independent trial, or as basis for decisions between possible actions. Additionally
this concept produces a Theorem of Total Probability and theconsistency with
marginal probability in the case of independence as defined by strong extension.

While the intuitive concept guarantees that its outcome describing the final
result of an analysis always can be interpreted as interval probability or as interval
expectation, it is possible that the outcome of the canonical concept, which is
employed as a tool for further calculations, does not possess the F- or even R-
quality, resp., the quality of interval expectation, without loss of usefulness: an
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obvious analogy to the role of complex numbers in algebra.
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