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Preface

The ISIPTA meetings are one of the primary internationalifies to present
and discuss new results on the theory and applications ofeioige probabili-
ties. Imprecise probability has a wide scope, being a genenn for the many
mathematical or statistical models that measure chancenaertainty without
sharp numerical probabilities. These models include biliections, Choquet ca-
pacities, comparative probability orderings, convex séigrobability measures,
fuzzy measures, interval-valued probabilities, posiybineasures, plausibility
measures, and upper and lower expectations or previsiopsetise probability
models are needed in inference problems where the relefantriation is scarce,
vague or conflicting, and in decision problems where prefege may also be in-
complete.

A total of 44 papers were presented at ISIPTA '03, coveringdewange of
topics, including: new model based inference with impregsobabilities; com-
putations and foundations of inference with imprecise philities; applications
of imprecise probabilities in engineering, finance, andigied; connections with
graph theory, belief functions, and fuzzy random varighdesl the introduction
of new principles and tools for decision theory.

To help promote the exchange of novel ideas, at ISIPTA '03 eveinued the
conference format begun at ISIPTA '01. Each of the 44 paperewresented
both in a 20 minute plenary overview and as part of a postei@esAuthors
presenting at the plenary sessions were encouraged to meeafdheir 20 min-
utes to identify the context for their research, in additogiving an overview of
the research paper appearing in the proceedings. In thigheagoster sessions
served, again, as a forum for extended discussions of therpap

This ISIPTA meeting included three invited contributiomsrh Terrence L.
Fine, Irving J. Good, and Patrick Suppes. Copies of theiemawere distributed
at the conference and are included in the electronic versidhe proceedings
(http://www.sipta.orgtisipta03).

Each paper appearing in these printed proceedings has lbesnltject of a
careful refereeing process. We feel confident that the efeprocess has re-
sulted in a symposium and proceedings with contributiosplédying both very
high quality and unusual originality.

We want to thank the contributors for their diligence in mepg their sub-
missions, and for their patience with our selection procéke Program Com-
mittee members discharged their refereeing respongskiliffectively and con-
structively, with the result that all the papers have beeproved by the review-
ing process. We are grateful to the tutorial leaders (JearcMernard: “Impre-
cise Dirichlet model for multinomial data,” Gert de Coomé&hgentle introduc-
tion to imprecise probability models and their behavioraéipretation,” Fabio
G. Cozman: “Graph-theoretical models for multivariate rlotdy with imprecise

vii



viii ISIPTA 03

probabilities,” Charles F. Manski: “Partial identificatiaf probability distribu-
tions,” Sujoy Mukeriji: “Imprecise probabilities and ambity aversion in eco-
nomic modeling”), who have contributed their time and téden such a generous
fashion. As with ISIPTA '01, the Board is exceptionally thém to Serafin Moral,
who has overseen the electronic management of these p#paErsubmissions
and reviews, and who has tirelessly given his time to fixirgittevitable break-
downs that happen in a complicated web-based system. Thesegplings simply
would not be possible without his expertise.

Jean-Marc Bernard
Teddy Seidenfeld
Marco Zaffalon

ISIPTA '03 Sponsors

Ant@)ptima

http://www.antoptima.com/

a»

City of Lugano
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Maximum of Entropy in Credal
Classification®

J. ABELLAN
Universidad de Granada, Spain

S. MORAL
Universidad de Granada, Spain

Abstract

We present an application of the measure of maximum entropgredal
sets: as a branching criterion for classification treesdasémprecise prob-
abilities. We also justify the use of maximum entropy as dglaincertainty
measure for credal sets, and a deduction of this measure loasthe best
lower expectation of the logarithmic score, is presenteglh@ve also carried
out several experiments in which credal classificationstege built taking a
global uncertainty measure as a basis. The results showhtiatis a lower
degree of error when maximum entropy is used as a global anegr mea-
sure.

Keywords

imprecise probabilities, uncertainty, maximum entropypiecision, non-specificity,
classification, classification trees, credal sets

1 Introduction

Classification is an important problem in the area of machkéaening in which
classical probability theory has been extensively usedidadly, we have an in-
coming set of observations, called the training set, and amt o obtain a set of
rules to assign a value of the variable to be classified to amyaase. The set used
to assess the quality of this set of rules is also called gtests. Classification has
notable applications in medicine, recognition of handten characters, astron-
omy, banks, etc. The learned classifier can be representeBagesian network,
a neural network, a classification tree, etc. These methoasally use the The-
ory of Probability to estimate the parameters with a stogpititerion to limit the
complexity of the classifier and to avoid overfitting.

*This work has been supported by the Spanish Ministry of $elemd Technology, project Elvira
Il (TIC2001-2973-C05-01).
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In some previous papers [4, 5, 6], we have introduced a negepiae to build
classification trees based on the use of imprecise probabilClassification trees
have their origin in Quinlan’s ID3 algorithm [18], and a baeference is the book
by Breiman et al. [8]. We also applied decision trees forgifastion, but as in
Zaffalon [25], the imprecise Dirichlet model is used to estte the probabilities
of belonging to the respective classes defined by the variabbe classified. In
classical probabilistic approaches, information gainsecuto build the tree, but
then other procedures must subsequently be used to prusiecié information
gain tends to build structures which are too complex. We Isaesvn that if im-
precise probabilities are used and the information gaioisputed by measuring
the total amount of uncertainty of the associated credal(setlosed and convex
set of probability distributions), then the problem of diting disappears and
results improve.

In Abellan and Moral [1, 2, 3], we studied how to measure theartainty of a
credal set by generalizing the measures used in the The@&vyidénce, Dempster
[10] and Shafer [20]. We considered two main sources of uairdy: entropy
and non-specificity. We proved that the proposed functi@mgwthe most basic
properties of these types of measures (Abellan and MofaDi@bois and Prade
[12], Klir and Wierman [15]).

We previously proved that by using a global uncertainty meahich is the
result of adding an entropy measure and a non-specificitguareaclassification
results are better than those obtained by the C4.5 clas&ificamethod, based on
Quinlan’s ID3 algorithm. In this paper, we have carried aunhg experiments in
which the maximum entropy of the probability distributiasfsa credal set is used
to measure its uncertainty, and we show that the resultsnslataare even bet-
ter. We consider two methods of building classificationgree the first method,
Abellan and Moral [4], we start with an empty tree and in esi&p, a node and
a variable are selected for branching which give rise to atgredecrease in the
final entropy of the variable to be classified. In classicalability, a branching
always implies a decrease in the entropy. It is necessaryctade an additional
criterion so as not to create models which are too complextla@e:fore over-
fit the data. With credal sets, a branching will produce a loar@ropy but, at
the same time, a greater non-specificity. Under these dondjtwe follow the
same procedure as in probability theory, but measuringataé tincertainty of a
branching. The stopping criterion is very simple: when gysrssible branching
produces an increment of the total uncertainty.

Finally, in order to carry out the classification given a setloservations, we
use a strong dominance criterion to obtain the value of thiabiz to be classified
and a maximum frequency criterion when we want to classlfthal cases.

The extended method quantifies the uncertainty of eachichdivvariable in
each node in the same way, but also considers the resultslimigaivo variables
at the same time. In this way, we aim to discover relatiorsimgolving more
than two variables that were not seen when investigatingelaionships of a
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single variable with the variable to be classified.

In Section 2, we present the necessary previous conceptaaartainty on
credal sets. We place special emphasis on the maximum afpgnéis a global
uncertainty measure. In Section 3, we introduce the negesstation and defi-
nitions for our procedure of building classification tre@sSection 4, we describe
the methods based on imprecise probabilities. In Secti@reJest our procedure
with known data sets used in classification by comparing #eaf two global
uncertainty measures.

2 Total Uncertainty on Credal Sets

Dempster-Shafer’s theory is based on the concept of basiapility assignment
(bpa), and it defines a special type of credal set [10, 20hibtheory, Yager [24]
distinguishes two types of uncertainty: one is associaitii eases where the in-
formation is focused on sets with empty intersections; &edther is associated
with cases where the information is focused on sets with atgréhan one cardi-
nality. We call theseandomnesandnon-specificityrespectively. In Abellan [6]
we justify that a general convex set of probability disttibos (a credal set) may
contain the same type of uncertainty as a bpa: we considéiasimndomness
and non-specificity measures.

In Abellan and Moral [2], we define a measure for non-spétjffor convex
sets that generalizes Dubois and Prade’s measure of naifisipein the theory
of evidence [11]. Using the Mobius inverse function for ratomic capacities [9],
we can define:

Definition 1 Let P be a credal set on a finite set X. We define the following ca-
pacity function,
fp(A) = Ilm‘TP(A), VA e (X),
S

whereld (X) is the power set of XThis function is also known as the minimum
lower probability which represents.

Theorem 1 (Shafer [20]) For any mappingf: O (X) — R another mapping m:
O0(X) — R can be associated by

mp(A) = 5 (-1)*"P'fp(B), VA€ D(X),
BCA

Where|A— B| is the cardinal of the set A B. This correspondence is one-to-one,
since conversely, we can obtain

fp(A) = BZAmT(B), VA€ D(X).

These functions,fand mp, are Mobius inverses.
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Definition 2 Let? be a credal set on a frame X; fts minimum lower probability
as in Definition 1 and let mbe its Mbbius inverse. We say that function s an
assignment of masses @ Any Ac X such that ma(A) # O will be called a focal
element of m.

We can now define a general function of non-specificity.

Definition 3 Let P be a credal set on a frame X. Letynbe its associated as-
signment of masses @i We define the following function of non-specificity on
P:
IG() = S mp(A)In(|A)).
AC
In Abellan and Moral [3], we proposed the following measofeandomness
for general credal sets:

G*(P) = Max {— Z(pxln px},

where the maximum is taken over all probability distribnsmon?, and? is a
general credal set. This measure generalizes the claS$éiaahon’s measure [21]
verifying similar properties. It can be used either as onthefcomponents of a
measure of total uncertainty, or as a total uncertainty oreasiarmanec and Klir
[14]. We have proved that this function is also a good randesammeasure for
credal sets and possesses all the basic properties reduibsmpster-Shafer’'s
theory [3].

We define a measure of total uncertaintyTa$(?) = G*(P) + IG(P). This
measure could be modified by the factor introduced in Abetlad Moral [1],
but this will not be considered here, due to its computatidifficulties (it is a
supremum that is not easy to compute). The properties offrtbasure are studied
in Abellan and Moral [2, 3] and these are similar to the prtipe verified by total
uncertainty measures in Dempster-Shafer’s theory [17].

In this paper, we shall also considet(?) as a measure of total uncertainty.
In the particular case of belief functions, Harmanec and Ki] consider that
maximum entropy is a measure of total uncertainty. Theyifjugtby using an
axiomatic approach: it possesses some basic propertiege\ueo, uniqueness is
not proved. But perhaps the most compelling reason is ginéalley’s book
[22]. Walley calls this measure the upper entropy. We staedplaining the case
of a single probability distributior®. If You are subject to the logarithmic scor-
ing rule, that means that You are forced to select a protbiistributionQ on
X that if the true value ix, then You must pay- log(Q(x)). For example, if You
say thatQ(x) is very small and finally is the true value, You must pay a lot. If
Q(x) is close to one, then you must pay a small amount. Of course skould
chooseQ so thatEp|[—log(Q(x))] is minimum, whereEp is the mathematical ex-
pectation with respect t8. This minimum is obtained whe@ = P and the value
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of Ep[—log(P(x))] is the entropy: the expected loss or the amount that You could
accept to be subject to the logarithmic scoring rule. In thgecof a credal set,
P, we can also have the logarithmic scoring rule, but now weosb@ in such

a way that the upper logs};[—1og(Q(x))] (the supremum of the expectations
with respect to the probabilities &) is minimum. Walley shows that this mini-
mum is obtained for the distributid®y € P with maximum entropy. Furthermore,
E;[—log(Po(x))] is equal to the maximum entropy i G* (). This is the min-
imum payment You require before being subject to the logarit scoring rule.
This argument is completely analogous with the probahilste, except that we
change the expectation for the upper expected loss. Thesal/ra measure of
uncertainty, as the better we know the true value,ahen the less we should
need to accept the logarithmic scoring rule (lower valu&odf?)). We are not
saying thatP can be replaced by the distribution of maximum entropy, dinét

its uncertainty can be measured by considering maximunogyin the credal
set.

3 Notation and Previous Definitions

For a classification problem we shall consider that we havata det?D with
values of a set_ of discrete and finite variablelX }]. Each variable will take

- Qx; . .
values on a finite se@x, = {x',x?, ---in| X"}. Our aim will be to create a clas-
sification tree on the data sé of one target variabl€, with values inQ¢c =
{ct,c?,...,cl%l,

Definition 4 A configuration of X;}! is any m-tuple
t i t
(xl’l = Xl'rfaxrz = er227---,er = Xl’rr:?)7

t . o .
where x/ € Qr;, j € {1,...,m}, rj € {1,...,n} and rj # rn with j # h. That is, a
configuration is an assignment of values for some of the begin{X; }].

If Dis a data set and is a configuration, the@®[o] will denote the subset of
D given by the cases which are compatible with configuratigoases in which
the variables iro have the same values as the ones assigned in the configiration

Definition 5 Given a data set and a configuratianof variables{X; }{ we con-
sider the credal sef?g for variable C with respect t@ defined by the set of
probability distributions, p, such that

o c ngj ngj+s
' IN+s" N+s |’
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for every je {1,...,|Qc|}, where for a generic state & Qc, ng is the number of
occurrences ofC = ¢!} in D[o], N is the number of cases if[a], and s> 0 is
a parameter.

We denote this interval as

[P(c!|0),P(c!|0)] .

This credal set is the one obtained on the basis of the img@dairichlet
model, Walley [23], applied to the subsamfko].

The parametes determines how quickly the lower and upper probabilities
converge as more data become available; larger valusgsrofiuce more cautious
inferences. Walley [23] suggests a candidate valus batweers= 1 ands = 2,
but no definitive statement is given.

4 Classification Procedure

We have proposed two methods to build a classification theesimple method
[4] and the double method [5]. Here we describe the doublegqatore and give
the simple as a particular case.

A classification tree is a tree where each interior node isl&abwith a variable
of the data seX; with a child for each one of its possible valuég:= th € Qx;.
In each leaf node, we shall have a credal set for the varialide classified#?,
as defined above, wheteis the configuration with all the variables in the path
from the root node to this leaf node, with each variable assigo the value cor-
responding to the child followed in the path. We use a measitatal uncertainty
to determine how and when to carry out a branching of the Tlee method starts
with a tree with a single node, which will have an empty coriégion associated.
This node will be open. In this node the set of variabléds equal to the list of
variables in the database.

I. For each open node already generated, we compute theutotattainty of
the credal set associated with the configuratmmf the path from the root
node to that nodet U(Z2). Then we calculate the values@fandp with

o= ppeyaTU(EE ™)
€ re{l..|Qx |}

. oU(X%=x Xj=x})
B: min Z p{X{,XtJHGTU({’PC e

Xi,XjEL*
re{L,..|Qx |},te{l,..,‘ij ‘}

)|

where L* is the set of variables of the data set minus those that appear
on the path from the actual node to the root nqn#e\nHo is the relative
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frequency with which¥; takes the valug/ in D|o], P X}l is the relative
frequency with whichX; andX; take values andx‘j, respectively, inD|a],
ando U (X = x/) is the result of adding the valué = x| to configuration
o (analogously foo U (X = X[, Xj = X))).

I1. If the minimum of {a, B} is greater or equal thanU (£2) (including the case
in which £* is empty), then the node is closed and the credalfgeis
assigned to it.

[11. If the minimum of {a, B} is smaller thariT U(#2), then ifa < 3, we choose
the variable that attains the minimum énas branching variable for this
node; and ifa > 3 we consider the pair of variable§, X; for which the
value off} is attained, and select as branching variable that aog; with
a minimum value of uncertainty (calculated in an individualy as ina
computation).

If X, is the branching variable we add to this node a child for eahaj
its possible values. All the children are open nodes.

The simple method does not negdAbellan and Moral [4]. It only considers
a and it carries out a branching if this value is less than oraktuthe uncer-
tainty of the actual nodeTU(£2)). As above, the branching variable is the one
for which the valuex is attained. In the double method, we demand that the uncer-
tainty is reduced. However, the double method looks fottietahips of two vari-
ables withC at the same time. The simple method only considers the irgtom
of a single variable abo@. In some cases, some multidimensional relationships
do not give rise to pairwise relationships between the ietpliariables, and then
they will not be detected by the simple method.

4.1 Decisioninthe Leaves

In order to classify a new case with observations of all theatdes except in
the variable to be classifigd, we start at the root of the tree and follow the path
corresponding to the observed values of the variables imtkeor nodes of the
tree, i.e. if we are at a node with variab¥e and this variable takes the value
X in this particular case, then we choose the child correspgrto this value.
This process is followed until we arrive at a leaf node. Wenthge the associated
credal set abouE, 72, to obtain a value for this variable.

We will use astrong dominance criteriononC. This criterion generally im-
plies only a partial order, and in some situations, no pdsgitecise classification
can be done. We will choose an attribute of the vari@btec" if Vi # h

P(c'|o) < P(c"|o)
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When there is no value dominating all other possible vald&s, the output
is the set of non-dominated cases (case®r which there is no other cas®
verifying inequality). In this way, we obtain what Zaffal¢@6] calls acredal
classifier, in which, for a set of observations, we obtaintao§@ossible values
for the variable to classify, non-dominated cases, instéfaghique prediction.
In the experiments, when there is no dominant value, we simipinot classify,
without calculating the set of non-dominated attributelsisTimplies a loss of
some valuable information in certain situations.

We want to compare our methods with existing classificatiethmds. These
methods classify all the records of the training and test séathout rejecting any
of the cases. In order to carry out a fair comparison with staiplete proce-
dures, we also use thmaximum frequency criterion based on frequency of the
data, i.e. we will choose the case with maximum frequen@|im| as the attribute
of the variable to be classified.

5 Experimentation

We have applied this method to some known data sets, obté&ioedthe UCI
repository of machine learning databaseghich can be found on the follow-
ing website: http://www.sgi.com/Technology/mic/db. Weeuthe less conserva-
tive parametes = 1, since withs > 1, we obtained a high degree of non-classified
data in some databases (although with a greater percertagerect classifica-
tions).

We plan to compare the behavior of the two total uncertainbasares we
have previously defined:

- TU1=G"+IG
- TU2=G*

The data sets arBreast Breast CancerHeart, Hepatitis Cleveland Cleve-
land nominaland Pimalmedical); Australian (banking);Monks1 (artificial) and
Soybean-smafbotanical).

These databases were used by Acid [7]. Some of the origitalsdds have
observations with missing values and in some cases, sonteofatriables are
not discrete. The cases with missing values were removedhandontinuous
variables have been discretized using MLC++ software |a@via at the website
http://www.sgi.com/Technology/mlic. The measure useddordtize them is the
entropy. The number of intervals is not fixed and it is obtdif@lowing the
Fayyad and Irani procedure [13]. Only the training part & database is used to
determine the discretization procedure. In Table 1 theeelisief description of
these databases.

In general, when there is no case dominating all the othesilplesvalues of
the variable to be classified, we simply do not classify thdividual.
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Data set N.Tr N.Ts N.variables N. classges
Breast Cancer 184 93 9 2
Breast 457 226 10 2
Heart 180 90 13 2
Hepatitis 59 21 19 2
Cleveland nominal 202 99 7 5
Cleveland 200 97 13 5
Pima 512 256 8 2
\Votel 300 135 15 2
Australian 460 230 14 2
Monks1 124 432 6 2
Soybean-small 31 16 21 4

Table 1: Description of the databases. The colifr contains the number of
cases of the training set, the columnTsis the number of cases of the test set,
the columnN. variabless the number of variables in the database and the column
N. classess the number of different values of the variable to be cfassi

Algorithms have been implemented using Java languageovetsi .8. In or-
der to obtain the value @* for probability intervals we have used the algorithm
proposed in Abellan and Moral [3].

The percentages obtained of correct classifications wilsithhple model and
TU1 can be seen in Table 2.

In Table 2, the training column is the percentage of corrkgdgifications in
the data set that was used for learning. Qi&(Tr) column shows the percentage
of rejected cases, i.e. the observations that were notfidakby the method due
to the fact that no value verifies the strong dominance aiteand theJC(T s)
column shows the rejected cases in the test set.

In the results presented in Table 2 (Abellan and Moral [Héré is no overfit-
ting (one of the most common problems of learning proceduties success of
the training set and the test set are very similar.

Only theClevelanddatabase has a high rate of non-classified data. This is the
case with the highest number of cases of the variable to Issifikd and then it
is more difficult to obtain a class dominating all the othaisskes. In this case, we
would have obtained more information by changing the outpwt set of non-
dominated cases. In most of the other databases, the \&attbe classified has
two possible states and in this situation our classificasogquivalent to the set
of non-dominated values.

In Table 3, we see the success of other known methods on theedstabases,
Acid [7]. The NB-columns correspond to the results of thevdd8ayesian clas-
sifier on the training set and the test set. Similarly, thes&blumns correspond
to Quinlan’s method [19], based on the ID3 algorithm [18] endha classification
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Data set Training UC(Tr) Test UC(TS)
Breast Cancer 75.5 0.0 81.7 0.0
Breast 98.0 1.3 96.9 0.9
Heart 92.2 7.2 95.2 6.7
Hepatitis 96.4 5.0 94.7 9.5
Cleveland nominal 62.7 4.4 66.0 5.0
Cleveland 72.8 21.0 69.9 24.7
Pima 79.7 0.2 80.5 0.0
Australian 92.3 3.4 91.0 3.4
\Votel 96.1 6.6 96.9 5.9
Soybean-small 100.0 0.0 100.0 0.0

Table 2: The measured experimental percentages of theesimgthod and U 1.
The columnsUC(Tr) andUC(Ts)are the percentages of the rejected cases ob-
tained with the training and the test set respectively.

tree with classical precise probabilities is used. We reffwr results obtained
by Acid [7]. We can see that there is overfitting in these mesh@rincipally in
C4.5, being especially notable in certain data s8teeland nominalCleveland
Hepatitis.

In Table 4 we can see the results of the simple method Wil2 and strong
dominance. We have a higher percentage of success and a pgjeentage of
unclassified cases. This total uncertainty measure obi@iger trees as we can
observe for the number of leaves presented in Table 5.

The success of the simple method with all cases classifiedofoegéjected
cases) with the frequency criterion are presented in Taljle éhe test set, to
compare it with the models C4.5 and Naive Bayes. Table 7 shiogvsesults of
similar experiments with the double method. We can see tjie ieercentages of
correct classifications withU2. These are a little higher than those obtained with
TU1 and notably higher than the other methods (C4.5 and Naiyed}a

The results of the simple and double methods are similaghtt}i better in
the double method). In order to see the potential of the dontgthod we use an
artificial databasemonks1

Monkslis a database with six variables. The variable to be claddifées two
possible statesa0 andal, beingal when the first and the second variables are
equal or the fourth variable has the first of its possible fetates. This type of
dependency is very difficult to find for some classificationtmoels, as this is a
deterministic relationship involving more than two vateg The double method
should be much better than the simple one.

Table 8 shows the success of the methods C4.5 and Naive BEglals. 9
shows the success of the simple and double method with @badassified.



Abellan & Moral: Maximum of Entropy in Credal Classification 11

Data set NB(Tr) NB(Ts) C4.5(Tr) C4.5(Ts)
Breast Cancer 78.2 74.2 81.5 75.3
Breast 97.8 97.3 97.6 95.1
Cleveland nominal 63.9 57.6 69.3 51.5
Cleveland 78.0 50.5 73.5 54.6
Pima 76.4 74.6 79.9 75.0
Heart 87.8 82.2 83.3 75.6
Hepatitis 96.2 81.5 96.2 85.2
Australian 87.6 86.1 89.3 83.0
Votel 87.6 88.9 94.5 88.3
Soybean-small 100 93.8 100 100

Table 3: Percentages of another methods

Data set Training UC(Tr) Test UC(TS)
Breast Cancer 89.0 16.3 93.5 17.2
Breast 99.1 2.6 98.6 2.6
Cleveland nominal 73.6 21.2 74.4 13.1
Cleveland 82.6 34.0 80.3 31.9
Pima 86.6 15.6 86.2 15.2
Heart 93.9 8.8 93.8 10.0
Hepatitis 96.4 5.0 94.7 9.5
Australian 95.3 6.5 94.4 6.5
\Votel 98.2 5.3 98.4 4.4
Soybean-small 100.0 0.0 100.0 0.0

Table 4: Simple method with TU2 and strong dominance

Data set TU1l TU2 N of possible leaves
Breast 10 17 512
Cleveland 17 112 635904

Table 5: Number of leaves of the trees obtained with the mm@thod and U1
andTU2



12 ISIPTA'03

Data set TUL(Ts) TU2(Ts) NB(Ts) C4.5(Ts)
Breast Cancer 81.7 90.3 74.2 75.3
Breast 96.9 97.8 97.3 95.1
Cleveland nominal 65.7 75.8 57.6 51.5
Cleveland 67.0 80.4 50.5 54.6
Pima 80.5 80.9 74.6 75.0
Heart 93.3 92.2 82.2 75.6
Hepatitis 95.2 95.2 81.5 85.2
Australian 90.9 93.5 86.1 83.0
\Votel 94.8 97.8 88.9 88.3
Soybean-small 100 100 93.8 100

Table 6: Success of the simple method with TU1 and TU2 withftequency
criterion on the test set

Database TUL(Ts) TU2(Ts) NB(Ts) C4.5(Tg)
Breast Cancer 81.7 91.4 74.2 75.3
Breast 96.9 98.7 97.3 95.1
Cleveland nominal 68.7 74.7 57.6 51.5
Cleveland 67.0 80.4 50.5 54.6
Pima 80.5 82.4 74.6 75.0
Heart 93.3 94.4 82.2 75.6
Hepatitis 95.2 95.2 81.5 85.2
Australian 89.1 91.7 86.1 83.0
\Votel 94.8 98.5 88.9 88.3
Soybean-small 100 100 93.8 100

Table 7: Success of the double method with TU1 and TU2 withfithguency
criterion on the test set

Dataset NB(Tr) NB(Ts) C4.5(Tr) C4.5(T3)
Monksl  79.8 71.3 83.9 75.7

Table 8: C4.5 and Naive Bayes on Monks1
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| Simple method Double method
Function  Tr Ts Tr Ts
TUl 81.5 80.6 94.4 91.7
TU2 89.5 80.6 96.7 94.4

Table 9: Percentages dwionkslof the methods with TU1 and TU2 and all cases
classified

We can see some interesting things. There is an appreciadfiitting in C4.5
and Naive Bayes but not in our methods. The percentage elktaiith the test set
is better in the extended method than in the simple methothend is a difference
of 23.1% of the extended method amdl2 with respect to Naive Bayes success.

6 Conclusions

In this paper, we have discussed the role of maximum entrepy tatal uncer-
tainty measure in credal sets. First, we have revised sogisicle theoretic jus-
tification based on the logarithmic scoring rule. We haveiedrout a series of
experiments in which we compare this measure with the oneadepheviously
used in our experiments. The main conclusion is that, in gnine results are
always the same or better when only the maximum entropy id the when a
non-specificity value is added to it (the other total undatyameasure). And in
some cases, the percentages of success are notably better.
Other conclusions from the experiments can be summariztéebifollowing

points:

e Imprecise probability methods are outstandingly bettanttiassical prob-
abilistic methods, and also have the option of not classifylifficult cases.

e Ingeneral, the double method produces slightly betteftethan the single
one, but in some particular cases the differences can bakabia.

e Maximum entropy TUy) produces larger trees than the other uncertainty
measureTU;), but even this classifier does not suffer from overfitting.
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Abstract

Bayes decision problems require subjective elicitatiothefinputs: beliefs
and preferences. Sometimes, elicitation methods may mfztqly represent
the Decision Maker’s judgements. Several foundations ggego overlay
this problem using robust approaches. In these modelgfdelie modelled
by a class of probability distributions and preferences bhasas of loss func-
tions. Thus, the solution concept is the set of non-doméhateernatives. In
this paper we focus on the computation of the efficient setrmthe pref-
erences are modelled by a class of convex loss functionsifispdly the
quantile loss functions. We illustrate the idea with exaespnd introduce
the use of stochastic dominance in this context.

Keywords

Bayesian robustness, non-dominated alternatives, Bétgenatives, quantile loss
functions, stochastic orders, quantile class of prioritistions

1 Introduction

Robust Bayesian analysis arises to avoid demanding ansxelysprecision in
the decision maker’s judgements concerning his beliefpagférences. Thus, the

*This work has been supported in part by a grant of Junta deBslura IPRO0OAQ075. We thank
the referees for their fruitful comments
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imprecision in preferences leads to a class of loss funstidrile the imprecision
in beliefs is modelled by a class of prior probability distriions which would
be actualized via Bayes Theorem. For some interestingioe&on Bayesian
Robustness axiomatic systems see e.g. Rios Insua anchNtB3{, Nau [11],
Seidenfeld et al [18] and Weber [19].

In summary, using a clagsof prior distributions over the set of stat®sand
a classc of loss functions, givela, b € 4, set of alternatives, we say that< a
if and only if

T(a,L,m) <T(b,L,m), Vtel,vLe L,

whereT (a,L, 1) is the posterior expected loss for the act&ih is the loss func-
tion, Ttis the prior and< is the preference relationship between alternatives:

/Lae m(e)
/| )dm(e)

1(8) being the likelihood for an experimexnt

This model is similar to a multicriteria optimization preloh. The optimal
solution is the one that minimizd4-,L, ) for every pairmte I',L € L. Unfortu-
nately, in general, that optimal solution does not exisug tihe non-dominated
set is taken as an starting point. Any dominated alternativst be discarded. See
Coello [6] for an excellent discussion on multiobjectivediopzation. We say that
adominated if and only ifa< b, (thatis,a < band—(b < a)). A non-dominated
alternativea is such that there is no other alternativerhich dominates. Arias
[1] and Arias and Martin [2] provide theoretic results abitwe existence of such
a set and its relationship with the set of Bayes alternativizstin and Arias [8]
provide a method based on comparing pairs to approximatadhedominated
set. Some references for Bayesian sensitivity are Ber§ieR[ds Insua and Rug-
geri[14] and Rios et al [15].

We study the calculus of the non-dominated set for problamstich the
imprecision in preferences is modelled by quantile lossfions. We give general
results that we will particularize for classes of quantitepdistributions, see
Moreno and Cano [9]. Since we are interested in Bayesiamanée, we will
considerq = R although the results will be easily applicable wheis an interval
of R.

We organize this work as follows. We begin with some resuttscerning
convex loss functions and their implications in the calswéithe non-dominated
set. Secondly, we particularize for quantile loss fundiondicating the relation-
ship with the Bayes alternatives in this case. We also censidjuantile class for
prior distributions giving some results and an examplerd part of the paper is
dedicated to various stochastic orders, only those that foolthe posterior dis-
tributions once the priors have been ordered, and how theyeaised in order
to calculate the non-dominated set.

T(aL,m=




18 ISIPTA'03

2 Bayesian Robustness with convex loss functions

We will denote/¢ the class of all convex loss functionsfh Every loss function
L € Lc, verifies for allB, a,b € 4, andA € [0,1] that

L(Aa+ (1—A)b,8) <AL(a,0)+ (1—A)L(b,0). 1)
A first useful result, easy to prove, is:

Lemma 1 Letl" be any class of prior distributions andc the class of convex
loss functions. The function(T L, 1) : 4 — R is convex for every paifL, 1) €
Lo xT.

A well known result is that every convex function is contiigan the interior,
see Roberts and Varberg [16]. Then considering the set efmaltivesR, the
functionT (-, L, ) is continuous iR and if it exists the set of Bayes alternatives,
this will be a closed interval ifR. In the case that, for some pdlr, ) € Lo x T
the set of Bayes alternatives is empty, the funcfidn L, 1) will be increasing
or decreasing ifR (strictly increasing or strictly decreasing if the funetfare
strictly convex).

If the set of Bayes alternatives is not empty, then the famcti(-,L, ) is
strictly decreasing ifi—o,a, ) and strictly increasing ifa>", +o0), being

aLm = _Mmin a and
’ ac (L,m)
at™ = max a
aEB(Lin)

Note that the alternatives;  anda(-™ are also Bayes fofL, ).

An immediate result is that the set of non-dominated altéres is included
in the closed interva],, u*], beingp. andp*, respectively, the infimum and the
supremum of the Bayes alternatives, that is,

= inf d
a0
p= sup abm.

(LmeLxr

In the Bayesian literature the range of this interval is dder®d as the ro-
bustness measure of the problem, see Berger [4]. Howeweg dre interested
in calculating exactly the set of non-dominated alterrestjwwe can give a more
accurate approximation using the following result due t@m#éet al [3]:

Theorem 1 Let L C Lc be a family of convex loss functiorisa class of prior
probability distributions, so that, for every pajt,m) € L x I, the set of Bayes
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alternatives B_r is not empty and let

a, = inf  albm,
(LmeLxr

a* = sup -
(LmeLxr

We have
1. Ifa, < a*, then(a.,a*) C ALD(A) C [a.,a"].
2. Ifa, > a*, thenA(D(A) = [a*,a.].

In order to study the robustness of the problem, it is not sy to deter-
mine whether the alternatives anda* are dominated or not. Nevertheless, it is
interesting to calculate the efficient set in an accurate Wwathis paper we will
see inference problems modelled by particular classesseffllnctions and prior
distributions in which we can assure that the extremes aftieevala, and/ora*
are non-dominated alternatives. If the set of Bayes altiasis empty for some
pair (L, ) € £ x T then the result is valid considerirg = —c (whenT (-,L, )
is increasing) oa* = « (decreasing).

3 Quantile loss functions

Let us consider the case where preferences are modelledanyilguoss func-
tions. A particular case of this type is the absolute valss foinction. The class
of quantile loss functions is defined as

L={Lp:Lp(a,0)=|a—06]—a2p—1), pe[0,1]} (1)

Function