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Abstract

We present an application of the measure of maximum entropy for credal
sets: as a branching criterion for classification trees based on imprecise prob-
abilities. We also justify the use of maximum entropy as a global uncertainty
measure for credal sets, and a deduction of this measure, based on the best
lower expectation of the logarithmic score, is presented. We have also carried
out several experiments in which credal classification trees are built taking a
global uncertainty measure as a basis. The results show that there is a lower
degree of error when maximum entropy is used as a global uncertainty mea-
sure.
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1 Introduction
Classification is an important problem in the area of machine learning in which
classical probability theory has been extensively used. Basically, we have an in-
coming set of observations, called the training set, and we want to obtain a set of
rules to assign a value of the variable to be classified to any new case. The set used
to assess the quality of this set of rules is also called the test set. Classification has
notable applications in medicine, recognition of hand-written characters, astron-
omy, banks, etc. The learned classifier can be represented as a Bayesian network,
a neural network, a classification tree, etc. These methods normally use the The-
ory of Probability to estimate the parameters with a stopping criterion to limit the
complexity of the classifier and to avoid overfitting.

∗This work has been supported by the Spanish Ministry of Science and Technology, project Elvira
II (TIC2001-2973-C05-01).
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In some previous papers [4, 5, 6], we have introduced a new procedure to build
classification trees based on the use of imprecise probabilities. Classification trees
have their origin in Quinlan’s ID3 algorithm [18], and a basic reference is the book
by Breiman et al. [8]. We also applied decision trees for classification, but as in
Zaffalon [25], the imprecise Dirichlet model is used to estimate the probabilities
of belonging to the respective classes defined by the variable to be classified. In
classical probabilistic approaches, information gain is used to build the tree, but
then other procedures must subsequently be used to prune it, since information
gain tends to build structures which are too complex. We have shown that if im-
precise probabilities are used and the information gain is computed by measuring
the total amount of uncertainty of the associated credal sets (a closed and convex
set of probability distributions), then the problem of overfitting disappears and
results improve.

In Abellán and Moral [1, 2, 3], we studied how to measure the uncertainty of a
credal set by generalizing the measures used in the Theory of Evidence, Dempster
[10] and Shafer [20]. We considered two main sources of uncertainty: entropy
and non-specificity. We proved that the proposed functions verify the most basic
properties of these types of measures (Abellán and Moral [2], Dubois and Prade
[12], Klir and Wierman [15]).

We previously proved that by using a global uncertainty measure which is the
result of adding an entropy measure and a non-specificity measure, classification
results are better than those obtained by the C4.5 classification method, based on
Quinlan’s ID3 algorithm. In this paper, we have carried out some experiments in
which the maximum entropy of the probability distributions of a credal set is used
to measure its uncertainty, and we show that the results obtained are even bet-
ter. We consider two methods of building classification trees. In the first method,
Abellán and Moral [4], we start with an empty tree and in each step, a node and
a variable are selected for branching which give rise to a greater decrease in the
final entropy of the variable to be classified. In classical probability, a branching
always implies a decrease in the entropy. It is necessary to include an additional
criterion so as not to create models which are too complex and therefore over-
fit the data. With credal sets, a branching will produce a lower entropy but, at
the same time, a greater non-specificity. Under these conditions, we follow the
same procedure as in probability theory, but measuring the total uncertainty of a
branching. The stopping criterion is very simple: when every possible branching
produces an increment of the total uncertainty.

Finally, in order to carry out the classification given a set of observations, we
use a strong dominance criterion to obtain the value of the variable to be classified
and a maximum frequency criterion when we want to classify all the cases.

The extended method quantifies the uncertainty of each individual variable in
each node in the same way, but also considers the results of adding two variables
at the same time. In this way, we aim to discover relationships involving more
than two variables that were not seen when investigating the relationships of a
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single variable with the variable to be classified.
In Section 2, we present the necessary previous concepts on uncertainty on

credal sets. We place special emphasis on the maximum of entropy as a global
uncertainty measure. In Section 3, we introduce the necessary notation and defi-
nitions for our procedure of building classification trees. In Section 4, we describe
the methods based on imprecise probabilities. In Section 5, we test our procedure
with known data sets used in classification by comparing the use of two global
uncertainty measures.

2 Total Uncertainty on Credal Sets
Dempster-Shafer’s theory is based on the concept of basic probability assignment
(bpa), and it defines a special type of credal set [10, 20]. In this theory, Yager [24]
distinguishes two types of uncertainty: one is associated with cases where the in-
formation is focused on sets with empty intersections; and the other is associated
with cases where the information is focused on sets with a greater than one cardi-
nality. We call these randomness and non-specificity, respectively. In Abellán [6]
we justify that a general convex set of probability distributions (a credal set) may
contain the same type of uncertainty as a bpa: we consider similar randomness
and non-specificity measures.

In Abellán and Moral [2], we define a measure for non-specificity for convex
sets that generalizes Dubois and Prade’s measure of non-specificity in the theory
of evidence [11]. Using the Möbius inverse function for monotonic capacities [9],
we can define:

Definition 1 Let P be a credal set on a finite set X. We define the following ca-
pacity function,

fP (A) = inf
P∈P

P(A), ∀A ∈℘(X),

where ℘(X) is the power set of X . This function is also known as the minimum
lower probability which represents P .

Theorem 1 (Shafer [20]) For any mapping fP :℘(X)→ IR another mapping mP :
℘(X)→ IR can be associated by

mP (A) = ∑
B⊆A

(−1)|A−B| fP (B), ∀A ∈℘(X),

Where |A−B| is the cardinal of the set A−B. This correspondence is one-to-one,
since conversely, we can obtain

fP (A) = ∑
B⊆A

mP (B), ∀A ∈℘(X).

These functions, fP and mP , are Möbius inverses.
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Definition 2 Let P be a credal set on a frame X, fP its minimum lower probability
as in Definition 1 and let mP be its Möbius inverse. We say that function mP is an
assignment of masses on P . Any A ∈ X such that mP (A) 6= 0 will be called a focal
element of mP .

We can now define a general function of non-specificity.

Definition 3 Let P be a credal set on a frame X. Let mP be its associated as-
signment of masses on P . We define the following function of non-specificity on
P :

IG(P ) = ∑
A⊂X

mP (A) ln(|A|).

In Abellán and Moral [3], we proposed the following measure of randomness
for general credal sets:

G∗(P ) = Max

{
− ∑

x∈X
px ln px

}
,

where the maximum is taken over all probability distributions on P , and P is a
general credal set. This measure generalizes the classical Shannon’s measure [21]
verifying similar properties. It can be used either as one of the components of a
measure of total uncertainty, or as a total uncertainty measure, Harmanec and Klir
[14]. We have proved that this function is also a good randomness measure for
credal sets and possesses all the basic properties required in Dempster-Shafer’s
theory [3].

We define a measure of total uncertainty as TU(P ) = G∗(P )+ IG(P ). This
measure could be modified by the factor introduced in Abellán and Moral [1],
but this will not be considered here, due to its computational difficulties (it is a
supremum that is not easy to compute). The properties of this measure are studied
in Abellán and Moral [2, 3] and these are similar to the properties verified by total
uncertainty measures in Dempster-Shafer’s theory [17].

In this paper, we shall also consider G∗(P ) as a measure of total uncertainty.
In the particular case of belief functions, Harmanec and Klir [14] consider that
maximum entropy is a measure of total uncertainty. They justify it by using an
axiomatic approach: it possesses some basic properties. However, uniqueness is
not proved. But perhaps the most compelling reason is given in Walley’s book
[22]. Walley calls this measure the upper entropy. We start by explaining the case
of a single probability distribution, P. If You are subject to the logarithmic scor-
ing rule, that means that You are forced to select a probability distribution Q on
X that if the true value is x, then You must pay − log(Q(x)). For example, if You
say that Q(x) is very small and finally x is the true value, You must pay a lot. If
Q(x) is close to one, then you must pay a small amount. Of course, You should
choose Q so that EP[− log(Q(x))] is minimum, where EP is the mathematical ex-
pectation with respect to P. This minimum is obtained when Q = P and the value
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of EP[− log(P(x))] is the entropy: the expected loss or the amount that You could
accept to be subject to the logarithmic scoring rule. In the case of a credal set,
P , we can also have the logarithmic scoring rule, but now we choose Q in such
a way that the upper loss E∗

P [− log(Q(x))] (the supremum of the expectations
with respect to the probabilities in P ) is minimum. Walley shows that this mini-
mum is obtained for the distribution P0 ∈ P with maximum entropy. Furthermore,
E∗

P [− log(P0(x))] is equal to the maximum entropy in P : G∗(P ). This is the min-
imum payment You require before being subject to the logarithmic scoring rule.
This argument is completely analogous with the probabilistic one, except that we
change the expectation for the upper expected loss. This is really a measure of
uncertainty, as the better we know the true value of x, then the less we should
need to accept the logarithmic scoring rule (lower value of G∗(P )). We are not
saying that P can be replaced by the distribution of maximum entropy, only that
its uncertainty can be measured by considering maximum entropy in the credal
set.

3 Notation and Previous Definitions
For a classification problem we shall consider that we have a data set D with
values of a set L of discrete and finite variables {Xi}n

1. Each variable will take

values on a finite set ΩXi = {x1
i ,x

2
i , ...,x

|ΩXi |
i }. Our aim will be to create a clas-

sification tree on the data set D of one target variable C, with values in ΩC =
{c1,c2, ...,c|ΩC|}.

Definition 4 A configuration of {Xi}n
1 is any m-tuple

(Xr1 = x
tr1
r1 ,Xr2 = x

tr2
r2 , ...,Xrm = xtrm

rm ),

where x
tr j
r j ∈ Ωr j , j ∈ {1, ...,m}, r j ∈ {1, ...,n} and r j 6= rh with j 6= h. That is, a

configuration is an assignment of values for some of the variables in {Xi}n
1.

If D is a data set and σ is a configuration, then D[σ] will denote the subset of
D given by the cases which are compatible with configuration σ (cases in which
the variables in σ have the same values as the ones assigned in the configuration).

Definition 5 Given a data set and a configuration σ of variables {Xi}n
1 we con-

sider the credal set P σ
C for variable C with respect to σ defined by the set of

probability distributions, p, such that

p j ∈
[

nσ
c j

N + s
,

nσ
c j + s

N + s

]
,
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for every j ∈ {1, ..., |ΩC|}, where for a generic state c j ∈ ΩC, nσ
c j is the number of

occurrences of {C = c j} in D[σ], N is the number of cases in D[σ], and s > 0 is
a parameter.

We denote this interval as
[
P(c j|σ),P(c j|σ)

]
.

This credal set is the one obtained on the basis of the imprecise Dirichlet
model, Walley [23], applied to the subsample D[σ].

The parameter s determines how quickly the lower and upper probabilities
converge as more data become available; larger values of s produce more cautious
inferences. Walley [23] suggests a candidate value for s between s = 1 and s = 2,
but no definitive statement is given.

4 Classification Procedure
We have proposed two methods to build a classification tree: the simple method
[4] and the double method [5]. Here we describe the double procedure and give
the simple as a particular case.

A classification tree is a tree where each interior node is labeled with a variable
of the data set X j with a child for each one of its possible values: X j = xt

j ∈ ΩX j .
In each leaf node, we shall have a credal set for the variable to be classified, P σ

C ,
as defined above, where σ is the configuration with all the variables in the path
from the root node to this leaf node, with each variable assigned to the value cor-
responding to the child followed in the path. We use a measure of total uncertainty
to determine how and when to carry out a branching of the tree. The method starts
with a tree with a single node, which will have an empty configuration associated.
This node will be open. In this node the set of variables L∗ is equal to the list of
variables in the database.

I. For each open node already generated, we compute the total uncertainty of
the credal set associated with the configuration, σ, of the path from the root
node to that node: TU(P σ

C ). Then we calculate the values of α and β with

α = min
Xi∈L∗


 ∑

r∈{1,..,|ΩXi |}
ρ{xr

i }|σTU(P σ∪(Xi=xr
i )

C )




β = min
Xi,X j∈L∗


 ∑

r∈{1,..,|ΩXi |},t∈{1,..,
∣∣∣ΩXj

∣∣∣}
ρ{xr

i ,x
t
j}|σTU(P

σ∪(Xi=xr
i ,X j=xt

j)

C )


 ,

where L∗ is the set of variables of the data set minus those that appear
on the path from the actual node to the root node, ρ{xr

i }|σ is the relative
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frequency with which Xi takes the value xr
i in D[σ], ρ{xr

i ,x
t
j}|σ is the relative

frequency with which Xi and X j take values xr
i and xt

j, respectively, in D[σ],
and σ∪ (Xi = xr

i ) is the result of adding the value Xi = xr
i to configuration

σ (analogously for σ∪ (Xi = xr
i ,X j = xt

j)).

II. If the minimum of {α,β} is greater or equal than TU(P σ
C ) (including the case

in which L∗ is empty), then the node is closed and the credal set P σ
C is

assigned to it.

III. If the minimum of {α,β} is smaller than TU(P σ
C ), then if α ≤ β, we choose

the variable that attains the minimum in α as branching variable for this
node; and if α > β we consider the pair of variables Xi,X j for which the
value of β is attained, and select as branching variable that from Xi,X j with
a minimum value of uncertainty (calculated in an individual way as in α
computation).

If Xi0 is the branching variable we add to this node a child for each one of
its possible values. All the children are open nodes.

The simple method does not need β, Abellán and Moral [4]. It only considers
α and it carries out a branching if this value is less than or equal to the uncer-
tainty of the actual node (TU(P σ

C )). As above, the branching variable is the one
for which the value α is attained. In the double method, we demand that the uncer-
tainty is reduced. However, the double method looks for relationships of two vari-
ables with C at the same time. The simple method only considers the information
of a single variable about C. In some cases, some multidimensional relationships
do not give rise to pairwise relationships between the implied variables, and then
they will not be detected by the simple method.

4.1 Decision in the Leaves
In order to classify a new case with observations of all the variables except in
the variable to be classified C, we start at the root of the tree and follow the path
corresponding to the observed values of the variables in the interior nodes of the
tree, i.e. if we are at a node with variable Xi and this variable takes the value
xr

i in this particular case, then we choose the child corresponding to this value.
This process is followed until we arrive at a leaf node. We then use the associated
credal set about C, P σ

C , to obtain a value for this variable.
We will use a strong dominance criterion on C. This criterion generally im-

plies only a partial order, and in some situations, no possible precise classification
can be done. We will choose an attribute of the variable C = ch if ∀i 6= h

P(ci|σ) < P(ch|σ)
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When there is no value dominating all other possible values of C, the output
is the set of non-dominated cases (cases ci for which there is no other case ch

verifying inequality). In this way, we obtain what Zaffalon [26] calls a credal
classifier, in which, for a set of observations, we obtain a set of possible values
for the variable to classify, non-dominated cases, instead of unique prediction.
In the experiments, when there is no dominant value, we simply do not classify,
without calculating the set of non-dominated attributes. This implies a loss of
some valuable information in certain situations.

We want to compare our methods with existing classification methods. These
methods classify all the records of the training and test sets, without rejecting any
of the cases. In order to carry out a fair comparison with such complete proce-
dures, we also use the maximum frequency criterion based on frequency of the
data, i.e. we will choose the case with maximum frequency in D[σ] as the attribute
of the variable to be classified.

5 Experimentation
We have applied this method to some known data sets, obtained from the UCI
repository of machine learning databases, which can be found on the follow-
ing website: http://www.sgi.com/Technology/mlc/db. We use the less conserva-
tive parameter s = 1, since with s > 1, we obtained a high degree of non-classified
data in some databases (although with a greater percentage of correct classifica-
tions).

We plan to compare the behavior of the two total uncertainty measures we
have previously defined:

· TU1 = G∗ + IG

· TU2 = G∗

The data sets are: Breast, Breast Cancer, Heart, Hepatitis, Cleveland, Cleve-
land nominal and Pima(medical); Australian (banking); Monks1 (artificial) and
Soybean-small (botanical).

These databases were used by Acid [7]. Some of the original data sets have
observations with missing values and in some cases, some of the variables are
not discrete. The cases with missing values were removed and the continuous
variables have been discretized using MLC++ software, available at the website
http://www.sgi.com/Technology/mlc. The measure used to discretize them is the
entropy. The number of intervals is not fixed and it is obtained following the
Fayyad and Irani procedure [13]. Only the training part of the database is used to
determine the discretization procedure. In Table 1 there is a brief description of
these databases.

In general, when there is no case dominating all the other possible values of
the variable to be classified, we simply do not classify this individual.
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Data set N. Tr N. Ts N. variables N. classes
Breast Cancer 184 93 9 2
Breast 457 226 10 2
Heart 180 90 13 2
Hepatitis 59 21 19 2
Cleveland nominal 202 99 7 5
Cleveland 200 97 13 5
Pima 512 256 8 2
Vote1 300 135 15 2
Australian 460 230 14 2
Monks1 124 432 6 2
Soybean-small 31 16 21 4

Table 1: Description of the databases. The column N. Tr contains the number of
cases of the training set, the column N. Ts is the number of cases of the test set,
the column N. variables is the number of variables in the database and the column
N. classes is the number of different values of the variable to be classified

Algorithms have been implemented using Java language version 1.1.8. In or-
der to obtain the value of G∗ for probability intervals we have used the algorithm
proposed in Abellán and Moral [3].

The percentages obtained of correct classifications with the simple model and
TU1 can be seen in Table 2.

In Table 2, the training column is the percentage of correct classifications in
the data set that was used for learning. The UC(Tr) column shows the percentage
of rejected cases, i.e. the observations that were not classified by the method due
to the fact that no value verifies the strong dominance criterion, and the UC(Ts)
column shows the rejected cases in the test set.

In the results presented in Table 2 (Abellán and Moral [4]) there is no overfit-
ting (one of the most common problems of learning procedures): the success of
the training set and the test set are very similar.

Only the Cleveland database has a high rate of non-classified data. This is the
case with the highest number of cases of the variable to be classified and then it
is more difficult to obtain a class dominating all the other classes. In this case, we
would have obtained more information by changing the output to a set of non-
dominated cases. In most of the other databases, the variable to be classified has
two possible states and in this situation our classification is equivalent to the set
of non-dominated values.

In Table 3, we see the success of other known methods on the same databases,
Acid [7]. The NB-columns correspond to the results of the Naive Bayesian clas-
sifier on the training set and the test set. Similarly, the C4.5-columns correspond
to Quinlan’s method [19], based on the ID3 algorithm [18], where a classification
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Data set Training UC(Tr) Test UC(Ts)
Breast Cancer 75.5 0.0 81.7 0.0
Breast 98.0 1.3 96.9 0.9
Heart 92.2 7.2 95.2 6.7
Hepatitis 96.4 5.0 94.7 9.5
Cleveland nominal 62.7 4.4 66.0 5.0
Cleveland 72.8 21.0 69.9 24.7
Pima 79.7 0.2 80.5 0.0
Australian 92.3 3.4 91.0 3.4
Vote1 96.1 6.6 96.9 5.9
Soybean-small 100.0 0.0 100.0 0.0

Table 2: The measured experimental percentages of the simple method and TU1.
The columns UC(Tr) and UC(Ts) are the percentages of the rejected cases ob-
tained with the training and the test set respectively.

tree with classical precise probabilities is used. We report the results obtained
by Acid [7]. We can see that there is overfitting in these methods, principally in
C4.5, being especially notable in certain data sets (Cleveland nominal, Cleveland,
Hepatitis).

In Table 4 we can see the results of the simple method with TU2 and strong
dominance. We have a higher percentage of success and a higher percentage of
unclassified cases. This total uncertainty measure obtains larger trees as we can
observe for the number of leaves presented in Table 5.

The success of the simple method with all cases classified (0% of rejected
cases) with the frequency criterion are presented in Table 6 for the test set, to
compare it with the models C4.5 and Naive Bayes. Table 7 shows the results of
similar experiments with the double method. We can see the high percentages of
correct classifications with TU2. These are a little higher than those obtained with
TU1 and notably higher than the other methods (C4.5 and Naive Bayes).

The results of the simple and double methods are similar (slightly better in
the double method). In order to see the potential of the double method we use an
artificial database: Monks1.

Monks1 is a database with six variables. The variable to be classified has two
possible states: a0 and a1, being a1 when the first and the second variables are
equal or the fourth variable has the first of its possible four states. This type of
dependency is very difficult to find for some classification methods, as this is a
deterministic relationship involving more than two variables. The double method
should be much better than the simple one.

Table 8 shows the success of the methods C4.5 and Naive Bayes. Table 9
shows the success of the simple and double method with all cases classified.
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Data set NB(Tr) NB(Ts) C4.5(Tr) C4.5(Ts)
Breast Cancer 78.2 74.2 81.5 75.3
Breast 97.8 97.3 97.6 95.1
Cleveland nominal 63.9 57.6 69.3 51.5
Cleveland 78.0 50.5 73.5 54.6
Pima 76.4 74.6 79.9 75.0
Heart 87.8 82.2 83.3 75.6
Hepatitis 96.2 81.5 96.2 85.2
Australian 87.6 86.1 89.3 83.0
Vote1 87.6 88.9 94.5 88.3
Soybean-small 100 93.8 100 100

Table 3: Percentages of another methods

Data set Training UC(Tr) Test UC(Ts)
Breast Cancer 89.0 16.3 93.5 17.2
Breast 99.1 2.6 98.6 2.6
Cleveland nominal 73.6 21.2 74.4 13.1
Cleveland 82.6 34.0 80.3 31.9
Pima 86.6 15.6 86.2 15.2
Heart 93.9 8.8 93.8 10.0
Hepatitis 96.4 5.0 94.7 9.5
Australian 95.3 6.5 94.4 6.5
Vote1 98.2 5.3 98.4 4.4
Soybean-small 100.0 0.0 100.0 0.0

Table 4: Simple method with TU2 and strong dominance

Data set TU1 TU2 N of possible leaves
Breast 10 17 512
Cleveland 17 112 635904

Table 5: Number of leaves of the trees obtained with the simple method and TU1
and TU2
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Data set TU1(Ts) TU2(Ts) NB(Ts) C4.5(Ts)
Breast Cancer 81.7 90.3 74.2 75.3
Breast 96.9 97.8 97.3 95.1
Cleveland nominal 65.7 75.8 57.6 51.5
Cleveland 67.0 80.4 50.5 54.6
Pima 80.5 80.9 74.6 75.0
Heart 93.3 92.2 82.2 75.6
Hepatitis 95.2 95.2 81.5 85.2
Australian 90.9 93.5 86.1 83.0
Vote1 94.8 97.8 88.9 88.3
Soybean-small 100 100 93.8 100

Table 6: Success of the simple method with TU1 and TU2 with the frequency
criterion on the test set

Database TU1(Ts) TU2(Ts) NB(Ts) C4.5(Ts)
Breast Cancer 81.7 91.4 74.2 75.3
Breast 96.9 98.7 97.3 95.1
Cleveland nominal 68.7 74.7 57.6 51.5
Cleveland 67.0 80.4 50.5 54.6
Pima 80.5 82.4 74.6 75.0
Heart 93.3 94.4 82.2 75.6
Hepatitis 95.2 95.2 81.5 85.2
Australian 89.1 91.7 86.1 83.0
Vote1 94.8 98.5 88.9 88.3
Soybean-small 100 100 93.8 100

Table 7: Success of the double method with TU1 and TU2 with the frequency
criterion on the test set

Data set NB(Tr) NB(Ts) C4.5(Tr) C4.5(Ts)
Monks1 79.8 71.3 83.9 75.7

Table 8: C4.5 and Naive Bayes on Monks1
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Simple method Double method
Function Tr Ts Tr Ts
TU1 81.5 80.6 94.4 91.7
TU2 89.5 80.6 96.7 94.4

Table 9: Percentages on Monks1 of the methods with TU1 and TU2 and all cases
classified

We can see some interesting things. There is an appreciable overfitting in C4.5
and Naive Bayes but not in our methods. The percentage obtained with the test set
is better in the extended method than in the simple method and there is a difference
of 23.1% of the extended method and TU2 with respect to Naive Bayes success.

6 Conclusions
In this paper, we have discussed the role of maximum entropy as a total uncer-
tainty measure in credal sets. First, we have revised some decision theoretic jus-
tification based on the logarithmic scoring rule. We have carried out a series of
experiments in which we compare this measure with the one we had previously
used in our experiments. The main conclusion is that, in general, the results are
always the same or better when only the maximum entropy is used than when a
non-specificity value is added to it (the other total uncertainty measure). And in
some cases, the percentages of success are notably better.

Other conclusions from the experiments can be summarized in the following
points:

• Imprecise probability methods are outstandingly better than classical prob-
abilistic methods, and also have the option of not classifying difficult cases.

• In general, the double method produces slightly better results than the single
one, but in some particular cases the differences can be remarkable.

• Maximum entropy (TU2) produces larger trees than the other uncertainty
measure (TU1), but even this classifier does not suffer from overfitting.
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