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Abstract

This paper discusses fundamental aspects of inference with imprecise prob-
abilities from the decision theoretic point of view. It is shown why the equiv-
alence of prior risk and posterior loss, well known from classical Bayes-
ian statistics, is no longer valid under imprecise priors. As a consequence,
straightforward updating, as suggested by Walley’s Generalized Bayes Rule
or as usually done in the Robust Bayesian setting, may lead to suboptimal
decision functions. As a result, it must be warned that, in the framework of
imprecise probabilities, updating and optimal decision making do no longer
coincide.
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1 Introduction
A powerful method of inference has to provide answers to (at least) the following
three questions:

• What is updating?

• How to learn from data? (inference)

• How to make optimal decisions?
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The classical Bayesian statistical theory, based on precise probabilities, claims
to provide a comprehensive framework to deal with all these aspects simultane-
ously. For a Bayesian, inference and decision making coincide, and the solution
to both tasks is essentially based on updating prior probabilities by means of the
Bayes rule. More precisely, Bayesian statistics is based on two paradigms [P1]
and [P2], where

[P1] Every uncertainty can adequately be described by a classical probability
distribution. This in particular allows to assign a prior distribution π(·) on
parameter spaces in inferential problems and on the space of states of nature
in decision problems.

[P2] After having observed the sample {x}, the posterior π(·|x) contains all the
relevant information. Every inference procedure depends on π(·|x), and
only on π(·|x).

There are several strong arguments for [P2], see, for instance, the discussion
in [25]. Among them is the decision theoretic foundation by the often so-called
‘main theorem of Bayesian decision theory’: As discussed below, it says that de-
cision functions with minimal risk under a prior π(·) can be constructed from
considering optimal actions with respect to the posterior probability π(·|x) as an
‘updated prior’.

In the last decade a rapidly increasing number of researches have objected
against [P1], and so theories of imprecise probabilities and interval probability
emerged (see, e.g., the monographs by Walley [33], Kuznetsov [22], Weichsel-
berger [39], the conference proceedings de Cooman, Fine, Moral and Seiden-
feld [6] and the web page de Cooman and Walley [7]), offering a comprehensive
framework to deal with a more realistic and reliable description of uncertainty. In
this context also concepts generalizing conditional probability have been devel-
oped, suggesting the straightforward extension of [P2], namely to use imprecise
posteriors to update imprecise priors. This approach is discussed, among others,
by Levi ([23],[24]), and is rigorously justified by general coherence axioms in
Walley’s theory ([33]). Moreover, it is even often understood as self-evident, and
applied in many cases without a moment of hesitation, for instance, in the robust
Bayesian Analysis (e.g., [35, 26]) and in economic applications following Kofler
and Menges’ [21] approach of decision making under linear partial information.1

The self-evidence of this way to proceed is questioned here. From a rigorous
decision theoretic point of view, which is taken up in this paper, it is becom-
ing clear without any ifs and buts that – quite surprisingly – such a procedure
may be suboptimal: the resulting decision function may have higher risk than the
optimal decision function. The present paper wants to illuminate this aspect. To
achieve this goal, it proceeds as follows: Section 2 collects basic notions needed

1For further references see, e.g., Cozman’s survey ([8]) on computational aspects and the refer-
ences in [41, Section 1].
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later from classical decision theory. After recalling some general aspects and ter-
minology from the theory of interval probability in Section 3.1, both ingredients
are melt together in Section 3.2, where the general framework for decision mak-
ing under interval probability developed in [1, 2] is described briefly. Behind this
background Section 4 explores the suboptimality of decision functions based on
imprecise posteriors, while Section 5 returns to the fundamental questions formu-
lated above and concludes with a short reflection on the consequences to be drawn
from the observation made here.

2 Classical Decision Theory

2.1 The Basic Decision Problem and the Data Problem
Classical decision theory provides a formal framework for decision situations un-
der uncertainty. The decision maker aims at choosing an action from of a non-
empty, finite set IA = {a1, . . . , ai, . . . ,an} of possible actions. Apart from trivial
border cases, the consequences of every action depend on the true, but unknown
state of nature ϑ ∈ Θ = {ϑ1, . . . , ϑ j, . . . ,ϑm} . The corresponding outcome is
evaluated by a loss function

l : (IA×Θ) → IR
(a, ϑ) 7→ l(a, ϑ)

and by the associated random variable l(a) on (Θ,P o(Θ)) taking the values l(a,ϑ).
For brevity of reference, the relevant components, the set IA of actions, the set Θ
of states of nature and the precise loss function2 l(·), is collected in the triple
(IA,Θ, l(·)), which is called basic decision problem.

For many applications it will prove of value to extend the problem by allowing
for randomized actions. Formally, every randomized action can be identified with
a classical probability λ(·) on (IA,P o(IA)) where λ({a}), a ∈ IA, is interpreted
as the probability to choose action a. The set of all randomized actions will be
denoted by Λ(IA). Pure actions, i.e. elements a of IA itself, are identified with the
Dirac measure in the point {a}, and therefore are also understood to be elements
of Λ(IA). The loss function is extended to the domain Λ(IA)×Θ by l(λ,ϑ j) :=
∑n

i=1 λ(ai) · l(ai,ϑ j). Analogously to l(a), l(λ) is that random variable which gives
the loss of λ in dependence on the true state ϑ.

Quite often it is possible to obtain some information on the states of nature
by collecting additional data. Formally, this can be described by an additional
‘experiment’ where the probability pϑ(·) of the outcomes depends on the true
state ϑ of nature. Let X be the sample space of this experiment, and assume

2Throughout the paper it is assumed that a (precise) loss function is given. On the construction
of loss functions in the presence of ambiguity, generalizing the Neumann Morgenstern approach, see,
e.g., [14] and the references therein.)
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throughout the paper X to be finite, so that X = {x1, . . . ,xs, . . . ,xk}. The triple
(X ,P o(X ),(pϑ(·))ϑ∈Θ) is called sample information, the basic decision problem
together with the sample information data problem.

Now the decision problem consists in the choice between decision functions
(strategies)

d : {x1, . . . , xk} → Λ(IA)
x 7→ d(x) = λ ,

i.e. functions which map every observation x into a (randomized) action λ which
has to be chosen if x occurs. Let ID be the set of all decision functions. Deci-
sion functions are compared via their overall expected loss under pϑ(·), i.e. one
considers the so called risk function

R(d,ϑ) :=
k

∑
s=1

l(d(xs),ϑ) · pϑ(xs) , (1)

which produces, analogous to above, the random variable R(d).

2.2 Optimality Criteria
If the states of nature are produced by a perfect random mechanism (e.g. an
ideal lottery), and the corresponding probability measure π(·) on (Θ,P o(Θ)) is
completely known, the Bernoulli principle is nearly unanimously favored. One
chooses that action λ∗ which minimizes the expected loss

IEπl(λ) =
m

∑
j=1

l(λ,ϑ j) ·π({ϑ j}) (2)

among all λ ∈ Λ(IA), and that decision function which minimizes the expected
risk

IEπR(d) =
m

∑
j=1

R(d,ϑ j) ·π({ϑ j}) (3)

among all d ∈ ID, respectively.

In most practical applications, however, the true state of nature can not be
understood as arising from an ideal random mechanism. And even if so, the cor-
responding probability distribution will be not known exactly. There are two main
directions to proceed in this situation:

Since for a classical subjectivist, or Bayesian, according to [P1], every situa-
tion under uncertainty can be described by a single, precise probability measure
π(·), the lack of such a known random mechanism does not make any impor-
tant difference to the decision maker. (S)he acts according to subjective expected
loss/risk. In this context a special terminology became quite common: π(·) is
called prior probability, and the expression in (3) prior risk.
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In contrast, from the viewpoint of an ‘objectivist’ it does not make any sense
at all to assign a probability on (Θ,P o(Θ)). Therefore, the objectivist concludes
that the decision maker is completely ignorant about which state of nature will
occur; (s)he has to act according to a criterion based on complete ignorance. The
most common criterion is the minimax rule, which concentrates on the worst state
of nature, leading in the basic decision problem to

max
ϑ∈Θ

l(λ,ϑ) → min (4)

and in the data problem to

max
ϑ∈Θ

R(d,ϑ) → min . (5)

2.3 The Main Theorem of Bayesian Decision Theory
It is quite an essential characteristic of Bayesian decision theory that an optimal
decision function d∗(·) minimizing the prior risk (3) can be obtained by minimiz-
ing, for every observation {x}, the posterior loss,

IEπ(·|x)l(λ) =
m

∑
j=1

l(λ,ϑ j) ·π({ϑ j}|x) (6)

where, compared to (2), the prior π(·) is replaced by the ’updated prior’, i.e., the
posterior π(·|x). This is the decision theoretic foundation for the usual Bayesian
updating (see also [P2] from the Introduction). More precisely this fundamental
relation is formulated in

Proposition 1 (“Main theorem of Bayesian decision theory”) 3 Consider a
data problem, consisting of a basic decision problem (IA,Θ, l(·)), a sample in-
formation (X ,P o(X ),(pϑ(·))ϑ∈Θ) and a prior probability π(·). For every s =
1, . . . ,k, let π(·|xs) be the corresponding posterior given xs, and λ∗

s be an opti-
mal solution to the basic decision problem with respect to π(·|xs), i.e. an action
minimizing (6).

Then d∗ := (λ∗
1, . . . ,λ∗

s , . . . ,λ∗
k) is an optimal decision function minimizing (3).

Remark 1 The property formulated in Proposition 1 is constitutive for Bayesian
decision making. In particular, an analogous reduction of the data problem to
basic decision problems is not possible for the maximin criterion (4) and (5).

3 Decision Making under Interval Probability
It has often been complained that both classical ways to proceed – relying on
subjective expected loss as well as acting according to a criterion based on com-
plete ignorance – are inappropriate, because they both distort the partial nature of

3Compare, for instance, [4, p. 159, Result 1].
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the knowledge on the decision maker’s hand: The objectivist’s criteria treat par-
tial knowledge like complete ignorance, often leading to unsatisfactory, overpes-
simistic solutions. Subjective utility/loss theory on the other hand identifies partial
knowledge with complete probabilistic knowledge. This conflicts with Ellsberg’s
[11] experiments, which made it perfectly clear that ambiguity (i.e. the deviation
from ideal stochasticity) plays a constitutive role in decision making — neglecting
it may lead to deceptive conclusions.

Imprecise probabilities and related concepts are understood to provide a pow-
erful language which is able to reflect the partial nature of the knowledge suitably
and to express the amount of ambiguity adequately. (See [7] and [39, Ch. 1] for
recent reviews on the development in this field.)

3.1 Basic Terminology of Interval Probability
With respect to the intended application the whole consideration is restricted here
to the case of a finitely generated algebra A based on a sample space Ω. Then,
without loss of generality, Ω is finite, and A is the power set of Ω = {ω1, . . . ,ωk}.

To distinguish in terminology, every probability measure in the usual sense,
i.e. every set function p(·) satisfying Kolmogorov’s axioms is called a classical
probability. The set of all classical probabilities on the measurable space (Ω,A)
will be denoted by K (Ω,A).

Axioms for interval-valued probabilities P(·) = [L(·),U(·)] can be obtained
by looking at the relation between the non-additive set-function L(·) and U(·)
and the set of classical probabilities being in accordance with them. On a finite
sample space, as considered throughout this paper, several concepts of interval
probability coincide. They all are concerned with set-functions

P(·) : A → Z0 := {[L,U ] |0 ≤ L ≤U ≤ 1}
A 7→ P(A) = [L(A),U(A)]

with

M := {p(·) ∈ K (Ω,A) | L(A) ≤ p(A) ≤U(A), ∀A ∈ A} 6= /0 . (7)

and
inf

p(·)∈M
p(A) = L(A)

sup
p(·)∈M

p(A) = U(A)



 ∀A ∈ A . (8)

Such P(·), and the corresponding set functions L(·) and U(·), are called lower
and upper probability ([17]), envelopes ([34, 9]), coherent probability ([33]) and
F-probability ([37, 38, 39]). In the game theoretic setting M is the ‘core’. Here
Weichselberger’s terminology is used calling M structure. Note that, by (8), there
is a one-to-one correspondence between P(·) and the structure M .
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Two-monotone capacities ([17], also called supermodular capacities ([9]) or
convex capacities ([18]), as well as belief functions ([28, 42]) are special cases.
More general sets of classical probabilities are obtained by the theory of co-
herent previsions ([33]), i.e. by assigning interval-valued expectations IEM (·) :=
[LIEM (·),UIEM (·)] on a set K of random variables on (Ω,A). By the lower en-
velope theorem ([33, p.134]) and the fact that classical expectation and classical
probabilities uniquely correspond with each other, the definition of coherence can
be rewritten in a way similar to (8). Since Walley [33] did not coin a name for the
resulting set of classical probabilities, it will be called structure, too.

The interval-valued functions or functionals and the structure are dual con-
cepts, they uniquely determine each other. The results obtained in this paper will
be given in terms of the structure.

Many concepts of classical probability theory can be generalized appropri-
ately. For decision making the notion of expectation is the most important one.
Looking at the structure M , one way how to define expectation for interval prob-
ability and how to extend the functional IEM to random variables X 6∈ K suggests
itself (see also the natural extension in [33]): Given a structure M ⊆ K (Ω,A)

IEM X :=
[LIEM X ,UIEM X

]
:=
[

inf
p(·)∈M

IEpX , sup
p(·)∈M

IEpX
]

(9)

is the (interval-valued) expectation of X (with respect to F ).4

3.2 Generalized Expected Loss and Risk
In this section the decision problem as described in the Introduction will be an-
alyzed in the situation where the decision maker’s knowledge on the states of
nature is ambiguous, expressed by a structure M of classical probabilities on
(Θ,P o(Θ)). To focus the argumentation on the essential ideas, it is assumed that
the sampling information consists of classical probabilities.5

The generalization of the concept of probability now allows to consider gen-
eralized prior probabilities describing the decision maker’s state of knowledge.
With the notion of interval-valued expectation from (9) one immediately obtains
the basic element of a generalized decision theory:

Definition 1 Consider the basic decision problem (IA,Θ, l(·)), a structure M ⊆
K (Θ,P o(Θ)), and a sample information (X ,P o(X ),(pϑ(·))ϑ∈Θ). For every (ran-
domized action) λ ∈ Λ(IA), and every decision function d ∈ ID, the expectations

4An alternative way to define expectation for non-additive set functions is the Choquet integral
(or fuzzy integral) (c.f., e.g., [9]). For the case of two-monotone and totally monotone capacities both
notions are equivalent (cf., e.g., [9, Prop. 10.3, p. 126]). Therefore, the results developed below are
then valid for the Choquet integral, too.

5The whole framework can be extended to imprecise sample information without substantial diffi-
culties (cf., also the brief outline in [1]).
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IEM l(λ) and IEM R(d) are the generalized expected loss and the generalized ex-
pected risk (with respect to the prior information M ), respectively.

Note that IEM l(λ) and IEM R(d) are interval-valued quantities. In most cases,
comparing the generalized expected loss of actions directly will lead only to par-
tial orderings on IA and Λ(IA). If a linear (complete) ordering of actions is de-
sired, an appropriate representation is needed. This is a mapping from IR× IR to
IR which evaluates intervals by real numbers to use the natural ordering on IR for
distinguishing optimal actions.

Expressing the probabilistic knowledge by a structure means that inside the
structure there is complete ignorance: none of the elements of the structure is
‘more likely’ than another one. Therefore several authors (see the literature cited
below) suggested to apply ‘the maximin criterion to the structure’. Then the interval-
valued expectations are represented by the upper interval limit alone. Accordingly,
an action λ∗ or a decision function d∗ is optimal iff

UIEM (l(λ∗)) ≤ UIEM (l(λ)) , ∀λ ∈ Λ(IA) . (10)

and
UIEM (R(d∗)) ≤ UIEM (R(d)) , ∀d ∈ ID , (11)

respectively. The criterion (10) corresponds, among others, to the Maxmin ex-
pected utility model ([15]) and to the MaxEMin criterion considered by Kofler
and Menges ([21]; cf. also [20] and the references therein)). (11) is also called
Gamma-Minimax principle (e.g. [4, Section 4.7.6],[32]). These criteria will be
used in this paper, too.6

Remark 2 It should be noted that the criterion considered here contains the two
main classical decision criteria as border cases: If there is perfect probabilistic
information and therefore no ambiguity, then M consists of one single classical
prior probability π(·) only; (10) and (11) coincide with Bayes optimality with
respect to π(·). On the other hand, in the case of completely lacking information,
the prior information consists of all classical probabilities on (Θ,P o(Θ) (‘non-
selective’ or ’vacuous’ prior). Then it is easily derived that

UIEM (l(λ)) = min
j∈{1,...,m}

l(d,ϑ j) and UIEM (R(d)) = max
j∈{1,...,m}

R(d,ϑ j) ,

and (10) as well as (11) lead to the minimax criterion.

6This is done, however, without claiming that this is the only appropriate choice. Indeed, already
in the seminal paper by Ellsberg [11] there are strong arguments for additionally taking into account
other criteria. A convenient and nevertheless flexible choice is a linear combination of lower and upper
limits (compare, e.g., with [11, p. 664], [18],[40], [39, Ch. 2.6]).
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4 Robust Bayesian Analysis and Generalized Bayes
Rule

4.1 Posterior Loss Analysis
The search for a decision function is much more costly than the calculation of
optimal actions. Therefore, a natural attempt to solve (11) relies on the idea of the
main theorem of Bayesian decision theory (compare Proposition 1): after having
observed {x}, calculate the (now imprecise) posterior to update the imprecise
prior, and then determine the action minimizing posterior loss.

Before discussing properties of this way to proceed in detail, the informal
description just given has to be made precise:

Definition 2 Consider the basic decision problem (IA,Θ, l(·)), a structure M ⊆
K (Θ,P o(Θ)), and a sample information (X ,P o(X ),(pϑ(·))ϑ∈Θ). Assume that
π({ϑ}) > 0,∀ϑ ∈ Θ, ∀π ∈ M .

i) Then, for every x ∈ X , call

M·|x = {π(·|x)|π ∈ M } (12)

the imprecise posterior given x, and λ∗ ∈ Λ(IA) with

UIEM ·|x (l(λ∗,ϑ j)) ≤ UIEM ·|x (l(λ,ϑ j)) , ∀λ ∈ Λ(IA) , (13)

an optimal action with respect to the posterior loss given x.7

ii) A decision function d̃ = (d̃(x1), . . . , d̃(xs)) where, for every s = 1, . . . ,k, the
action d̃(xs) is optimal with respect to the posterior loss given xs, is called
posterior loss optimal decision function.

The imprecise posterior from (12) is the main tool in robust Bayesian analysis
(e.g., [35]), and its use is understood as self-evident in the decision theoretic work
based on the theory of linear partial information ([21] and subsequent work).
Moreover, a strong justification is provided by Walley’s [33] theory. The cal-
culation of M·|x is equivalent to applying his generalized Bayes rule, which is
thoroughly derived from general axioms on coherent updating (cf. [33]). And in-
deed − next to its intuitive plausibility − working with the imprecise posterior
has many further appealing properties. For instance, it is a vivid tool to reflect
prior-data conflict ([33, p.6]) and it is naturally applied in successive updating
where the imprecise posterior serves as an imprecise prior, once additional data
are available.8

7Vidakovic [32] calls such optima conditional Gamma-Minimax solutions.
8See, however, [41, Section 6].



40 ISIPTA ’03

4.2 Suboptimality of Posterior Loss Optimal Decision Func-
tions

Though this procedure seems to suggest itself, it must, however, be noted that its
decision theoretic foundation is lost. As has to be discussed here, the decision
function constructed along the lines of Part ii) of Definition 2 may be suboptimal
with respect to the criterion (11).

A very simple counterexample can be obtained from a border case: Consider
the vacuous prior information K (Θ,P o(Θ)). Then, independent of x, also the im-
precise posterior is vacuous9. Using it as the ‘updated prior’ yields, for every x,
according to Remark 2, the maximin solution λmm of the basic decision problem
as the optimal randomized action. In contrast, the optimal decision function coin-
cides with the maximin decision function dmm(·) of the data problem. Typically,
dmm(·) has lower risk than the decision function d̃ = (λmm,λmm, . . . ,λmm). Other
counterexamples can be obtained, for instance, by considering situations, where
the posterior probabilities are dilated (for this phenomenon see: [31, 36]).

The relation to minimax solutions goes far beyond the border case counterex-
ample just given. Indeed, the following representation theorem even shows that
optimal actions in the sense of (10) and optimal decision functions according to
(11) are minimax solutions (in a different decision problem, where the structure
serves as the set of states of nature) — except in the case of classical probabil-
ity where the structure consists of a single element only. Therefore, the optimal
solution must share all the (un)pleasant properties of minimax solutions, and so
a reduction of the data problem to smaller basic decision problems cannot be ex-
pected; the equivalence of optimality with respect to posterior loss and to prior
risk has to be given up.10

Theorem 1 (Representation Theorem) Consider the basic decision problem
(IA,Θ, l(·)), the prior structure M ⊆ K (Θ,P o(Θ)), and a sample information
(X ,P o(X ),(pϑ(·))ϑ∈Θ). Then the following equivalences hold:

i) An action λ∗ is optimal with respect to the criterion (10), iff it is minimax
action in the basic decision problem (Λ(IA),M , l̃(·)) with

l̃ : (Λ(IA)×M ) → IR
(λ, π) 7→ l̃(λ, π) := IEπ(l(λ,ϑ)) .

ii) A decision function d∗(·) is optimal with respect to the criterion (11), iff
d∗(·) is minimax solution in the basic decision problem (D,M , R̃(·)) with

R̃ : (D ×M ) → IR
(d, π) 7→ R̃(d, π) := IEπ(R(d,ϑ)) .

9See, for instance, [33, p.308].
10For the same reason also the essential completeness of unrandomized actions, known from clas-

sical Bayesian theory, is no longer valid.
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Sketch of the proof: For Part i) read the criterion (10)

maxπ(·)∈M IEπ(l(λ,ϑ)) → min

from the viewpoint of the minimax criterion (4), where Θ has been replaced by M . To
show Part ii), analogously rewrite (11) in the light of (5).

The basic idea of this theorem is similar to Schneeweiß’ [27] representation of
a basic decision problem. A closer study of the proof shows that this theorem can
also be directly extended to imprecise sample information and to the Hurwicz-
like optimality criteria briefly mentioned in Footnote 6. Moreover, the fact that
in this representation the structure M now serves as the set of states of nature
provides straightforwardly a framework for decision making with second order
probabilities: in this setting, a prior weighing the states of nature is nothing but a
second order distribution.

5 Concluding Remarks
The paper showed that, for imprecise probability, optimality with respect to prior
risk and to posterior loss need no longer coincide. Decision functions constructed
by collecting, for every potential observation x ∈ X , the optimal actions given
the corresponding imprecise posterior structure may have higher risk than the
direct solution to (11). From the computational point of view this means that, in
order to calculate the risk minimizing solution, the reduction to small, easy to
solve basic decision problems, which is characteristic for the Bayesian approach
in the classical setting, is not possible any more; it is indispensable to go the costly
way, fraught with difficulty, via the optimal decision function. Efficient algorithms
solving this challenge in contexts of optimal design and testing are provided by
Fandom Noubiap and Seidel [12, 13]. Augustin [1, 3] gives a general algorithm
which is, in principle, applicable to arbitrary decision problems on finite spaces.

Concerning the foundations of statistics it is remarkable that, in the area of
imprecise probabilities, the intensive debate between frequentists and Bayesians
on topics like counterfactual effects and the principle of conditionality, obtains
new importance. Should inference be based only on the concrete observation x, or
should one take all potential observations x ∈ X into account, i.e., evaluate the de-
cision function as a whole? There are sound arguments for both views and, quite
evidently, the author is not the one to decide the question definitely. But, at least, it
can be said that one should be aware of the fact that in the area of imprecise proba-
bility, in contrast to classical theory, now the standpoint matters; it may influence
the results substantially. The imprecise posterior does no longer contain all the
relevant information to produce optimal decisions. Inference and decision do not
coincide any more — just as in every day life, there is a difference between ac-
cumulating as much information as possible (inference and updating knowledge)
and making optimal decisions. This may lead to a number of paradoxes, since
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statisticians up to now have been used to phrase estimating and testing problems
equivalently as inference as well as decision problems.

Important further insights into the topic should arise from a deeper under-
standing of the relationship between the result obtained here and the phenomenon
of dilation in conditioning imprecise probabilities as described by Seidenfeld and
Wasserman [31] and Wasserman and Seidenfeld [36]. There should also be a close
and illuminating connection to Jaffray’s [19] observations on sequential decision
making, and to Seidenfeld’s paper ([29]) on incoherence in sequential decision
making when preferences fail the independence axiom.11

Further research may also attempt at reconciling the conditional and the so-
to-say global point of view, the more as the debate on appropriately defining con-
ditional imprecise probabilities is far from being closed. An increasing number of
results supports the idea that there should be a symbiosis of several concepts of
conditional interval probability ([10, 16, 41] and the references provided there.).
There may be some hope to find a notion of conditional probability or a mean-
ingful optimality criterion under which both ways to proceed coincide. In such a
setting there would be unanimity on the meaning of terms like ‘updating’, ‘infer-
ence’ and ‘optimal decision making’, because then, and only then, the posterior
would contain all the relevant information for decision making.
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