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Abstract
We consider the statistical problem of analyzing the association between two
categorical variables from cross-classified data. The focus is put on mea-
sures which enable one to study the dependencies at a local level and to
assess whether the data support some more or less strong association model.
Statistical inference is envisaged using an imprecise Dirichlet model.
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1 Introduction

1.1 The problem of association in contingency tables
The problem of measuring association in two-way contingency tables arising from
cross-classifications has a long tradition in statistical research (see, e.g.,the numer-
ous association measures reviewed by Goodman & Kruskal [6]). Though every
one agrees on the meaning of “independence”, the opposite notion of “complete
association” is felt more ambiguous, because there are several directions in which
the data may depart from independence. For the simplest case of 2× 2 tables,
Kendall & Stuart [9] make the distinction between “complete association” (one
empty cell) and “absolute association” (two empty cells on either diagonal of the
table). Although such distinctions are occasionally mentioned in the literature,
most statistical research appears to have focused on proposing global measures of
association.

The motivation behind this article arise from two (apparently) independent
goals. The first one is to provide a local and/or asymmetric approach to the anal-
ysis of contingency tables and to define well-suited descriptive indices for that
purpose. The second one is to build the inferential part of the analysis on a gen-
eralization of the Bayesian framework, the imprecise Dirichlet model (IDM). Let
us comment on these two aspects.
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1.2 Analysis of local/asymmetric dependencies: two examples
The first aim of this article is to address two related types of statistical issues, that
we shall illustrate by two psychological examples.

Example 1 (Stages data, Logical model) Jamison [8] studied several cognitive
tasks related to the Piaget’s stage concept. Table 1 gives the levels attained by
a group of children in two tasks, A and B, with three levels each. One model
predicts that attaining a given level in task A is a prerequisite for attaining the
same level in task B, i.e., predicts that cells a1b2, a1b3 and a2b3 should be empty.
This model can also be expressed as the logical expression M = [b3 =⇒ a3 ∧
b2 =⇒ (a2∨a3)]. The issue here is to assess whether a conclusion of quasi-
agreement of the data with model M , can be reached or not.

Table 1: “Stages” example. Observed counts xxx for n = 101 children cross-classified ac-
cording to their performance level in Seriation of lengths (A) and Inclusion of lengths (B),
from [8, p. 248]. For each task, children were classified as “preoperational” (a1 and b1),
“transitional” (a2 and b2) or “operational” (a3 or b3). Shaded cells are error cells associ-
ated to the logical model M = (b3 =⇒ a3 ∧ b2 =⇒ (a2∨a3)).

b1 b2 b3

a1 14 0 0

a2 15 5 2

a3 19 20 26

Example 2 (Dyad data, Directional association model) Another type of prob-
lem is the study of local dependencies within an A×B table, which aims at show-
ing that a specified group of cells is over- or under-represented. For example,
Danis et al. [5] analyzed data about adult-child verbal interactions in a situation
of book reading. Each statement produced by either actor was categorized into
one of four levels of increasing complexity. Table 2(left) gives one transition ma-
trix (child statement followed by adult statement) for one dyad. One hypothesis
of interest here is that some regions of Table 2(left) should be over- or under-
represented according to the pattern shown in Table 2(right): over-representation
of statements of the adult at the same level as the child’s (denoted “+”), mod-
erate under-representation of statements at an higher level (denoted “−”), and
high under-representation of statements at a lower level (denoted “−−”).

The two types of questions raised by these examples, either asymmetric and
expressed in terms of quasi-agreement with a logical model, or local and ex-
pressed in terms of over-/under-representation, can be answered using indices of
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Table 2: Dyad data. Counts of transitions from the child’s statement level (A) to the adult
statement level (B) for one dyad (left). Expected pattern of over-representations (+) and
under-representations (− or −−) (right). Levels correspond to increasing cognitive com-
plexity: “perceptual identification” (a1 and b1), “perceptual relationship” (a2 and b2), “dis-
placed reference” (a3 and b3), and “inferential statement” (a4 and b4); categories a0 and
b0 indicate cases in which one of the actors did not speak.

b0 b1 b2 b3 b4
a0 0 25 2 8 0
a1 6 27 1 3 2
a2 2 0 2 0 0
a3 13 0 0 20 2
a4 0 2 0 0 0

b0 b1 b2 b3 b4
a0
a1 + − − −
a2 −− + − −
a3 −− −− + −
a4 −− −− −− +

the same family. Hildebrand et al. [7], beside the main trend of research sketched
previously, proposed a general index, named Del, which measures the degree of
agreement of cross-classified data to a specified logical model. The building block
of the Del index is what [10] call the association rate between modalities. Our
method will be based on these two indices.

1.3 Inference for local/asymmetric analyses
Several difficulties arise when it comes to making inferences about these indices.
The inferential methods that were initially proposed were based on the frequentist
framework, and, due to the presence of nuisance parameters, relied on asymptotic
arguments (see e.g., [7, Chp. 6]), so that the validity conditions of these methods
are satisfied neither for small samples, nor for extreme data sets in which some
cells are empty or nearly so. These difficulties come in addition to some funda-
mental shortcomings of the frequentist methods, and, in particular, the fact that
they do not obey the likelihood principle (LP).

The Bayesian approach to inference answers most of these problems. How-
ever, it also encounters some difficulties when one wants to make inferences from
a prior state of ignorance. None of the various solutions which were proposed for
that goal simultaneously satisfies some general desirable principles (see [11]), i.e.,
the LP, and the representation invariance principle (RIP) (invariance with respect
to how categories are distinguished).

A generalization of the Bayesian framework, involving imprecise probabili-
ties, allows one to overcome most, if not all, of the difficulties of the Bayesian
approach, while keeping its attractive features (see [11]). In particular, Walley
[12] proposed a new method of inference for categorical data based on the im-
precise Dirichlet model (IDM). In the IDM, prior uncertainty about the cells’ true
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frequencies is described by a set of Dirichlet priors, each of which being updated
into a Dirichlet posterior using Bayes’ theorem. Posterior uncertainty is described
by the set of these Dirichlet posteriors. The IDM has several desirable properties
as a model for making inferences from a prior state of near ignorance. Firstly,
it satisfies both the LP and the RIP. Secondly, the IDM distinguishes between
a relative lack of information (high imprecision) and a more substantial state of
knowledge (low imprecision). The IDM can also be viewed as a method for mak-
ing robust inferences.

Our purpose here is to apply the IDM to the problem of studying the associ-
ation in contingency tables. This article contains relatively few new results about
the IDM itself, but we think it is important to face the IDM with several types of
applications and data sets, in order to develop more insights about its properties
and the scope of its application.

This article is structured as follows. Section 2 defines local or asymmetric as-
sociation measures. Sections 3 and 4 review the usual Bayesian Dirichlet models
and the IDM, respectively. Our main contribution is the study of inferences about
association measures from the IDM which is presented in Sections 5 and 6.

2 Descriptive analysis: defining relevant indices
Consider a data set of size n categorized in K categories, with observed counts
xxx = (x1, . . . ,xK), with n = ∑k xk. The observed (relative) frequencies are denoted
fff = ( f1, . . . , fK), with fk = xk/n. The data xxx will be considered as a sample
from a larger population, characterized by the parent or true frequencies θθθ =
(θ1, . . . ,θK), which are the population counterparts of fff . Both fff and θθθ belong
to the K-dimensional unit simplex S(1,K). Throughout this paper, the generic ex-
pression “association model” (or simply “model”) denotes some summary state-
ment about a frequency-vector,either fff or θθθ, i.e., a statement saying that it belongs
to some subset R ⊂ S(1,K). The qualifiers “descriptive” and “inductive” are used
for models bearing on fff and θθθ respectively. At the descriptive level, a model is
either true or false, whereas, at the inductive level, the model’s truth can only be
assessed with some probability.

In this section, we define various indices in terms of which the association
models considered in this paper will be defined. Here, these indices are defined
as functions of fff , but each one has its inductive counterpart as a function of θθθ.
The problem of making inferences about parameters θθθ (and indices derived from
them) will be envisaged in later sections.

2.1 Notation and preliminary definitions
The K categories are obtained here as combinations of modalities of the A and
B variables, so we shall use more specific notations: ab or (a,b) for a cell of the
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contingency table, xab for its observed count, fab for its observed frequency; we
note fa = ∑b fab and fb = ∑a fab the marginal frequencies of categories a ∈ A or
b ∈ B, and f̂ab = fa fb the product-frequency of cell ab.1

Definition 1 (Local independence) There is local independence between modal-
ities a and b, noted a ⊥⊥ b, whenever fab = f̂ab.

Definition 2 (Global independence) There is global independence between vari-
ables A and B, noted A ⊥⊥ B, whenever ∀a ∈ A,b ∈ B, a ⊥⊥ b.

2.2 The association rates as measures of local association
Being interested in the association between variables A and B amounts to being
interested in the departures from global independence, i.e., all departures from
local independence. This is done by introducing a measure of local association.

Definition 3 (Association rate, [10]) The association rate between a and b is de-
fined as tab = ( fab − f̂ab)/( f̂ab).

The sign of tab indicates whether there is an attraction (case tab > 0), a local
independence (case tab = 0), or a repulsion (case tab < 0) between a and b. The
maximum repulsion is obtained when tab = −1, i.e., when fab = 0, but there is
no a priori upper limit for tab. The index tab can also be interpreted as a over- or
under-representation rate of cell ab with respect to the a ⊥⊥ b case: for example,
tab = +0.50 (resp. −0.50), indicates that cell ab contains 50% more (resp. less)
observations than in the a ⊥⊥ b case.

2.2.1 Properties of association rates

As should be clear from properties given below (see also [10, Chp. 7]), the product-
frequencies f̂ff = ( f̂ab)a∈A,b∈B must be considered as a canonical set of weights for
ttt = (tab)a∈A,b∈B. In the following, we denote MeanR(ttt, f̂ff ) the weighted mean of ttt
(with weights f̂ff ) over R ⊂ A×B (R being omitted when R = A×B).

Property 1 The marginal weighted average of ttt, for any a ∈ A or any b ∈ B, is
equal to 0, i.e., Mean{(a,b),b∈B}(ttt, f̂ff ) = 0 and Mean{(a,b),a∈A}(ttt, f̂ff ) = 0.

Corollary 1 If in any row a (resp. column b) some tab is positive, then some other
tab′ (resp. ta′b) is negative: over-representation of some cells implies the existence
of some under-represented cells. In particular, for a 2× 2 table, a ⊥⊥ b implies
A ⊥⊥ B.

1Throughout this paper, we use K to denote both the set of categories and its cardinal, and similarly
for A and B, the distinction being always clear from the context. Unless otherwise stated, all sums over
k (resp. a, b) run from 1 to K (resp. A, B).
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Property 2 (Pooling) Consider two applications A −→ A∗ and B −→ B∗ and the
pooled table, A∗×B∗, then, ∀a∗ ∈ A∗, ∀b∗ ∈ B∗, ta∗b∗ = Mean{(ab),a∈a∗,b∈b∗}(ttt, f̂ff ).
In particular, consider cell ab and the pooled table A∗×B∗, where A∗ = {a,a′}
and B∗ = {b,b′}. Then tab is unchanged, whether it is defined from table A×B or
from A∗×B∗.

Note 1 (Global independence and ttt) From Definitions 2 and 3, A ⊥⊥ B occurs
if and only if the tab’s are all equal to 0. Conversely, the departure of any tab from
0 indicates a departure from independence. What is important here is that the
precise pattern of the tab’s departures from 0 points to the direction of association.

2.2.2 Example: Dyad data (continued)

Table 3 gives the tab’s for all cells of Table 2(left). Descriptively, (i) all diagonal
cells but one are over-represented, (ii) all cells below the diagonal but one are
maximally under-represented, and (iii) four of the six cells above the diagonal are
under-represented (two maximally). Several of these results go in the direction
of the pattern of Table 2(right), but this model, if taken at the cell level, is not
descriptively satisfied.

2.3 Mean association rate over a region R: index tR

In order to express the idea that some region R⊂A×B is over- or under-represented,
we shall have recourse to a more global index as in [5].

Definition 4 (Mean association rate) Given a region R ⊂ A×B, the mean asso-
ciation rate over R is defined as, tR = MeanR(ttt, f̂ff ).

The index tR varies from −1 (all cells in R are empty), to negative values
(under-representation of R), to 0 (independence on average in R), to positive val-
ues (over-representation of R) without any a priori upper bound.

Table 3: Dyad data. Observed association rates tab from data of Table 2.

b0 b1 b2 b3 b4
a0 -1.00 0.52 0.31 -0.15 -1.00
a1 -0.16 0.47 -0.41 -0.71 0.47
a2 1.74 -1.00 10.50 -1.00 -1.00
a3 1.03 -1.00 -1.00 1.12 0.64
a4 -1.00 1.13 -1.00 -1.00 -1.00
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2.3.1 Example: Dyad data (continued)

Consider the Dyad data and the pattern of over-/under-representation of Table
2(right). One possible way to confront the data to this model, at a descriptive
level, is to compute the observed mean association rates for the three regions, D
for cells on the diagonal, U for cells above and L for cells below it. This yields
tD = 0.75, tU =−0.50 and tL =−0.91. A global descriptive summary of the data,
which goes in the direction of the expected pattern, is thus: tD > 0 > tU > tL.

2.4 The Del index, a measure of agreement with a logical model
2.4.1 Quasi-implication for a 2×2 table

Consider a 2× 2 table, with binary variables A = {a,a′} and B = {b,b′}. We
assimilate a and b to logical propositions, and denote negation by priming, con-
junction by concatenation, implication by =⇒, and the false proposition by /0.
Then the statement a =⇒ b (i.e., any observation of type a is necessarily of type
b) is equivalent to ab′ =⇒ /0, i.e., that cell ab′ is empty (cell ab′ is an error cell
for model a =⇒ b, see [7]). Bernard [4] weakened the notion of a strict impli-
cation a =⇒ b into that of a quasi-implication, denoted by a −→ b, by defining
the descriptive index da=⇒b =−tab′ as a measure of the degree of agreement with
the logical model a =⇒ b. For a given threshold dquasi > 0, quasi-implication was
defined by: a −→ b ⇐⇒ da=⇒b ≥ dquasi.

2.4.2 Generalization to any logical model, the Del index

Definition 5 (Del index, [7]) More generally, consider a logical model M rela-
tive to an A×B table, and denote by EM , or E for short, the set of all error cells
that contradict M , i.e., such that M =

V

(ab =⇒ /0)(a,b)∈E . Let tE be the mean
association rate over region E . Then a global measure of the degree of agreement
of the data with M is the Del index, dM = −tE .

Properties of dM flow from those of (mean) association rates. The index dM
varies in the range ]−∞,1]; dM = 0 in case of independence on average in region
E and dM = 1 when M is verified. A value of dM between 0 and 1 can thus be
interpreted as a quasi-agreement of the data with M at degree dM ; the closer to 1
its value is, the better the quasi-agreement is.

Property 3 (Equivalent logical models) Consider two logical models M1, de-
fined on A×B, and M2, defined on a table A∗×B∗ obtained by coarsenings of
the A and B classifications, such that M1 and M2 are logically equivalent. Then,
dM1

= dM2
. This property follows from Property 2.

As seen from Definition 5, dM and tR are equivalent indices. In using tR, we
want to stress the over-/under-representation interpretation and the independence
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case as a privileged reference (tR = 0), whereas, in using dM , we stress the inter-
pretation in terms of quasi-agreement with a strong/logical model and we point
model M as a privileged reference (dM = 1).

2.4.3 Example: Stages data (continued)

Consider the Stages data in Table 1 and the logical model M associated with
E = {(a1,b2),(a1,b3),(a2,b3)}. We see that only two observations fall in region
E and we find dM = 0.851. Descriptively, at threshold, say, dquasi = 0.80, we may
conclude that the data quasi-agree with model M .

3 Bayesian inference
We now assume that the data xxx = (x1, . . . ,xK) is a multinomial sample (with K =
A×B categories) of size n from a population characterized by the unknown pa-
rameters θθθ = (θ1, . . . ,θK), the true frequencies of the K categories: xxx ∼ Mn(n,θθθ).
We now want to make inferences about θθθ, and, more precisely here, about derived
parameters such as τab, τR and δM which are the population counterparts of the
descriptive indices tab, tR and dM .

3.1 Dirichlet model for θθθ
In the usual Bayesian conjugate analysis, prior uncertainty about θθθ is described
by a Dirichlet prior distribution, θθθ ∼ Diri(ααα), where ααα = (α1, . . . ,αK) and each
hyper-parameter αk > 0. We call the αk’s the prior strengths and ν = ∑k αk the to-
tal prior strength. We shall use an alternative parameterization of the Dirichlet in
terms of the prior frequencies ϕϕϕ = ααα/ν, where ϕϕϕ ∈ S?(1,K) and S ?(1,K) denotes
the interior of simplex S(1,K).2 The prior expectations are simply E(θk) = ϕk.
The posterior distribution on θθθ is then an updated Dirichlet distribution, θθθ|xxx ∼
Diri(xxx+ααα) = Diri(xxx+νϕϕϕ), with posterior expectations given by,

E(θk|xxx) =
xk +νϕk

n+ν
. (1)

3.2 Objective Bayesian models
For multinomial data, four Dirichlet priors have been proposed as models for prior
ignorance about θθθ. All are symmetric Dirichlet, that is ϕk = 1/K for any k, and
they only differ in their respective total prior strength ν: ν → 0 (Haldane), ν = 1
(Perks), ν = K/2 (Jeffreys) and ν = K (Bayes-Laplace’s uniform prior).

Haldane’s improper prior leads to some undesirable inferences: when xk = 0,
it leads to infer that θk = 0, even when n is small. A major difficulty with the other

2Walley [12] uses symbols s and tk in place of ν and ϕk respectively.
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three objective Bayesian priors is that inferences they produce depend on how the
K categories are distinguished, which is partly arbitrary, and thus they do not
satisfy the RIP (see [12]). Jeffreys’ prior does not satisfy the LP either. Although
it is often claimed that inferences from these priors differ in a negligible way
when n is not small, large discrepancies can be obtained for statements bearing
on unobserved or rare cells, even with large n.

4 Imprecise Dirichlet model

4.1 Presentation of the model
Walley [12] proposed the imprecise Dirichlet model (IDM) as a model for prior
ignorance in the case of categorical data. The model consists in describing prior
uncertainty about θθθ = (θ1, . . . ,θK) by a set of Dirichlet priors. The prior IDM(ν)
is defined as the set of all Dirichlet priors on θθθ with a fixed total prior strength
ν > 0, i.e., the set {Diri(ααα) : αk > 0 for all k, ∑k αk = ν}, or equivalently

{Diri(νϕϕϕ) : ϕϕϕ ∈ S?(1,K)}, (2)

where S ?(1,K) is the interior of the simplex S(1,K).
Let Pνϕϕϕ(·) and Eνϕϕϕ(·) be respectively a prior probability and a prior expecta-

tion provided by a particular Diri(νϕϕϕ) in the set (2). The uncertainty about any
event Z concerning θθθ is described by prior lower and upper probabilities, de-
noted by P(Z) and P(Z), and calculated by minimizing and maximizing Pνϕϕϕ(Z)
with respect to ϕϕϕ ∈ S?(1,K). Similarly, for any real-valued function λ = g(θθθ),
prior lower and upper expectations E(λ) and E(λ) are calculated by minimizing
or maximizing the expectation Eνϕϕϕ(λ) with respect to ϕϕϕ. Inferences about λ can
be summarized by the prior lower and upper cumulative distribution functions
(cdf’s), Fλ(l) = P(λ > l) and Fλ(l) = P(λ > l).

Each Dirichlet prior in the prior IDM(ν) is updated into a Dirichlet posterior
using Bayes’ theorem. This updating procedure guarantees coherence of the infer-
ences [11]. Hence the posterior uncertainty about θθθ from the IDM(ν) is expressed
by the set

{Diri(xxx+νϕϕϕ) : ϕϕϕ ∈ S?(1,K)} (3)

As for the prior IDM, posterior lower and upper probabilities, expectations and
cdf’s are obtained by minimization or maximization with respect to ϕϕϕ ∈ S?(1,K).

The IDM satisfies several desirable principles of inference, and in particular
both the LP and the RIP (see [12]). The RIP states that posterior inferences about
any derived parameter λ = g(θθθ) should not depend on the number of categories
K used for defining λ. The RIP is satisfied by the IDM in so far as the total prior
strength ν is specified independently of K.



Bernard: Analysis of Contingency Tables Using the IDM 55

4.2 Prior and posterior inferences about θk from the IDM
The posterior lower and upper expectations of θk are given by

E(θk|xxx) = xk/(n+ν) and E(θk|xxx) = (xk +ν)/(n+ν), (4)

and are obtained as ϕk → 0 and ϕk → 1 respectively. The two same limiting values
lead to the posterior upper and lower cdf’s respectively, P(θk > l|xxx) which is the
Beta(xk,n− xk +ν) cdf, and P(θk > l|xxx) which is the Beta(xk +ν,n− xk) cdf.

By setting n = xk = 0 in (4), we see that prior uncertainty about θk is maximal.
We have E(θk) = 0 and E(θk) = 1, and P(θK > l) = 0 and P(θk > l) = 1 for any
0 < l < 1, that is vacuous lower and upper probabilities.

4.3 Choice of ν
The IDM as defined in (2) and (3) depends on the choice of ν. The constant ν
determines how fast the lower and upper probabilities converge one towards the
other as n increases, and can thus be interpreted as a measure of the caution of
the inferences. The larger ν is, the more cautious the inferences are. The most
important criterion for the choice of ν is the requirement that the IDM should
be cautious enough to encompass frequentist or objective Bayesian alternatives,
while not being too cautious to avoid too weak inferences.

The first researches about the IDM lead to several convincing arguments for
choosing 1 ≤ ν ≤ 2, but most of these arguments are relative to the binary case
(K = 2) only (see [2, 12]. More recent work provides some support for ν = 2 in the
case of large K, for non-parametric inference about a mean [3]. In the following,
we shall use ν = 2, a value which is also supported by results in Section 5.4.

4.4 Two conjectures about the IDM
Conjecture 1 (Expectation of a derived parameter) Let λ = g(θθθ) be a real-va-
lued function of θθθ, and Eνϕϕϕ(θθθ) the prior (resp. posterior) expectation of θθθ under
the prior Diri(νϕϕϕ) (resp. posterior Diri(xxx + νϕϕϕ)). Then the upper and lower ex-
pectations of θθθ under the IDM(ν) are obtained from the (or one of the) Dirichlet
prior which maximizes (resp. minimizes) g(Eνϕϕϕ(θθθ)) with respect to ϕϕϕ.

Conjecture 2 (Cdf of a real-valued derived parameter) Let λ = g(θθθ) be a real-
valued function of θθθ. Let Diri(νϕϕϕ) be a Dirichlet prior which provides the lower
(resp. upper) prior or posterior expectation of λ under the IDM(ν), then it also
provides the prior or posterior upper (resp. lower) cdf of λ.

The two conjectures hold if g(.) is a linear function of the θk’s. We don’t
expect them to be true in the general case (there are simple counter-examples to
Conjecture 1). Nevertheless, we suggest that these conjectures actually provide
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reasonable approximations for the lower and upper expectations and cdf’s of λ
for most functions g(.). In any case, the procedures they induce necessarily lead
to an upper (resp. lower) bound for E(λ) and Fλ(.) (resp. E(λ) and Fλ(.)).

5 Inference about a single association rate τi j

We first investigate the properties of the inferences about a single association rate
τab from the IDM. The following lemma shows that inferences about τab can be
carried out from the analysis of a simple 2×2 table.

Lemma 1 Consider the pooled table A∗×B∗, with A∗ = {a,a′} and B∗ = {b,b′}
and denote τ∗ab the association rate of cell ab from the pooled table. From Property
2, τ∗ab = τab. Further, inferences from the IDM are invariant by such a pooling,
since the IDM obeys the RIP. Thus, inferences about any single τab only involve
the relevant 2×2 table, A∗×B∗.

5.1 Prior upper and lower expectation and cdf
The prior lower and upper expectation of τab are given by E(τab) = −1 and
E(τab) → +∞, and are attained respectively by ϕab = ϕa′b′ → 1

2 , and by ϕab = λ,
ϕa′b′ = 1−λ, with λ → 0. The same limiting values of ϕϕϕ also lead to the prior
upper and lower cdf’s respectively, P(τab > t) = 0 and P(τab > t) = 1, for any
0 < t < 1. These results show that prior inferences about τab are vacuous. The
prior IDM thus expresses a state of prior ignorance about parameter τab.

5.2 Posterior upper and lower expectation and cdf
As in [4], we have recourse to Conjecture 1 in order to find approximate values
for the posterior upper and lower expectations of τab. Write τab = g(θθθ) where g(.)
is such that tab = g( fff ) and g(.) is given by Definition 3. Under a single Dirichlet
prior, Diri(νϕϕϕ), the posterior expectation Eνϕϕϕ(τab|xxx) is approximated by replacing
each θk in g(.) by E(θk|xxx) given in (1), that is

E?
νϕϕϕ(τab|xxx) =

xab +νϕab

(xa +νϕa)(xb +νϕb)
−1 (5)

where xa and xb are the marginal counts of cell ab, and ϕa and ϕb its marginal prior
frequencies. Conjecture 1 suggests then to minimize (resp. maximize) E?

νϕϕϕ(τab|xxx)
with respect to ϕϕϕ, in order to estimate the posterior lower (resp. upper) expecta-
tions of τab under the IDM(ν). The minimum value is attained by letting ϕab′ → 1,
ϕa′b → 1, or ϕab′ = ϕa′b → 1/2, whether fab′ is lower than, greater than, or equal to
fa′b respectively. The maximum value is attained by letting ϕab → 1 or ϕa′b′ → 1
whether xaxb > xab(xa + xb +ν) or not. Following Conjecture 2, we use the same
values for finding approximate posterior lower and upper cdf’s of τab.
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5.3 Dyad data: Summary of local inferences
Table 4 gives the lower and upper probabilities of a positive association rate from
the IDM with ν = 2, for each cell ab concerned by the prediction given in Table
2(right). Three of the four diagonal cells, (a1,b1), (a2,b2) and (a3,b3), can be
assessed to be inductively over-represented with a high guarantee, P(τab > 0)
being at least 0.99 for any of them. For cell (a4,b4), the probability interval,
[0.00;1.00] is almost vacuous; uncertainty still dominates, even after observing
115 observations. For the regions off the diagonal, only cells (a1,b3) and (a3,b1)
are guaranteed to be under-represented, since, in both cases, P(τab < 0) = 1−
P(τab > 0) = 1.00; cells (a2,b1) and (a3,b2) have a probability of at least 0.79
and 0.61 to be under-represented; uncertainty concerning the 8 remaining off-
diagonal cells is even larger, since P(τab < 0) < 0.50 for each cell.

The first overall conclusion that may be drawn from these results is that the
model shown in Table 2(right) cannot not be inductively assessed at the cell level.

Of course, any other reference value for τab than 0 can be used in a similar
way. For instance, the probability intervals for event τab > 0.50 for diagonal cells
are: [0.30;0.50] for (a1,b1), [0.98;1.00] for (a2,b2), [0.99,1.00] for (a3,b3) and
[0.00,0.99] for (a4,b4). Both cells (a2,b2) and (a3,b3) can be assessed to be
over-represented by at least 50% with a high lower probability.

Table 4: Dyad data. Lower and upper posterior probabilities for event τab > 0, P(τab > 0|xxx)
and P(τab > 0|xxx), for cells indexed by a1, . . . ,a4 and b1, . . . ,b4 only, using the IDM(ν = 2).

b0 b1 b2 b3 b4
a0
a1 1.00;1.00 0.09;0.65 0.00;0.00 0.45;0.95
a2 0.00;0.21 0.99;1.00 0.00;0.57 0.00;0.99
a3 0.00;0.00 0.00;0.39 1.00;1.00 0.53;0.97
a4 0.56;1.00 0.00;0.99 0.00;0.81 0.00;1.00

5.4 Comparison with frequentist and Bayesian approaches
Let us consider the test of the hypothesis H0 : τab ≤ 0 versus H1 : τab > 0. Due to
Corollary 1, this test is equivalent to H0 : Φ ≤ 0 versus H1 : Φ > 0, where Φ is the
usual contingency coefficient for a 2×2 table.

In the frequentist framework, the usual corresponding test is Fisher’s exact test
for a 2× 2 table. The one-sided level pinc of this test is usually computed as the
probability of the observations or more extreme cases (inclusive test) under H0.
However, as argued by [2], this choice is a matter of convention and one could also
envisage the exclusive alternative with level pexc involving more extreme cases
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only. The following lemma shows that both these frequentist tests can actually be
reinterpreted in a Bayesian way.

Lemma 2 Let pexc and pinc by the exclusive and the inclusive levels (one-sided)
of Fisher’s exact test of H0 : Φ ≤ 0 versus H1 : Φ > 0 for a 2×2 table with counts
xxx. Let Pνϕϕϕ(.) be a Bayesian probability obtained from the prior Diri(νϕϕϕ) on θθθ.
Then, pexc = Pνϕϕϕ(H1|xxx) with ν = 2 and ϕϕϕ = (0, 1

2 , 1
2 ,0), and pinc = Pνϕϕϕ(H1|xxx)

with ν = 2 and ϕϕϕ = ( 1
2 ,0,0, 1

2 ). The former prior allocates non-null strengths
evenly to cells (a,b′) and (a′,b), the latter to cells (a,b) and (a′,b′).

Lemma 3 Under the same assumptions, the probability Pνϕϕϕ(τab > 0|xxx) from any
of the four symmetric (ϕϕϕ constant) objective Bayesian priors, i.e., ν → 0, ν = 1,
ν = 2 and ν = 4, are in the interval [pexc; pinc].

Proof. Lemmas 2 and 3 can be readily deduced from results in [1, Sec. 3]. 2

Theorem 1 For any cell (a,b), the posterior lower and probabilities of event
τab ≤ 0 from the IDM with ν = 2 encompass (i) Fisher’s exact probabilities for H0 :
τab ≤ 0 versus H1 : τab > 0 using either the exclusive or the inclusive convention
and (ii) the Bayesian posterior probabilities of the same event under the objective
priors of Haldane, Perks, Jeffreys and Bayes-Laplace (the latter two being defined
on the relevant specific 2×2 table).

Proof. The proof follows from (i) the equivalence between τab > 0 and Φ > 0
for the pooled {a,a′}×{b,b′} table, (ii) the two Lemmas 2 and 3, and (iii) from
the fact that the two Bayesian priors equivalent to pexc and pinc are such that ν = 2
and thus belong to the IDM(ν = 2). 2

Note 2 In analyzing a 2× 2 table, Walley et al. [13, Sec. 5.4] advocate the use
of two independent IDM’s with same prior strength ν1, one for each line of the
table. They note that the value ν1 = 1 leads to P(H0|xxx) = pinc, a result which is
only half of what Lemma 2 says. Here, we propose a more cautious model, a single
IDM with ν = 2ν1 = 2 for the whole table, which encompasses Walley’s model.
As Theorem 1 implies, our model has the advantage of producing inferences that
encompass inferences from alternative objective models for all cells of the table
simultaneously. The IDM(ν = 2) is the smallest IDM having this property.

5.5 Absent or rare cells
For some cells, posterior uncertainty is still quite large. As an example, consider
the unobserved cell (a2,b4) for which the posterior probability interval for τab > 0
is almost vacuous, [0.00;0.986] (see Table 4). Such a wide interval results from
the rareness of both a2 and b4 ( fa2 = fb4 = 4/115). Even if a2 and b4 were
locally independent, the expected number of observations in cell (a2,b4) would
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be extremely small, x̂a2b4 = n f̂a2b4 = 16/115, far less than one observation. Thus,
despite the extreme descriptive result ta2b4 = −1, both the hypotheses a2 ⊥⊥ b4
(τa2b4 = 0) and a2b4 =⇒ /0 (τa2b4 = −1) are compatible with the data. A similar
result was found by [4]. This uncertainty is also reflected in the large differences
between the alternative objective models: P(τa2b4 > 0) ranges from 0 (Haldane),
0.350 (Perks), 0.571 (Jeffreys), to 0.802 (Bayes-Laplace), and the corresponding
probability from Fisher’s exact tests are 0 (exclusive) and 0.866 (inclusive).

6 Inference about a mean association rate τR

Without loss of generality (see Property 1), we consider a non-empty region R
which does not contain any full row or a full column of the A×B table. It is easy
to find a Dirichlet prior within the IDM for which the prior lower expectation of
τR is −1 (∀(a,b) ∈ R,ϕab → 0 with strengths of cells outside R carefully chosen).
This limiting value for ϕϕϕ also provides the prior upper cdf, P(τR > t) = 1 for
0 < t < 1. We believe that the prior upper expectation and lower cdf of τR lead to
vacuous inferences about τR, but we have no formal proof of that.

6.1 Posterior inferences about a single τR

Let τR = g(θθθ), with tR = g( fff ) as given in Definition 4. We shall assume that al-
locating ν to a single cell suffices to attain the lower or upper expectation or cdf
of τR. This assumption actually appears to be true in most cases we tested, but is
certainly not true in all cases. However, we shall consider that it provides a rea-
sonable approximation for inferences about τR from the IDM. As a second level
of approximation, we use the same argument as in Section 5.2 using Conjectures
1 and 2. Define E?

νϕϕϕ(τR|xxx) = g(Eνθθθ(θθθ|xxx)) and Eνθθθ(θθθ|xxx) is given by (1).

Theorem 2 Denote by rab the indicator variable of (a,b) ∈ R and R′ the comple-
ment of R in A×B. Compute mab = ∑A

i=1 ribxi +∑ j=1...B ra jx j for each cell (a,b).
Then E?

νϕϕϕ(τR|xxx) is minimized by letting ϕab → 1 for cell (a,b) ∈ R′ maximizing
mab. (We have no simple formula for maximization of E?

νϕϕϕ(τR|xxx).) Proof involves
tedious but rather simple algebra.

6.2 Stages data: Inference on δM

Consider the Stages data (Table 1) and the model M defined therein. We found
dM = 0.851 and we now want to make inferences about parameter δM using
the IDM(ν = 2). For various statements about δM , we find the following proba-
bility intervals: [1.00;1.00] for δM > 0, [0.95;1.00] for δM > 0.50, [0.84;0.98]
for δM > 0.60 and [0.62;0.93] for δM > 0.70. We thus may assess that the data
quasi-agree with M at threshold dquasi = 0.50, with probability at least 0.95.
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6.3 Inferences about a complex directional association model
The IDM can be applied to study any kind of complex model expressed as a
conjunction of constraints about association rates of specific cells or regions of
an A×B table. Consider the Dyad data in Table 2(left) and the two models M1 =
τL < τU < 0 < τD and M2 = τL < −0.70 < τU < 0 < 0.50 < τD. Both try to
express the expected pattern shown in Table 2(right), in a more or less strong way.
Computing the posterior lower and upper probabilities of M1 or M2 can be done
numerically by minimization/maximization over the set of Dirichlet posteriors.
Using the IDM with ν = 2, we find P(M1) = 0.98, P(M1) = 1.00, and P(M2) =
0.84, P(M2) = 0.96. Model M1 only is supported by the data with a sufficiently
high lower probability.

Of course, models M1 and M2 are only two candidates amongst the possible
inductive summaries of the data. The task of model selection (which is not ad-
dressed here) would require taking into account, not only the (lower) probability
of each model, but also the degree of specificity or generality of each model.

7 Concluding remarks
This paper proposes a method for analyzing local or asymmetric dependencies
in a contingency table, by focusing on previously suggested indices — (mean)
association rates [5, 10] and Del index [7] —, which, we believe, are simple and
natural, and yet provide means to define a wide variety of association models.

We showed how the imprecise Dirichlet model (IDM) can be applied to assess
whether the data support such association models or not. Several results provide
approximate solutions to the minimizing/maximizing problems required by the
IDM. Further research would be needed to develop exact solutions or to measure
the accuracy of our approximate procedures.

The exact comparison between the IDM and alternative frequentist or objec-
tive Bayesian models, carried out in Section 5.4 (see especially Theorem 1), pro-
vides a new argument for choosing ν = 2 in the IDM, for a problem involving a
possibly large number of categories (see also [4]). The large discrepancies which
can be obtained in the inferences from these various alternative models are trans-
lated as a high imprecision in the IDM (see an example in Section 5.5). Section
5.4 shows that this phenomenon occurs whenever the frequentist probability of
the observed data (under some particular null hypothesis) is not negligible.

References
[1] ALTHAM, P. M. E. Exact Bayesian analysis of a 2× 2 contingency table

and Fisher’s exact significance test. J. Roy. Statist. Soc. Ser. B 31, 2 (1968),
261–269.



Bernard: Analysis of Contingency Tables Using the IDM 61

[2] BERNARD, J.-M. Bayesian interpretation of frequentist procedures for a
Bernoulli process. The American Statistician 50, 1 (1996), 7–13.

[3] BERNARD, J.-M. Non-parametric inference about an unknown mean us-
ing the imprecise Dirichlet model. In Proceedings of the 2nd International
Symposium on Imprecise Probabilities and their Applications (ISIPTA’01)
(Maastricht, 2001), G. de Cooman, T. Fine, and T. Seidenfeld, Eds., Shaker
Publishing BV, pp. 40–50.

[4] BERNARD, J.-M. Implicative analysis for multivariate binary data using an
imprecise Dirichlet model. J. Statist. Plann. Inference 105 (2002), 83–103.

[5] DANIS, A., BERNARD, J.-M., AND LEPROUX, C. Shared picture-book
reading: A sequential analysis of adult-child verbal interactions. British
Journal of Developmental Psychology 18 (2000), 369–388.

[6] GOODMAN, L. A., AND KRUSKAL, W. H. Measures of association for
cross classifications. II: Further discussion and references. J. Amer. Statist.
Assoc. 54 (1959), 123–163.

[7] HILDEBRAND, D. K., LAING, J. D., AND ROSENTHAL, H. Prediction
Analysis of Cross Classifications. John Wiley & sons, 1977.

[8] JAMISON, W. Developmental inter-relationships among concrete opera-
tional tasks: An investigation of Piaget’s stage concept. Journal of Experi-
mental Child Psychology 24 (1977), 235–253.

[9] KENDALL, M. G., AND STUART, A. The Advanced Theory of Statistics,
Vol. 2: Inference and Relationship, 3rd ed. Griffin, 1973.

[10] ROUANET, H., BERT, M.-P., AND LE ROUX, B. Statistique en Sciences
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