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Abstract

Based on the coherence principle of de Finetti and a related notion of gener-
alized coherence (g-coherence), we adopt a probabilistic approach to uncer-
tainty based on conditional probability bounds. Our notion of g-coherence is
equivalent to the ”avoiding uniform loss” property for lower and upper prob-
abilities (a la Walley). Moreover, given a g-coherent imprecise assessment
by our algorithms we can correct it obtaining the associated coherent assess-
ment (in the sense of Walley and Williams). As is well known, the problems
of checking g-coherence and propagating tight g-coherent intervals are NP−
and FPNP−complete, respectively, and thus NP−hard. Two notions which
may be helpful to reduce computational effort are those of non relevant gain
and basic set. Exploiting them, our algorithms can use linear systems with
reduced sets of variables and/or linear constraints. In this paper we give some
insights on the notions of non relevant gain and basic set. We consider several
families with three conditional events, obtaining some results characterizing
g-coherence in such cases. We also give some more general results.

Keywords
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1 Introduction
Among the many symbolic or numerical approaches to the management of uncer-
tain knowledge, the probabilistic treatment of uncertainty by means of precise or
imprecise assessments is a well known formalism often applied in real situations.
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A general framework which allows a consistent management of probabilistic as-
sessments is obtained by resorting to de Finetti’s coherence principle ([2], [7],
[8], [11]), or suitable generalizations of it given for upper and lower probabilities
([20], [19]). In our approach we adopt the notion of g-coherence (i.e. general-
ized coherence) introduced in [1] (see also [10]), which is weaker than the notion
of coherence given in [19]. Actually, the notion of g-coherence is equivalent to
the property of ”avoiding uniform loss” given in [19]. Within our framework, a
given g-coherent assessment can be corrected, obtaining the associated coherent
one, and possibly extended to further conditional events. As is well known, if we
discard the case of conditioning events with zero probability the probabilistic rea-
soning can be reduced to a linear optimization problem (we also point out that
g-coherent probabilistic reasoning generally does not coincide with probabilis-
tic reasoning as in, e.g., [12], [14], when the conditioning event has a non-zero
probability). When conditioning events may have zero lower/upper probability,
the methods presented in the literature (our one too) usually exploit sequences of
linear programs. Among them, a ”dual” approach for the extension of lower and
upper previsions, explicitly based on random gains, has been developed in [20].
With the aim of improving the method given in [20], an interesting technique for
computing lower conditional expectations through sequences of pivoting oper-
ations has been proposed in [9]. Roughly speaking, probabilistic reasoning can
be developed by local approaches, based on the iteration of suitable inference
rules, and global ones (the issue of local versus global approaches has been ex-
amined especially in [17], [18]). We recall that probabilistic reasoning based on a
global approach tends to become intractable. Hence, it is worthwhile to examine
any method which try to eliminate or reduce computational difficulties, possibly
finding efficient special-case algorithms. This problem has been faced by many
authors (see, e.g., [5], [7], [8], [9], [12], [14], [20]). Many aspects concerning
the complexity of probabilistic reasoning under coherence have been studied in
[3]. The relationship between coherence-based and model-theoretic probabilis-
tic reasoning has been widely explored in [4]. In [16] an efficient procedure has
been proposed for families of conjunctive conditional events. Such procedure can
be characterized in the framework of coherence introducing suitable notions of
non relevant gains and basic sets ([2]). Exploiting such notions, our algorithms
for g-coherence checking and propagation of conditional probability bounds can
use linear systems with reduced sets of variables and/or constraints. In this pa-
per we illustrate the notions of non relevant gain and basic set, by examining
several examples of families constituted by three conditional events. We obtain
some theoretical results which characterize g-coherence in such particular cases.
In this way, the characterization of g-coherence in the case of larger families
of conditional events should be facilitated. We obtain some necessary and suf-
ficient conditions for the g-coherence of lower probability bounds. We also give
some more general results. Notice that the case of families with three conditional
events may have a specific importance, e.g., in the field of default reasoning where
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many inference rules consist of two premises and one consequence. We also recall
that coherence-based probabilistic reasoning can be reduced to standard reasoning
tasks in model-theoretic probabilistic logic, using concepts from default reason-
ing ([4]). The rest of the paper is organized as follows. In Section 2 we recall
some preliminary concepts. In Section 3 we illustrate the notions of non relevant
gain and basic set and we recall some theoretical results. In Section 4 we con-
sider several cases of families constituted by three conditional events and we give
some necessary and sufficient conditions of g-coherence. In Section 5 we give
some more general results. Finally, in Section 6 we give some conclusions and an
outlook on further developments.

2 Some preliminary concepts
For each integer n, we set Jn = {1, . . . ,n}. Given any event E, we denote by the
same symbol its indicator and by Ec its negation. Given a further event H, we de-
note by EH (resp. E∨H) the conjunction (resp. disjunction) of E and H. Let P be
a conditional probability assessment defined on a family of conditional eventsK .
Given a finite subfamily Fn = {E1|H1, . . . ,En|Hn} ⊆ K , let Pn be the vector
(p1, . . . , pn), where pi = P(Ei|Hi), i ∈ Jn. With the pair (Fn,Pn) we associate the
random quantity Gn = ∑i∈Jn siHi(Ei − pi), with s1, . . . ,sn arbitrary real numbers.
Moreover, we denote by Gn|Hn the restriction of Gn to Hn = H1 ∨·· ·∨Hn. Then,
based on the betting scheme, we have

Definition 1 The probability assessment P on K is said coherent if, for every
integer n = 1,2, . . ., for every subfamily Fn ⊆ K and for every real numbers
s1, . . . ,sn, the condition Max Gn|Hn ≥ 0 is satisfied.

We denote by An a vector (α1, . . . ,αn) of lower probability bounds on Fn. We say
that the pair (Fn,An) is associated with the set Jn.

Definition 2 The vector of lower bounds An is g-coherent iff there exists a coher-
ent probability assessment Pn = (p1, . . . , pn) on Fn such that pi ≥ αi, ∀ i ∈ Jn.

By expanding the expression
V

i∈Jn (EiHi ∨Ec
i Hi ∨Hc

i ) , we obtain the constituents
associated with Fn. We denote by C1, . . . ,Cm, where m ≤ 3n −1, the constituents
contained in Hn =

W

j∈Jn H j. A further constituent (if it is not impossible) is C0 =
H c

n = Hc
1 · · ·Hc

n .
Remark: With the family Fn we associate a set L which describe the logical
relationships among the events Ei,Hi, i ∈ Jn. Then, the set of constituents is the set
of those conjunctions χ1 · · ·χn, with χi ∈ {EiHi,Ec

i Hi,Hc
i },∀ i ∈ Jn, which satisfy

the set of logical relations L. Notice that, if L = /0, then m = 3n − 1 and C0 6= /0,
i.e. the number of constituents is 3n.

For each constituentCr,r ∈ Jm, we introduce a vectorVr = (vr1, . . . ,vrn), where
for each i ∈ Jn it is respectively vri = 1, or vri = 0, or vri = αi, according to
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whether Cr ⊆ EiHi, or Cr ⊆ Ec
i Hi, or Cr ⊆ Hc

i . With the pair (Fn,An) we associate
the random gain Gn = ∑i∈Jn siHi(Ei −αi), where si ≥ 0, ∀ i ∈ Jn. Moreover, we
denote by

gh = Gn(Vh) = ∑
i∈Jn

si(vhi −αi) = ∑
i:Ch⊆Hi

si(vhi −αi) (1)

the value of Gn|Hn associated with Ch. We denote by (Sn) the following system
in the unknowns λr’s.

∑
r∈Jm

λrvri ≥ αi, i ∈ Jn; ∑
r∈Jm

λr = 1; λr ≥ 0, ∀r ∈ Jm. (2)

Remark: The solvability of (Sn) means that there exists a non negative vector
(λr ; r ∈ Jm), with ∑r∈Jm λr = 1, such that ∑r∈Jm λrVr ≥ An. In other words, in
the convex hull of the points Vr’s there exists a point V ∗ = ∑r∈Jm λrVr such that
V ∗ ≥ An (this geometrical approach will be used in the proof of Theorem 4).

As shown in [10], a set of lower bounds A defined on K is g-coherent iff, for
every n and for every Fn ⊆ K , the system (2) is solvable. Moreover, based on a
suitable alternative theorem, it can be shown ([2]) that the solvability of system
(2) is equivalent to the following condition

Max Gn|Hn ≥ 0. (3)

Then, we have

Proposition 1 A set of lower bounds A defined on a family of conditional events
K is g-coherent iff ∀ n ,∀ Fn ⊆ K , and ∀ si ≥ 0 , i ∈ Jn , it is Max Gn|Hn ≥ 0.

We remark that, if the case of zero probability for conditioning events is dis-
carded, then to check g-coherence of the assessment An on Fn it is enough to
check solvability of system (2). However, in our coherence-based approach, some
(or possibly all) conditioning events may have zero probability. Then, to check
g-coherence we should study the solvability of a very large number of systems,
like (2). Actually, we can exploit algorithms which only check (the solvability of)
a small number of linear systems (see, e.g., [1], [2], [5]).

3 Non relevant gains and basic sets
In this section we illustrate the notions of non relevant gain and basic set. Ex-
ploiting such notions, the algorithms for g-coherence checking and propagation
of conditional probability bounds can use linear systems with reduced sets of vari-
ables and/or constraints. We recall some theoretical conditions given in [2].

Definition 3 Let G = {g j} j∈Jm be the set of possible values of the random gain
Gn|Hn. Then, a value gr ∈ G is said ”not relevant for the checking of condition
(3)”, or in short ”not relevant”, if there exists a set Tr ⊆ Jm \{r} such that:

Max {g j} j∈Tr < 0 =⇒ gr < 0 . (4)
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Remark: Notice that, in the previous definition, it wouldn’t be equivalent to use
the condition Tr = Jm \{r} instead of Tr ⊆ Jm \{r}. In fact, it may happen that (4)
holds with Tr ⊂ Jm \{r}, so that gr is not relevant, while at the same time it may
be Max {g j} j∈Jm\{r} > 0.

Definition 4 A set GΓ = {gr}r∈Γ, with Γ ⊂ Jm, is said not relevant if, ∀r ∈ Γ,
there exists a set Tr ⊆ Jm \Γ such that (4) is satisfied.

Definition 5 A set T ⊂ Jm is said basic if the following property holds:
Basic Property. For every r ∈ Jm \T there exists a set Tr ⊆ T such that the con-
dition (4) is satisfied.
A basic set T is said minimal if, for every T ⊂ T , the set T is not basic.

We observe that Max Gn|Hn = Max {g j} j∈Jm . Then, we have

Theorem 1 Let T ⊂ Jm be a basic set. Then

Max {g j} j∈Jm ≥ 0 ⇐⇒ Max {g j} j∈T ≥ 0 . (5)

Remark: We point out that, given a subset T , if there exists r /∈ T such that, for
every Tr ⊆T , the condition (3) is not satisfied, then T is not a basic set. Moreover,
we observe that the condition (5) is trivially satisfied for T = Jm. Then, as for
T = Jm the set Jm \T is empty, we can enlarge the class of basic sets by including
in it Jm too.
Given r ∈ Jm and a set Tr ⊆ Jm \{r}, let us consider the following condition

gr ≤ ∑
j∈Tr

a jg j ; a j > 0 , ∀ j ∈ Tr . (6)

By Definition 3 one has that, if the above condition is satisfied, then gr is not
relevant. The condition (6) can be exploited in general to reduce the number of
variables. The basic idea is illustrated by the following theorem ([2], [5]).

Theorem 2 Let T be a strict subset of the set Jm such that for every r /∈ T there
exists Tr ⊆ T satisfying the condition (6). Then:

Max {g j} j∈Jm ≥ 0 ⇐⇒ Max {g j} j∈T ≥ 0 . (7)

Based on the previous result and on suitable alternative theorems, in order to
check g-coherence we can replace (Sn) by an equivalent system (S T

n ), which has
a reduced vector of unknowns ΛT = (λr; r ∈ T ). We denote by ST the set of
solutions of (S T

n ). Moreover, for each j ∈ Jn, we consider the function ΦT
j (ΛT ) =

∑r∈T :Cr⊆H j λr. We denote by IT
0 the (strict) subset of Jn defined as

IT
0 = { j ∈ Jn : M j = MaxΛT ∈ST ΦT

j (ΛT ) = 0} (8)

and by (F T
0 ,AT

0 ) the pair associated with IT
0 . Then, to check g-coherence of An,

we can exploit the following result ([2]).
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Theorem 3 The imprecise assessment An on Fn is g-coherent if and only if:
1) the system (S T

n ) is solvable; 2) if IT
0 6= /0, then AT

0 is g-coherent.

Note that, if |IT
0 | = 1, say IT

0 = {h}, then AT
0 = (αh) and the g-coherence of AT

0
simply amounts to the condition: αh ≤ 1.

4 Some results on g-coherence of lower probability
bounds for families of three conditional events

In this section we will illustrate the notions of non relevant gain and basic set
by examining several examples which concern particular families of three condi-
tional events.
Remark: We recall that such kind of families may be relevant in the field of
default reasoning, where many inference rules are associated with two premises
and one conclusion. As an example, with the following basic inference rules of
System P ([15])

A |∼ B, A |∼C =⇒ A |∼ BC , (And),

A |∼C, A |∼ B =⇒ AB |∼C , (Cautious Monotonicity),

A |∼C, B |∼C =⇒ A∨B |∼C , (Or),

are associated, respectively, the following families of conditional events

{B|A, C|A, BC|A} ; {C|A, B|A, C|AB} ; {C|A, C|B, C|(A∨B)} .

We also note that the theoretical results obtained in the case n = 3 may be useful
in establishing more general results when n > 3.

In what follows, to avoid the analysis of trivial or particular cases, we assume

/0 ⊂ EiHi ⊂ Hi , 0 < αi < 1 , ∀ i .

Then, for each r ∈ Jm, as αi < 1, if vri = 1 for some i, it follows Cr ⊆ EiHi.
Let A3 = (α1,α2,α3) be a vector of lower bounds on F3 = {E1|H1,E2|H2,E3|H3}.
Given the set V = {V1, . . . ,Vm}, we define

W = {Vr ∈ V : vri 6= 0,∀ i ∈ Jn} (9)

and, for each Vr ∈ W ,
Nr = {i ∈ Jn : Cr ⊆ Hc

i } . (10)

Of course, Nr ⊂ Jn. Then, we define

Vh = {Vr ∈ W : |Nr| = h}, h = 0,1, . . . ,n−1 . (11)
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With each Vr ∈ V , r ∈ Jm, we associate the set Nr defined in (10) and the set

Mr = {i ∈ Jn : vri = 0} . (12)

Then, introducing the set I = {(h,k) : h = 0, . . . ,n− 1; k = 1, . . . ,n}, we define
the sets

Uh,k = {Vr ∈ V : |Nr| = h , |Mr| = k}, (h,k) ∈ I . (13)

We observe that, if the sets Uh,0 were defined, then recalling (11) we would have
Vh = Uh,0. Then, recalling (9), we have

V = W ∪ (
[

(h,k)∈I
Uh,k) = (

n−1
[

h=0

Vh)∪ (
[

h,k

Uh,k) . (14)

As n = 3, the set of vectors V = {V1, . . . ,Vm}, where m ≤ 26, is a subset of the set

{(1,1,1),(1,1,α3),(1,α2,1),(α1,1,1), . . . ,(α1,0,0),(0,α2,0),(0,0,α3),(0,0,0)} .

By (14), we have

V = V0 ∪V1∪V2 ∪U0,1 ∪U1,1 ∪U0,2 ∪U2,1 ∪U1,2 ∪U0,3 , (15)

where

V0 ⊆ {(1,1,1)} , V1 ⊆ {(1,1,α3),(1,α2,1),(α1,1,1)} ,

V2 ⊆ {(1,α2,α3),(α1,1,α3),(α1,α2,1)} , U0,1 ⊆ {(1,1,0),(1,0,1),(0,1,1)} ,

U1,1 ⊆ {(1,α2,0),(1,0,α3),(α1,1,0),(0,1,α3),(α1,0,1),(0,α2,1),} ,

U0,2 ⊆ {(1,0,0),(0,1,0),(0,0,1)} , U2,1 ⊆ {(α1,α2,0),(α1,0,α3),(0,α2,α3)} ,

U1,2 ⊆ {(α1,0,0),(0,α2,0),(0,0,α3)} , U0,3 ⊆ {(0,0,0)} .

Remark: Notice that each given set of logical relationships L among the events
Ei,Hi, i = 1,2,3, determines a particular representation (15) for the set of vectors
V . Then, in what follows, instead of assigning the set L, we directly assume some
hypotheses on the subsets Vh’s and Uh,k’s. We list below some sufficient condi-
tions, proved in [6], for g-coherence of the vector of lower bounds A3 on F3.
1. |V0| = 1; 2. V0 = /0 , |V1| ≥ 1; 3. V0 = V1 = /0 , |V2| ≥ 2;
4. V0 = V1 = /0, V2 = {(1,α2,α3)} , E2H2E3H3 ∨E2H2Hc

3 ∨Hc
2E3H3 6= /0 .

Some further conditions obtained in [6] are given below.
5. If V0 = V1 = /0, V2 = {(1,α2,α3)} , E2H2E3H3 = E2H2Hc

3 = Hc
2 E3H3 = /0 ,

then A3 is g-coherent iff α2 +α3 ≤ 1 .
6. V0 = V1 = V2 = /0 , α1 +α2 +α3 > 2 =⇒ A3 not g-coherent.
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7. If V0 = V1 = V2 = /0, |U0,1| = 3, αi < 1, ∀ i, then: a) there exists a basic set
T , with |T | = 3; b) A3 is g-coherent iff α1 +α2 +α3 ≤ 2.
8. If V0 = V1 = V2 = U0,1 = U1,1 = /0 , U0,2 = {(1,0,0),(0,1,0),(0,0,1))} ,
αi < 1, ∀ i, then:
a) if α1 +α2 ≤ 1, α1 +α3 ≤ 1, α2 +α3 ≤ 1, then T = {1,2,3} is a basic set;
b) A3 is g-coherent iff α1 +α2 +α3 ≤ 1.

Now we give further results concerning the case n = 3. Besides providing
a better understanding of the notions of basic set and non relevant gain, these
results permit in particular the deepening of the condition (6). In next theorem the
hypotheses concerning the set of logical relations L specify that the conjunctions

E1H1E2H2E3H3 , E1H1E2H2Hc
3 , E1H1Hc

2 E3H3 , Hc
1E2H2E3H3 ,

E1H1Hc
2Hc

3 , Hc
1E2H2Hc

3 , Hc
1Hc

2E3H3 , Ec
1H1E2H2E3H3

are impossible, while the conjunctions

E1H1E2H2Ec
3H3 , E1H1Ec

2H2E3H3 , Ec
1H1E2H2Hc

3 , Ec
1H1Hc

2 E3H3

are possible. Then, concerning the number m of unknowns in the system (S3), one
has: 4 ≤ m ≤ 18. Actually, we will use a system (S T

3 ) with only 3 or 4 unknowns.

Theorem 4 If V0 = V1 = V2 = /0, U0,1 = {V1,V2}= {(1,1,0),(1,0,1)},{V3,V4}=
{(0,1,α3),(0,α2,1)} ⊆ U1,1 , 0 < αi < 1, ∀ i, then one has:
a) for every r > 4, the gain gr is not relevant;
b) if α1 +α2 ≤ 1, or α2 +α3 ≤ 1, or α1 +α3 ≤ 1, then there exists a basic set T ,
with |T | ≤ 3, and A3 is g-coherent;
c) if α1 +α2 > 1, α2 +α3 > 1, α1 +α3 > 1, then A3 is g-coherent iff

α1α3 +α2 ≤ 1 , or α1α2 +α3 ≤ 1.

Proof. a) by the hypotheses, it follows that for each Vr ∈ V , with r > 4,
there exists h ∈ {1,2,3,4} such that Vr ≤ Vh; hence gr is not relevant. Then,
T = {1,2,3,4} is a basic set.
In order to study the g-coherence of A3, we first determine the gains associated
with the vectors V1,V2,V3,V4. Recalling (1), these gains are respectively

g1 = s1(1−α1)+ s2(1−α2)− s3α3 , g2 = s1(1−α1)− s2α2 + s3(1−α3) ,
g3 = −s1α1 + s2(1−α2) , g4 = −s1α1 + s3(1−α3) .

We also need the equations of the planes π1, π2, π3, π4, containing respectively
the triangles V1V2V3, V1V2V4, V1V3V4, V2V3V4, which are given below

π1 : α3x+ y+ z = 1+α3 ; π3 : α3(1−α2)x+(1−α3)y+(1−α2)z = 1−α2α3 ;
π2 : α2x+ y+ z = 1+α2 ; π4 : α2(1−α3)x+(1−α3)y+(1−α2)z = 1−α2α3 .
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The intersection points of the segment (x,α2,α3), 0 ≤ x ≤ 1, with the planes π1

and π2, are respectively V ∗
x = ( 1−α2

α3
,α2,α3) and V ∗∗

x = ( 1−α3
α2

,α2,α3). Moreover,

V ∗
x ≥ A3 ⇐⇒ α1α3 +α2 ≤ 1 ; V ∗∗

x ≥ A3 ⇐⇒ α1α2 +α3 ≤ 1 .

The intersection point of the segment (α1,y,α3), 0 ≤ y ≤ 1, with the plane π3 is

V ∗
y = (α1,

1−α3−α1α3(1−α2)
1−α3

, α3) ≥ A3 , ∀ α2 ∈ [0,1] .

The intersection point of the segment (α1,α2,z), 0 ≤ z ≤ 1, with the plane π4 is

V ∗
z = (α1,α2,

1−α2−α1α2(1−α3)
1−α2

) ≥ A3 , ∀ α3 ∈ [0,1] .

b.1) assume that α1 +α2 ≤ 1 and consider the set

S = {(a,b) : a ≥ 1−α2

1−α1−α2
, 1+

α2

1−α2
a ≤ b ≤ 1−α1

α1
a− 1−α1

α1
} .

We have: a > 0 , b > 0 , ag2 +bg3 ≥ g1 , ∀(a,b) ∈ S . Then, g1 is not relevant
and T = {2,3,4} is a basic set. Moreover, V ∗

z = λ2V2 +λ3V3 +λ4V4 , with

λ2 = α1 , λ3 =
α1α2

1−α2
, λ4 =

1−α1−α2

1−α2
.

We recall that 0 < αi < 1 , i = 1,2,3, so that λ2 > 0 , λ3 > 0 , λ4 ≥ 0 . Then, the
vector (λ2,λ3,λ4) is a solution of the system (S T

3 ), with |IT
0 | ≤ 1, and hence, by

Theorem 3, A3 is g-coherent.
b.2) assume that α2 +α3 ≤ 1 and consider the sets

S1 = {(a,b) : 0 < a≤ 1−α2−α3 +α2α3

1−α2−α3
,

α3

1−α3
a ≤ b ≤ 1−α2

α2
a− 1−α2

α2
} ;

S2 = {(γ,δ) : 0 < γ ≤ α2α3(1−α3)

1−α2−α3
, 1+

α3

1−α3
γ ≤ δ ≤ 1−α2

α2
γ} .

For each (a,b) ∈ S1 , (γ,δ) ∈ S2 , one has

a > 0 , b > 0 , γ > 0 , δ > 0 , ag1 +bg2 ≥ g3 , γg1 +δg2 ≥ g4 .

Then, g3 and g4 are not relevant and T = {1,2} is a basic set. Moreover, defining
V ∗ = (1,α2,1−α2) , λ1 = α2 , λ2 = 1−α2, one has

V ∗ ≥ (1,α2,α3) ≥ A3 ; V ∗ = λ1V1 +λ2V2 , λ1 > 0 , λ2 > 0 , λ1 +λ2 = 1 .

Then, the vector (λ1,λ2) is a solution of the system (S T
3 ), with IT

0 = /0, and hence,
by Theorem 3, A3 is g-coherent.
b.3) assume that α1 +α3 ≤ 1 and consider the set

S = {(a,b) : a ≥ 1−α3

1−α1−α3
, 1+

α3

1−α3
a ≤ b ≤ 1−α1

α1
a− 1−α1

α1
} .
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We have: a > 0 , b > 0 , ag1 +bg4 ≥ g2 , ∀(a,b) ∈ S . Then, g2 is not relevant
and T = {1,3,4} is a basic set. Moreover, V ∗

y = λ1V1 +λ3V3 +λ4V4 , with

λ1 = α1 > 0 , λ3 =
1− (α1 +α3)

1−α3
≥ 0 , λ4 =

α1α3

1−α3
> 0 .

Then, the vector (λ1,λ3,λ4) is a solution of the system (S T
3 ), with |IT

0 | ≤ 1, and
hence, by Theorem 3, A3 is g-coherent. Therefore, under the condition

α1 +α2 ≤ 1 , or α2 +α3 ≤ 1 , or α1 +α3 ≤ 1 ,

A3 is g-coherent.
c) assume that α1 +α2 > 1, α2 +α3 > 1, α1 +α3 > 1.
c.1) if α1α3 +α2 ≤ 1, then V ∗

x ≥ A3. Moreover, V ∗
x = λ1V1 +λ2V2 +λ3V3, with

λ1 =
(1−α2)(1−α3)

α3
> 0 , λ2 = 1−α2 > 0 , λ3 =

α2 +α3 −1
α3

> 0 .

Then, considering the basic set T = {1,2,3,4}, the vector (λ1,λ2,λ3,0) is a solu-
tion of the system (S T

3 ), with IT
0 = /0, and hence, by Theorem 3, A3 is g-coherent.

c.2) if α1α2 +α3 ≤ 1, then V ∗∗
x ≥ A3. Moreover, V ∗∗

x = λ1V1 +λ2V2 +λ4V4, with

λ1 = 1−α3 > 0 , λ2 =
(1−α2)(1−α3)

α2
> 0 , λ4 =

α2 +α3 −1
α2

> 0 .

Then, considering the basic set T = {1,2,3,4}, the vector (λ1,λ2,0,λ4) is a solu-
tion of the system (S T

3 ), with IT
0 = /0, and hence, by Theorem 3, A3 is g-coherent.

c.3) assume that α1α2 +α3 > 1, α1α3 +α2 > 1, and let us make the (absurd) hy-
pothesis that A3 were g-coherent. Then, considering the basic set T = {1,2,3,4},
the system (S T

3 ) should be solvable and hence, for suitable non negative values
λ1, . . . ,λ4, with λ1 + · · ·+λ4 = 1, defining

V ∗ = λ1V1 +λ2V2 +λ3V3 +λ4V4 = (λ1 +λ2 , λ1 +λ3 +α2λ4 , λ2 +α3λ3 +λ4) ,

it should be: V ∗ ≥ A3 , that is

λ1 +λ2 ≥ α1 ; λ1 +λ3 ≥ α2 −α2λ4 ; λ2 +λ4 ≥ α3(λ1 +λ2 +λ4) , (16)

or, equivalently

λ1 +λ2 ≥ α1 ; λ1 +λ3 ≥ α2(λ1 +λ2 +λ3) ; λ2 +λ4 ≥ α3 −α3λ3 . (17)

Then, assuming α3 −α2 ≥ 0 and recalling that α1α3 +α2 > 1, by summing the
last two inequalities in (16) we would obtain

1 ≥ α3(λ1 +λ2)+α2 +(α3 −α2)λ4 ≥ α1α3 +α2 +(α3 −α2)λ4 > 1 ,
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which is absurd. On the other hand, assuming α3 −α2 < 0 and recalling that
α1α2 +α3 > 1, by summing the last two inequalities in (17) we would obtain

1 ≥ α2(λ1 +λ2)+α3 +(α2 −α3)λ3 ≥ α1α2 +α3 +(α2 −α3)λ3 > 1 ,

which is absurd too. Hence, (S T
3 ) is not solvable and A3 is not g-coherent. 2

We observe that the hypotheses concerning the set of logical relations L can be
modified in many ways. Then, by the same reasoning as in Theorem 4, we obtain
many similar results, which we give without proof in the remaining part of this
section (the proofs of these results can be found in [6]).

Theorem 5 If V0 = V1 = V2 = /0, U0,1 = {V1,V2} = {(1,1,0),(1,0,1)},V3 =
(0,1,α3) ∈ U1,1,(0,α2,1) /∈ U1,1, αi < 1 ,∀ i, then one has:
a) for every r > 3, the gain gr is not relevant;
b) if α2 + α3 ≤ 1, then there exists a basic set T , with |T | = 2, and A3 is
g-coherent;
c) if α2 +α3 > 1, then A3 is g-coherent iff α1α3 +α2 ≤ 1.

Theorem 6 If V0 = V1 = V2 = /0, U0,1 = {V1} = {(1,1,0)},{V2,V3,V4,V5} =
{(α1,0,1),(0,α2,1),(1,0,α3),(0,1,α3)} ⊆ U1,1, αi < 1 ,∀ i, then one has:
a) for every r > 5, the gain gr is not relevant;
b) if α1 + α2 ≤ 1, then there exists a basic set T , with |T | = 4, and A3 is
g-coherent.
c) if α1 +α2 > 1, then A3 is g-coherent iff

α3 ≤ Max{α1 +α2 −2α1α2

α1 +α2−α1α2
, 1−α1 +α1α3 −α1α2α3 , 1−α1α3} .

Remark: We observe that, by suitably modifying the hypotheses in Theorems 4,
5, and 6, we obtain similar results on non relevant gains and basic sets, with fur-
ther conditions characterizing the g-coherence of the assessment A3 on F3. As an
example, by Theorem 4, still assuming V0 = V1 = V2 = /0, under the hypotheses

U0,1 = {V1,V2} = {(1,1,0),(0,1,1)}, {V3,V4}= {(1,0,α3),(α1,0,1)} ⊆ U1,1 ,

we obtain a new result, which is similar to such theorem, and so on.

Theorem 7 If V0 = V1 = V2 = U0,1 = /0, U1,1 = {V1,V2,V3,V4,V5,V6} =
{(1,α2,0),(1,0,α3),(α1,1,0),(0,1,α3),(α1,0,1),(0,α2,1))}, αi < 1, ∀ i, then one
has:
a) for every r > 6, the gain gr is not relevant;
b) if α1 +α2 ≤ 1, or α1 +α3 ≤ 1, or α2 +α3 ≤ 1, then there exists a basic set T ,
with |T | = 4, and A3 is g-coherent.
c) if α1 +α2 > 1, α1 +α3 > 1, α2 +α3 > 1, then A3 is not g-coherent.
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Theorem 8 If V0 = V1 = V2 = U0,1 = /0, U1,1 = {V1,V2,V3,V4} =
{(1,α2,0),(α1,1,0),(α1,0,1),(0,α2,1))}, αi < 1∀ i, then one has:
a) for every r > 4, the gain gr is not relevant;
b) if α1 + α3 ≤ 1, or α2 + α3 ≤ 1, then there exists a basic set T , with |T | = 2,
and A3 is g-coherent.
c) if α1 +α3 > 1, α2 +α3 > 1, then A3 is not g-coherent.

Theorem 9 If V0 = V1 = V2 = U0,1 = /0, U1,1 = {V1,V2,V3,V4} =
{(1,0,α3),(0,1,α3),(α1,1,0),(α1,0,1))}, αi < 1∀ i, then one has:
a) for every r > 4, the gain gr is not relevant;
b) if α1 + α2 ≤ 1, or α2 + α3 ≤ 1, then there exists a basic set T , with |T | = 2,
and A3 is g-coherent.
c) if α1 +α2 > 1, α2 +α3 > 1, then A3 is not g-coherent.

Theorem 10 If V0 = V1 = V2 = U0,1 = /0, U1,1 = {V1,V2,V3,V4} =
{(1,0,α3),(0,1,α3),(1,α2,0),(0,α2,1))}, αi < 1∀ i, then one has:
a) for every r > 4, the gain gr is not relevant;
b) if α1 + α2 ≤ 1, or α1 + α3 ≤ 1, then there exists a basic set T , with |T | = 2,
and A3 is g-coherent.
c) if α1 +α2 > 1, α1 +α3 > 1, then A3 is not g-coherent.

5 Some general results
In this section we give some theorems on g-coherence of a vector of lower prob-
ability bounds An defined on a family of n conditional events Fn. Notice that
detailed proofs of all theorems presented in this section are given in [6].
In the next theorem we generalize the condition 6 in Remark 4. In such theorem
the set of logical relations L specifies that the conjunctions

E1H1 · · · EnHn , E1H1 · · · En−1Hn−1Hc
n , . . . , Hc

1E2H2 · · · EnHn ,
E1H1 · · · En−2Hn−2Hc

n−1Hc
n , . . . , Hc

1Hc
2E3H3 · · · EnHn , . . . . . . ,

E1H1Hc
2 · · · Hc

n , . . . , Hc
1 · · ·Hc

n−1EnHn

are impossible. Then, under such hypotheses, the condition α1 + · · ·+αn ≤ n−1
is necessary for the g-coherence of An.

Theorem 11 If V0 = V1 = · · · = Vn−1 = /0 and α1 + · · ·+αn > n−1, then An is
not g-coherent.

In the next theorem we generalize the condition 7 given in Remark 4.

Theorem 12 If V0 = · · · = Vn−1 = /0, |U0,1| = n, 0 < αi < 1 ∀ i, then one has:
a) there exists a basic set T , with |T | = n;
b) An is g-coherent iff α1 + · · ·+αn ≤ n−1.
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We denote by Z the set defined as

Z = {(h,k) : h+ k = n−1 , h > 0} ∪ {(h,k) : h+ k < n−1} .

Then, we have

Theorem 13 If V0 = · · · = Vn−1 = /0, Uh,k = /0 for each (h,k) ∈ Z, and
α1 + · · ·+αn > 1, then An is not g-coherent.

The next result generalizes the condition 8 in Remark 4.

Theorem 14 If V0 = · · ·= Vn−1 = /0, Uh,k = /0, for each pair (h,k)∈Z, |U0,n−1|=
n, 0 < αi < 1 ∀ i, then one has:
a) if, for every j ∈ Jn, it is ∑i∈Jn\{ j}αi ≤ 1, then T = Jn is a basic set;
b) An is g-coherent iff α1 + · · ·+αn ≤ 1.

6 Conclusions
Exploiting the coherence principle of de Finetti and the related notion of g-coherence,
we illustrated a probabilistic approach to uncertain reasoning based on lower
probability bounds. We examined the notions of non relevant gain and basic set
which may be helpful, in g-coherence checking and propagation of conditional
probability bounds, to reduce the sets of variables and/or constraints in the linear
systems used in our algorithms. We observe that such notions and in particular
the condition (6), in the form gr = ∑ j∈Tr g j, have been used in ([3], Theorem 5.6)
to characterize in term of random gains an efficient procedure proposed in [16]
for families of conjunctive conditional events. To provide a better understanding
of these notions, we examined several examples of families constituted by three
conditional events. This case may have a specific importance, e.g., in default rea-
soning where many inference rules consist of two premises and one conclusion.
We obtained some necessary and sufficient conditions of g-coherence and we also
generalized some theoretical results. Further work should allow to extend the re-
sults of this paper to the case of families of n conditional events, with n > 3.
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