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Abstract

The paper gives the solution of calculating maximal variance of fuzzy inter-
val in the scope of the theory of imprecise probabilities. As it appears, this
problem is more difficult than analogous one connected with evaluation of
lower and upper expectations of fuzzy interval. This paper gives some con-
tribution to possibility theory in the framework of probability approach.
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1 Introduction
There is a well-known interpretation of fuzzy interval in the framework of the
theory of imprecise probabilities [1, 2]. To get this, we associate with any fuzzy
interval a possibility or necessity measure, and then consider that values of the
pointed measures give us lower or upper assessments of probabilities. This inter-
pretation was discussed in detail in [3], and there it is proposed to use upper and
lower expectations for evaluating uncertainty of such intervals. These character-
istics and other crude moments of order k can be easily calculated by Choquet
integral. However, to calculate upper and lower central moments is more difficult
as it is shown in investigations, presented below.

Throughout the paper we will use the following notations: 1) E [ξ] is an or-

dinary expectation of the random variable ξ, i.e. E [ξ] =
+∞
R

−∞
xdP(x), where P is a

probability measure associated with the random variable ξ; 2) σ2[ξ] is an ordinary
variance of the random variable ξ, i.e. σ2 [ξ] = E

[
ξ2]− (E [ξ])2.
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Figure 1: Membership function of a fuzzy interval

2 Basic definitions and problem statement
We will consider fuzzy intervals with a form (fig.1). The function µ is assumed
to be continuous, and the functions µ1 and µ2 are differentiable on the intervals
(a,b) and (c,d) correspondingly.

µ(x) =





0, x ≤ a or x ≥ d,
µ1(x), a < x < b,

1, b ≤ x ≤ c,
µ2(x), c < x < d.

(1)

In addition, µ1 is increasing on (a,b), µ2 is decreasing on (c,d).
In possibility theory, for each fuzzy interval, a possibility measure Π(A) =

sup
x∈A

µ(x) and a necessity measure N(A) = inf
x/∈A

[1− µ(x)] are introduced, and can

be considered as lower or upper estimation of probability of the event A ∈ ℑ
(where ℑ is Borel algebra of real axis). Taking this into account, possibility mea-
sure Π and necessity measure N define a family of probability measures Ξ =
{P |N(A) ≤ P(A) ≤ Π(A)}, and the problem arises, how to calculate digital char-
acteristics of such family, in particular, the maximal variance σ2(µ) = sup

Pi∈Ξ
σ2[ξi].

In the last expression, it is assumed that the probability measure Pi determines a
random value ξi. For the fuzzy interval, the value σ2(µ) can serve as some char-
acteristic of uncertainty.

3 The research of possibilistic inclusion
Theorem 1 [4, 5]. Let P be a probability measure, Ξ a family of probability
measures, generated by a fuzzy interval with a membership function µ. Then P∈Ξ
iff P{A(p)} ≤ p for all p ∈ [0,1], where A(p) = {x ∈ R |µ(x) ≤ p}.

Theorem 1 can be reformulated by using standard terms for random values as
follows.
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Theorem 1*. Let we use the same notations as in theorem 1, and the random
value ξ is described by the probability measure P on ℑ. Consider also a random
value η = µ(ξ) ∈ [0,1]. Then P ∈ Ξ iff Fη(y) ≤ y, where Fη(y) = P{η ≤ y).

Remark. The function Fη is a distribution function of η, whenever η is con-
tinuous.

4 The solution of the optimization problem
Theorem 2. Let ξ be a random value, described by a probability measure P ∈ Ξ,
in addition, σ2[ξ] = σ2(µ). Then we have P{(b,c)} = 0 for fuzzy interval (1).

Proof. Suppose that the coordinate system has been chosen in a way that
E[ξ] = 0. Assume also that b < 0, and the condition of the theorem is not ful-
filled, i.e. P(b,0] > 0. The theorem is valid if one can find such a measure P∗ that
P∗ ∈ Ξ and σ2[ξ∗] > σ2[ξ]. We will search the probability measure P∗ in a form:

P∗(A) =





P(A)ε,
P{b}+P(b,0](1− ε),

P(A),

A ⊆ (b,0],
A = {b},

A∩ [b,0] = /0.

It is obvious that P∗ extends on ℑ uniquely and P∗ ∈ Ξ. Calculate derivative of

σ2[ξ∗] =
+∞
Z

−∞

x2dP∗(x)−




+∞
Z

−∞

xdP∗(x)




2

w.r.t. ε at the point ε = 1. Since
+∞
R

−∞
xdP∗(x) = 0 at the point ε = 1,

d
dε
(
σ2[ξ∗]

)
ε=1 =

d
dε




+∞
Z

−∞

x2dP∗(x)




ε=1

.

Describe the last expression in detail.

+∞
Z

−∞

x2dP∗(x) =

Z

R\[b,0]

x2P(x)+b2 (P{b}+P(b,0](1− ε))+ ε
Z

(b,0]

x2dP(x).

Therefore,
d
dε
(
σ2[ξ∗]

)
ε=1 = −b2P(b,0]+

Z

(b,0]

x2dP(x) < 0.

It means that there exists ε < 1 that σ2[ξ∗] > σ2[ξ]. For the complete proof of the
theorem, we must consider also a case, where c > 0 and P[0,c) > 0.
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Corollary. Let P ∈ Ξ, σ2[ξ] = σ2(µ) as in theorem 2, in addition, E[ξ] = 0.
Then

1) P[0,c) = 0 if c > 0;
2)P(b,0) = 0 if b < 0.
Theorem 3. Let P ∈ Ξ, σ2[ξ] = σ2(µ) as in theorem 2. Then the random value

η has a distribution function Fη(y) = y.
Proof. We will assume that the coordinate system has been chosen in a way

that E[ξ] = 0. Suppose the contrary assumption, that for ξ from the theorem,
Fη(y) 6= y. The theorem will be proved, if under this condition, there exists a
random value ξ∗ associated with a probability measure P∗ ∈ Ξ for which σ2[ξ∗] >
σ2[ξ]. The random value ξ∗ will be searched for a certain α ∈ [0,1], using the
expression:

ξ∗ =

{
µ−1

1 [αFη (µ(ξ))+(1−α)µ(ξ)] ,

µ−1
2 [αFη (µ(ξ))+(1−α)µ(ξ)] ,

ξ ∈ [a,b],
ξ ∈ [c,d].

Hence, we need to find α ∈ [0,1] such that σ2[ξ∗] > σ2[ξ]. But at first, check that
ξ∗ generates the probability measure P∗ ∈ Ξ. To do this, we need to confirm that
the inequality

Fη∗(y) = P{µ(ξ∗) ≤ y} ≤ y

is valid. Actually,

η∗ = µ(ξ∗) = αFη (µ(ξ))+(1−α)µ(ξ),

Fη∗(y) = P{αFη (µ(ξ))+(1−α)µ(ξ)≤ y} .

Since Fη(y) ≤ y, then {αFη (µ(ξ))+(1−α)µ(ξ)≤ y} ⊆ {Fη (µ(ξ)) ≤ y} . There-
fore,

Fη (y) ≤ P{Fη (µ(ξ)) ≤ y} = P
{

µ(ξ) ≤ F−1
η (y)

}
= Fη

(
F−1

η (y)
)

= y.

Thus, it has been shown that P∗ ∈ Ξ. Further we will prove that σ2[ξ∗] > σ2[ξ] for
a certain α ∈ [0,1] . To do this, calculate derivative of

d
dα

σ2 [ξ∗] =
d

dα

(
E
[
(ξ∗)2

]
− (E [ξ∗])2

)
α=0

at the point α = 0. Since E [ξ∗]α=0 = E [ξ] = 0,

d
dα

σ2 [ξ∗]
∣∣∣∣
α=0

=
d

dα
E
[
(ξ∗)2

]∣∣∣∣
α=0

=

d
dα




b
Z

a

[
µ−1

1 [αFη (µ(x))+(1−α)µ(x)]
]2

dP(x)




α=0

+
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+
d

dα




d
Z

c

[
µ−1

2 [αFη (µ(x))+(1−α)µ(x)]
]2

dP(x)




α=0

.

Taking derivative w.r.t. α at the point α = 0, we get

d
dα

σ2 [ξ∗]
∣∣∣∣
α=0

=

b
Z

a

2x
d
dy

µ−1
1 (y)

∣∣∣∣
y=µ(x)

(Fη (µ(x))−µ(x))dP(x)+

+

d
Z

c

2x
d
dy

µ−1
2 (y)

∣∣∣∣
y=µ(x)

(Fη (µ(x))−µ(x))dP(x).

Analyze signs of factors stating in the integrands.
1) Fη (µ(x))−µ(x)≤ 0, in addition, since according to our supposition Fη(y) 6=

y, y ∈ [0,1], there exists a non-empty set of points, in which Fη (µ(x))−µ(x) < 0.
Since Fη is continuous, increasing function, P{Fη (µ(ξ))−µ(ξ) < 0}> 0.

2) The function µ1 is increasing on [a,b], therefore, d
dy µ−1

1 (y)
∣∣∣
y=µ(x)

> 0 if

x ∈ (a,b).
3) According to the corollary of theorem 2, P[0,c) = 0. It enables to exchange

the area of integration to (a,min{b,0}). Notice that (2x) < 0 if x is in this interval.
4) The function µ2 is decreasing on [c,d], thus, d

dy µ−1
2 (y)

∣∣∣
y=µ(x)

< 0, whenever

x ∈ (c,d).
5) According to the corollary of theorem 2, P[d,0) = 0. It enables to exchange

the area of integration to (max{c,0} ,d) in the second integral. Note that the factor
(2x) > 0 in this interval.

Analyzing signs of integrals, one can confirm that value of each of them is
non-negative; in addition, one of them is strictly positive. Hence, d

dα σ2 [ξ∗]
∣∣
α=0 >

0. It means that one can find α > 0 that σ2[ξ∗] > σ2[ξ], i.e. the supposition has
been made is wrong, and it implies Fη(y) = y.

The proved theorems enable to make some simplifying of our optimization
problem. To do this, introduce into consideration the functions

Fη1(y) = P{µ1(ξ) ≤ y |ξ ∈ [a,b]} ,Fη2(y) = P{µ2(ξ) ≤ y |ξ ∈ [c,d]} .

It is clear that η1 = µ(ξ1), η2 = µ(ξ2), and also the random value ξ1 is associated
with the probability measure P{∗|ξ ∈ [a,b]}, ξ2 with the probability measure
P{∗|ξ ∈ [c,d]}. Let P ∈ Ξ and σ2[ξ] = σ2(µ), then P{R\[a,b]∪ [c,d]} = 0, and,
using formula of composite probability, one can write:

Fη(y) = Fη1(y)P{ξ ∈ [a,b]}+Fη2(y)P{ξ ∈ [c,d]} .
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By theorem 3, Fη(y) = y. Assume that functions Fη1(y) and Fη2(y) are differen-
tiable, then the calculation of probability is transformed to Riemannian integral:

P{ξ ∈ A} = P{ξ ∈ [a,b]}
Z

µ{A∩[a,b]}

dFη1(y)+P{ξ ∈ [c,d]}
Z

µ{A∩[c,d]}

dFη2(y).

(2)

By analogy, using the expression ξ =

{
µ−1

1 (η1),ξ ∈ [a,b],

µ−1
2 (η2),ξ ∈ [c,d],

one can write the

formula for calculating moments:

E
[
ξk
]

= P{ξ ∈ [a,b]}
1

Z

0

[
µ−1

1 (y)
]k

dFη1(y)+P{ξ ∈ [c,d]}
1

Z

0

[
µ−1

2 (y)
]k

dFη2(y).

Introduce the following notations:

h1(y) = P{ξ ∈ [a,b]}F ′
η1

(y), h2(y) = P{ξ ∈ [c,d]}F ′
η2

(y).

Then

E
[
ξk
]

=

1
Z

0

[
µ−1

1 (y)
]k

h1(y)dy+

1
Z

0

[
µ−1

2 (y)
]k

h2(y)dy. (3)

It is clear, that functions h1, h2 have to be non-negative in [0,1], in addition,
h1(y)+h2(y) = 1 by theorem 3.

Theorem 4. Let ξ be associated with a probability measure P, P ∈ Ξ, σ2[ξ] =

σ2(µ), E[ξ] = 0, and E
[
ξk
]

is calculated by formula (3). In addition, functions
h1, h2 are piecewise continuous. Then in the range of hi continuity the following
formula is valid:

h1(y) =

{
1,
∣∣µ−1

1 (y)
∣∣>
∣∣µ−1

2 (y)
∣∣ ,

0,
∣∣µ−1

1 (y)
∣∣<
∣∣µ−1

2 (y)
∣∣ , h2(y) = 1−h1(y). (4)

Proof. Assume, on the contrary, that the condition of the theorem takes place,
but formula (4) is not valid at least for one point of hi(y) continuity. The theorem is
valid if, for this case, we can find a random value ξ∗, associated with a probability
measure P∗ ∈ Ξ such that σ2[ξ∗] > σ2[ξ]. To do this, introduce into consideration
the following functions:

g1(y) =





1,
0,

h1(y),

∣∣µ−1
1 (y)

∣∣>
∣∣µ−1

2 (y)
∣∣ ,∣∣µ−1

1 (y)
∣∣<
∣∣µ−1

2 (y)
∣∣ ,∣∣µ−1

1 (y)
∣∣=
∣∣µ−1

2 (y)
∣∣ ,

g2(y) = 1−g1(y),

and also

h∗1(y) = g1(y)α+h1(y)(1−α), h∗2(y) = g2(y)α+h2(y)(1−α), y ∈ [0,1].
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It is assumed that functions h∗1, h∗2 generate the probability distribution of ξ∗ by
the formula:

P{ξ∗ ∈ A}=

Z

µ{A∩[a,b]}

h∗1(y)dy+

Z

µ{A∩[c,d]}

h∗2(y)dy.

It is clear that the last formula is an analog of formula (2), and the random value
ξ∗ generates the probability measure P∗ ∈ Ξ for all values α ∈ [0,1]. Calculate
derivative of d

dα σ2 [ξ∗] = d
dα

(
E
[
(ξ∗)2

]
− (E [ξ∗])2

)
α=0

at the point α = 0. Since

E [ξ∗] = 0 for α = 0, we get d
dα σ2 [ξ∗]

∣∣
α=0 = d

dα E
[
(ξ∗)2

]∣∣∣
α=0

. Then

d
dα

E
[
(ξ∗)2

]
=

d
dα

1
Z

0

[
µ−1

1 (y)
]2

[g1(y)α+h1(y)(1−α)]dy+

+
d

dα

1
Z

0

[
µ−1

2 (y)
]2

[g2(y)α+h2(y)(1−α)]dy =

=

1
Z

0

[
µ−1

1 (y)
]2

[g1(y)−h1(y)]dy+

1
Z

0

[
µ−1

2 (y)
]2

[g2(y)−h2(y)]dy.

Since g1(y)−h1(y) = h2(y)−g2(y), we get at last

d
dα

σ2 [ξ∗]
∣∣∣∣
α=0

=

1
Z

0

([
µ−1

1 (y)
]2 −

[
µ−1

2 (y)
]2)

[g1(y)−h1(y)]dy.

Analyze signs of integrands factors.
1) Let g1(y) > h1(y), then g1(y) = 1, i.e. µ−1

1 (y) > µ−1
2 (y) by formula (4).

2) Let g1(y) < h1(y), then g1(y) = 0. i.e. µ−1
1 (y) < µ−1

2 (y) by formula (4).
From this, one can make a conclusion that the integrand on [0,1] is non-

negative. In addition, by our assumption, there is a point in the range of h1(y)
continuity such that g1(y) 6= h1(y). It implies d

dα σ2 [ξ∗]
∣∣
α=0 > 0. It means, there

is a point α > 0 such that σ2[ξ∗] > σ2[ξ], i.e. the assumption made is wrong. It
proves the theorem in the whole.

Theorem 5. Let a set {ξi} of random values with maximal variance σ2[ξi] =

σ2(µ), E[ξi] = 0, be in a fuzzy interval F with the membership function µ. Then
there is a random value ξ∗ = {ξi} such that

h∗1(y) =





1,
∣∣µ−1

1 (y)
∣∣>
∣∣µ−1

2 (y)
∣∣ ,

0,
∣∣µ−1

1 (y)
∣∣<
∣∣µ−1

2 (y)
∣∣ ,

α,
∣∣µ−1

1 (y)
∣∣=
∣∣µ−1

2 (y)
∣∣ ,

h∗2(y) = 1−h∗1(y), α ∈ [0,1].
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Proof. By theorem 4, the set {ξi} includes a random value ξ such that

h1(y) =

{
1,
∣∣µ−1

1 (y)
∣∣>
∣∣µ−1

2 (y)
∣∣ ,

0,
∣∣µ−1

1 (y)
∣∣<
∣∣µ−1

2 (y)
∣∣ , h2(y) = 1−h1(y).

Denote A =
{

y ∈ [0,1]|
∣∣µ−1

1 (y)
∣∣=
∣∣µ−1

2 (y)
∣∣}. For the random value ξ∗, choose

parameter α ∈ [0,1] as follows. Under the condition, E [ξ] = E [ξ∗] = 0, in addi-
tion, hi(y) = h∗i (y) if y ∈ Ā. Therefore,

E [ξ∗]−E [ξ] =
Z

A

µ−1
1 (y)h1(y)dy+

Z

A

µ−1
2 (y)h2(y)dy−

−




Z

A

µ−1
1 (y)h∗1(y)dy+

Z

A

µ−1
2 (y)h∗2(y)dy


 .

For y ∈ A, µ−1
1 (y) = −µ−1

2 (y), thus,
Z

A

µ−1
1 (y)h1(y)dy+

Z

A

µ−1
2 (y)h2(y)dy =

=

Z

A

µ−1
1 (y)(h1(y)−h2(y))dy = β

Z

A

µ−1
1 (y)dy,

where β ∈ [0,1]. The last equality is obtained with the help of mean-value theo-
rem. By analogy,

Z

A

µ−1
1 (y)h∗1(y)dy+

Z

A

µ−1
2 (y)h∗2(y)dy =

=
Z

A

µ−1
1 (y)(h∗1(y)−h∗2(y))dy = (2α−1)

Z

A

µ−1
1 (y)dy.

Thus, E [ξ] = E [ξ∗] = 0 if β = 2α−1. Let us show that σ2[ξ∗] = σ2[ξ] in this case.
Actually,

σ2 [ξ]−σ2 [ξ∗] = E
[
ξ2]−E

[
(ξ∗)2

]
=

−




Z

A

[
µ−1

1 (y)
]2

h∗1(y)dy+
Z

A

[
µ−1

2 (y)
]2

h∗2(y)dy


=

=

Z

A

[
µ−1

1 (y)
]2

dy−
Z

A

[
µ−1

2 (y)
]2

dy = 0.

The theorem is proved.



Bronevich: The Maximal Variance of Fuzzy Interval 85

5 The practical calculation of maximal variance
Theorem 6. Let the function µ−1

1 + µ−1
2 be increasing. Then functions hi for cal-

culating the maximal variance have a form:

h1(y) =

{
1,y < α,
0,y > α,

h2(y) = 1−h1(y), y,α ∈ [0,1]. (5)

Proof. Let ξ be associated with a probability measure P ∈ Ξ and σ2[ξi] =

σ2(µ). Suppose that E[ξ] = m, then by theorem 4,

h1(y) =

{
1,
∣∣µ−1

1 (y)−m
∣∣>
∣∣µ−1

2 (y)−m
∣∣ ,

0,
∣∣µ−1

1 (y)−m
∣∣<
∣∣µ−1

2 (y)−m
∣∣ .

Thus, we need to solve the inequality,
∣∣µ−1

1 (y)−m
∣∣>
∣∣µ−1

2 (y)−m
∣∣. One can con-

sider that µ−1
1 (y)−m < 0 and µ−1

2 (y)−m > 0 (see corollary of theorem 2). There-
fore, the last inequality is transformed to a form:

µ−1
1 (y)+µ−1

2 (y) < 2m.

Let the number 2m belong to the range of values of the function µ−1
1 +µ−1

2 , g be
an inverse function to this median, then, since g is increasing function, we get
that y < g(2m) = α. The cases, where 2m does not belong to the range of median
values, are also described by formula (5).

Corollaries of theorem 6. Let we use notations of theorem 6. Then

1) h1(y) =

{
1,µ−1

1 (y)+µ−1
2 (y) < 0,

0,µ−1
1 (y)+µ−1

2 (y) > 0,
h2(y) = 1−h1(y), if E[ξ] = 0.

2) Let the function µ−1
1 + µ−1

2 be increasing on [0,1], then there is a certain

α ∈ [0,1] such that h1(y) =

{
1,y > α,
0,y < α,

h2(y) = 1−h1(y), y,α ∈ [0,1].

Theorem 7. Let ξ belong to a fuzzy interval F with a membership function µ
and σ2[ξ] = σ2(µ). Then E[ξ] ∈

{
µ−1

1 (y)+µ−1
2 (y) |y ∈ [0,1]

}
.

Proof. Assume that the condition of the theorem is not satisfied. Then, using
corollary 1 of theorem 6, we get that either h1(y)≡ 1 or h2(y)≡ 1. For the sake of
determinacy, let E[ξ] = 0. 1) Let h1(y) ≡ 1, then E[ξ] < b. It means that P[0,c) >
0, but this contradicts to the corollary of theorem 2. 2) Let h2(y)≡ 1, then E[ξ] > c.
It means that P(b,0] > 0, but this contradicts to the corollary of theorem 2. The
contradictions found prove the truth of the theorem.

Corollary. Let a fuzzy interval F be symmetric, i.e. µ−1
1 (y)+µ−1

2 (y) = const,

and, for the sake of determinacy, const = 0. Then σ2(µ) =
1
R

0

[
µ−1

1 (y)
]2

dy.

Proof. According to theorem 7, for ξ with maximal variance, the value E[ξ]
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belongs to the range of µ−1
1 +µ−1

2 values, i.e. E[ξ] = const = 0. Therefore,

σ2 [ξ] =

1
Z

0

[
µ−1

1 (y)
]2

h1(y)dy+

1
Z

0

[
µ−1

2 (y)
]2

h2(y)dy.

Since
[
µ−1

1 (y)
]2

=
[
µ−1

2 (y)
]2

and h1(y)+h2(y) = 1, we get σ2 [ξ] =
1
R

0

[
µ−1

1 (y)
]2

dy.

The corollary is proved.
Theorem 8. Let functions hi(y) in the formula (3) for calculating maximal

variance have a form:

h1(y) =

{
1,y < α,
0,y > α,

h2(y) = 1−h1(y), y,α ∈ [0,1]. (6)

Then α can be found from the equality:

µ−1
1 (α)+µ−1

2 (α)

2
+

α
Z

0

[
µ−1

2 (y)−µ−1
1 (y)

]
dy− 1

2

1
Z

0

[
µ−1

2 (y)−µ−1
1 (y)

]
dy = 0,

(7)

if the coordinate system is chosen such that
1
R

0

[
µ−1

2 (y)+µ−1
1 (y)

]
dy = 0. There is

a unique solution if the function µ−1
1 +µ−1

2 is increasing.
Proof. Let the functions hi have a form (6). Then

σ2 [µ] = E
[
ξ2]−E2 [ξ] =

α
Z

0

[
µ−1

1 (y)
]2

h1(y)dy+

+

1
Z

α

[
µ−1

2 (y)
]2

h2(y)dy−




α
Z

0

µ−1
1 (y)dy+

1
Z

α

µ−1
2 (y)dy




2

.

Taking derivative w.r.t. α and using the necessity condition for extremum, we get
the equality:

[
µ−1

1 (α)
]2−

[
µ−1

2 (α)
]2−2

[
µ−1

1 (α)−µ−1
2 (α)

]



α
Z

0

µ−1
1 (y)dy+

1
Z

α

µ−1
2 (y)dy


= 0.

Since α < 1 and µ−1
1 (α)−µ−1

2 (α) < 0, then we can reduce this factor. As result,

µ−1
1 (α)+µ−1

2 (α)−2




α
Z

0

µ−1
1 (y)dy+

1
Z

α

µ−1
2 (y)dy


= 0. (8)
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Transform the expression:

2




α
Z

0

µ−1
1 (y)dy+

1
Z

α

µ−1
2 (y)dy


=

α
Z

0

µ−1
1 (y)dy−

α
Z

0

µ−1
2 (y)dy+

1
Z

0

µ−1
2 (y)dy

+

1
Z

0

µ−1
1 (y)dy−

1
Z

α

µ−1
1 (y)dy++

1
Z

α

µ−1
2 (y)dy =




1
Z

α

[
µ−1

2 (y)−µ−1
1 (y)

]
dy−

−
α

Z

0

[
µ−1

2 (y)−µ−1
1 (y)

]
dy


+

1
Z

0

[
µ−1

2 (y)+µ−1
1 (y)

]
dy.

By the supposition,
1
R

0

[
µ−1

2 (y)+µ−1
1 (y)

]
dy = 0, in addition, the first item in the

last expression can be transformed to a form:

1
Z

0

[
µ−1

2 (y)−µ−1
1 (y)

]
dy−2

α
Z

0

[
µ−1

2 (y)−µ−1
1 (y)

]
dy.

Taking this into account, the equality (8) is written as follows:

µ−1
1 (α)+µ−1

2 (α)+2
α

Z

0

[
µ−1

2 (y)−µ−1
1 (y)

]
dy−−

1
Z

0

[
µ−1

2 (y)−µ−1
1 (y)

]
dy = 0,

(9)
i.e. we really prove the truth of equation (7).

Denote the left part of equation (9) by f (α). Let the function µ−1
1 + µ−1

2 be

increasing, then, since by supposition
1
R

0

[
µ−1

2 (y)+µ−1
1 (y)

]
dy = 0, it is obvious

that µ−1
1 (0)+µ−1

2 (0) ≤ 0 and µ−1
1 (1)+µ−1

2 (1) ≥ 0. Taking this into our account,
analyze signs of f (α) at the ends of [0,1]:

f (0) = µ−1
1 (0)+µ−1

2 (0)−S,

f (1) = µ−1
1 (1)+µ−1

2 (1)+S,

where S is an area of the fuzzy interval. Therefore, f (0) < 0 and f (1) > 0, i.e. the
equation has at least one root. Analyze the sign of

f ′(α) =
d

dα
[
µ−1

1 (α)+µ−1
2 (α)

]
+2
[
µ−1

2 (α)−µ−1
1 (α)

]
.

It is obvious, that f ′(α) > 0 for α∈ [0,1]. Thus, the equality f (α) = 0 has only one
root, and this root is a point of maximum (you should remind, that for obtaining
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equality (8), we reduce the expression by the negative factor
(
µ−1

1 (α)−µ−1
2 (α)

)
).

Thus, the theorem is proved in the whole.
Remarks.
1) Theorem 8 is easily generalized for the case, where

h1(y) =

{
1,y > α,
0,y < α,

h2(y) = 1−h1(y), y,α ∈ [0,1],

and the function µ−1
1 + µ−1

2 is decreasing. In this case α can be found from the
equation:

µ−1
1 (α)+µ−1

2 (α)

2
−

α
Z

0

[
µ−1

2 (y)−µ−1
1 (y)

]
dy+

1
2

1
Z

0

[
µ−1

2 (y)−µ−1
1 (y)

]
dy = 0.

We also suppose that
1
R

0

[
µ−1

2 (y)+µ−1
1 (y)

]
dy = 0.

2) The equation (7) has a geometrical interpretation (fig. 2).

a b c d

1

x

µ1
-1(y)

y

µ2
-1(y)

0.5[µ1
−1(y)+µ2

−1(y)]

α

Figure 2: Fuzzy interval: inverse functions

a) 0.5(µ−1
1 +µ−1

2 ) is the median of the fuzzy interval;

b)
1
R

0

[
µ−1

2 (y)−µ−1
1 (y)

]
dy is the area of the fuzzy interval;

c)
α
R

0

[
µ−1

2 (y)−µ−1
1 (y)

]
dy is the area of the part of the fuzzy interval that is

below of α level ;
d) µ−1

2 (α)−µ−1
1 (α) is the length of the level line y = α for the fuzzy interval.

3) Introduce into consideration functions

m(y) =
µ−1

1 (y)+µ−1
2 (y)

2
, w(y) =

µ−1
2 (y)−µ−1

1 (y)
2

, F(α) =

α
Z

0

[
w(y)+

m′(y)
2

]
dy.

Then equation (7) can be transformed to a form:

2F(α)−F(1) = 0. (7∗)
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Example. Consider, how to calculate the maximal variance for the fuzzy inter-
val having a form of trapezium (fig. 3). In this case, the functions m, w are linear.

A

B C

D

y

x

m(y)

0.5

Figure 3: Fuzzy interval with a form of trapezium

We assume that m is increasing and
1
R

0
m(y)dy = 0. In this case, one can easily

show that m(y) = k(y− 0.5), where k > 0. The function w is expressed through
lengths of the trapezium sides l1 = |BC| and l2 = |AD|. Since w(0) = 0.5l2 and
w(1) = 0.5l1, then w(y) = 0.5[l2− (l2− l1)y]. The parameter α can be found from
equation (7*). Then F(α) = 0.5(k+ l2)α−0.25(l2− l1)α2 , and we need to solve
the equation:

(l2 − l1)α2 −2(k + l2)α+
l1 + l2 +2k

2
= 0.

Solving it, we get

α =

(k + l2)−
√

0.5
[
(k + l2)

2 +(k + l1)
2
]

l2 − l1
,

in addition, α ∈ [0,1]. The precise value of σ2(µ) can be calculated by formula
(3). Namely, according to the form of h1,h2 we can write

σ2(µ) =

α
Z

0

[
µ−1

1 (y)
]2

dy+

1
Z

α

[
µ−1

2 (y)
]2

dy−




α
Z

0

µ−1
1 (y)dy+

1
Z

α

µ−1
2 (y)dy




2

,

where
µ−1

1 (y) = [k +0.5(l2− l1)](y−0.5)−0.25(l2 + l1),

µ−1
2 (y) = [k−0.5(l2− l1)](y−0.5)+0.25(l2 + l1).

Let l1 = 1, l2 = 3, k = 0.5, then α = 0.404, σ2(µ) = 1.342. Fig. 4 shows this fuzzy
interval, and probability distribution function F of the extreme random value ξ,
being in the fuzzy interval, for which σ2(µ) = σ2 [ξ].
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µ x( )

F x( )

x

2 1 0 1 2

0

1

Figure 4: Numerical example
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