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Abstract

We analyze communication of uncertainty among individuals as a function of
the parties’ preference for modes of communication. We assume that differ-
ent individuals may prefer precise Numerical probabilities, Ranges of proba-
bilities or Verbal descriptions of probabilities, and consider all possible pair-
ings of communicators and receivers under this classification. We propose
a general criterion of optimal conversion among the various modalities, de-
scribe several instantiations tailored to fit the special features of the various
modalities, and illustrate the efficacy of the proposed procedures with empir-
ical results from several experiments.
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1 Introduction
Consider a situation where two individuals communicate about stochastic events.
The two are equally interested and motivated to communicate as efficiently and
precisely as possible. This paper is concerned with procedures that can be em-
ployed to address the individuals’ different preferences for modality of commu-
nicating probabilistic opinions. Although many decision analysts and orthodox
Bayesians consider precise numerical probabilities to be the language of uncer-
tainty, many people (layman and experts, alike) prefer to use probability phrases
(e.g. review by Budescu and Wallsten [6]) or other imprecise variants of probabil-
ity. In this paper we propose ways to achieve the highest possible level of accuracy
in communication while accommodating these individual preferences.
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1.1 Reasons for preferences of specific communication modes
Spontaneous preferences for one particular mode may be due to several factors:

The perceived nature of the uncertainty to be communicated–Budescu and
Wallsten [6] have speculated, and Olson and Budescu [14] have documented em-
pirically that most individuals prefer to use precise numerical estimates to com-
municate uncertainty about repeated events with aleatory uncertainty, but tend
to use more imprecise methods when communicating the probabilities of unique
events with epistemic uncertainty.

The perceived strength of the available information–The responses to the sur-
vey conducted by Wallsten, Budescu, Zwick, and Kemp [18], indicate that people
would gravitate towards more precise modes of communication, if they perceive
the available information to be firmer, reliable and valid.

The person’s role in the communication–In the same survey Wallsten et al.
[18] have found that most people prefer to use imprecise terms when they com-
municate to others, but prefer others to communicate to them in precise terms, if
possible (see also, Brun and Teigen [2] and Erev and Cohen [8]).

In addition to these systematic factors, preferences may be due to plain in-
dividual differences that reflect one’s lifetime experiences in dealing with, and
communicating, uncertainties.

1.2 The problem
The need to communicate probabilities arises in a variety of situations. A common
case is when both individuals have prior opinions, have access to some relevant
(possibly overlapping) information, and wish to exchange information to further
refine their respective estimates. In this symmetric case the designation of commu-
nicator and receiver is arbitrary, as the two individuals can act in both capacities.
For example, think of two friends who talk about the chances of their favorite team
to win a game. The other prototypical case involves asymmetric communication:
only one individual, the Forecaster (F for short), has access to, or possesses the
necessary expertise to make sense of, the relevant information for the probability
estimation. The second individual, the Decision Maker (or DM) needs to make a
choice or decision on the basis of the F’s estimate, and without the benefit of his,
or her, own probability assessment. For example, think of an investor (the DM)
who gets from his, or her, favorite financial advisor estimates of the likelihood
that certain investment policies will succeed.

The two situations are similar in many respects but the former is more com-
plex because a complete analysis should take into account the processes that gov-
ern the combination of one’s own opinions with estimates obtained form oth-
ers (Yaniv and Kleinberger [19]). To simplify the analysis, we will focus on the
second case. In the same spirit, we will not consider the case where one needs
to aggregate multiple forecasts from various sources (Budescu, Rantilla, Yu and



Budescu & Karelitz: Inter-personal Communication of Probabilities 93

Karelitz [5], Wallsten, Budescu and Tsao [17]).
To summarize, we analyze an asymmetric dyadic communication situation

where one F and one DM share a common interest in optimizing communication,
but they may have different preferences for modality of communicating proba-
bilistic opinions.

1.3 A typology of communication preferences in a dyad
We distinguish between three modes of communication: precise (point) Numerical
probability estimates (e.g., 0.45), precise Ranges of numerical values (e.g., 0.3 -
0.55), and Verbal phrases (e.g., good chance). Ranges with precise end points ex-
clude implicit vague ranges such as ”in the forties” or ”at least 0.80”, but such
expressions can be analyzed as verbal terms.

The three modes can be ranked from the most precise (N) to the most vague
(V). In fact, the more precise modes can be represented as special cases of the
more vague modes: clearly an N is an R where the lower and upper limit coincide,
and we will show later how N and R can be viewed as special cases of V under
a particular representation of the probability phrases. This typology implies 9
distinct dyadic patterns of dyadic preferences for modes of communication that
will be denoted by ordered pairs, where the first character in the pair refers to the
F’s preference.

2 The translation process
The problem we wish to address is deceptively simple – How to best convert a
judgment originally expressed in the F’s favorite response mode (N, R or V), to
an estimate in the DM’s favorite mode (N, R or V).

The criterion of optimality is the level of (dis)similarity between the F’s judg-
ments translated into the DM’s favorite mode, and the DM’s spontaneous (and
independent) judgments of the same events in his, or her, favorite mode. For ex-
ample, assume that the F prefers numbers and the DM prefers verbal terms (i.e.,
an [N,V] dyad). If both had the same prior probability distribution and could ac-
cess the same information pertaining to the target event, Xi, their spontaneous and
independent judgments would be nF(Xi), and vDM(Xi), respectively.

Any mapping of the F’s spontaneous judgment into the DM’s favorite commu-
nication mode is a translation. For example, vDM [nF(Xi)] is the verbal translation
of the F’s original numerical judgments. An optimal translation is one that maxi-
mizes the similarity between the translation of the F’s term into the DM’s favorite
mode, and the DM’s spontaneous judgment of the target event (assuming he/she
has the same priors and could access the same information).

Note that (dis)similarity is measured in the scale of the target modality (i.e.,
the one that is favored by the DM), so it always relies on commeasurable units or



94 ISIPTA ’03

entities. On the other hand, these entities vary as a function of the DM’s favorite
modality. Next we describe some sensible choices for the dissimilarity metrics.
Our goal in this paper is to provide a general framework for the translation process
and illustrate the feasibility of the approach. We make no claim of optimality, or
uniqueness on behalf of these choices, and realize that other metrics could be used
in this context.

Dissimilarity between two numbers, nDM and nF , is defined as the distance
between them:

DSn{nDM,nF} = |nDM −nF |. (1)

Dissimilarity between two ranges, rDM and rF , is a function of their respective
lengths, and their overlap. Consider two ranges, r1 (ranging from l1 to u1) and
r2 (from l2 to u2). The width of the range over which the two overlap is OV12 =
Max{0, [Min(u1,u2)−Max(l1, l2)]}, and the joint range of values they span is
JR12 = [Max(u1,u2)−Min(l1, l2)]. We define the dissimilarity between the two
ranges as:

DSr{rDM ,rF} = JRDM,F −OVDM,F . (2)

This measure is zero if, and only if, the two ranges coincide. For any pair of
ranges, rDM and rF , the index is maximal when they are disjoint.

Dissimilarity between two verbal terms, vDM and vF , is defined in the con-
text of a particular representation of such phrases. Wallsten, Budescu, Rapoport,
Zwick, and Forsyth [16] suggested that probability phrases are fuzzy concepts and
proposed using Membership Functions (MFs) over the [0,1] probability interval
to represent their vague meanings (see Zadeh [20]). A phrase’s MF assigns to each
probability a real number that represents the (non-negative) degree of its member-
ship in the concept defined by the phrase. These values are scaled between 0 and
1 (Norwich and Turksen [13]), such that memberships of 0 denote probabilities
that are absolutely not in the concept and memberships of 1 denote elements that
are perfect exemplars of the concept. All other positive values represent interme-
diate degrees of membership. MFs can be estimated directly (non-parametrically)
based on the participants’ direct or indirect judgments (see Budescu and Wall-
sten [6], Wallsten et al. [16]). Alternatively, one can fit MF using specific families
of functions, such as polynomials (Budescu, Karelitz and Wallsten [4]), or trape-
zoidal functions.

Let µvDM (p) and µvF (p) be the MFs representing the two words being com-
pared. The similarity between the two words should reflect the closeness between
their respective MFs. There are many possible single-valued indices of closeness
between the two functions (see review by Zwick, Carlstein, and Budescu [21]),
and we will only list two of them here (these are not necessarily monotonically re-
lated). The first measure is the total absolute distance between the two functions.
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Formally, we can write1:

DSvµ{vDM,vF} =
Z 1

p=0
|µvDM (p)−µvF (p)|dp. (3)

The second index is the distance between the peaks of the two functions. Assume
that both µvDM (p) and µvF (p) are single peaked (see Budescu and Wallsten [6] on
this point). Let π(v) be the probability (or the center of the range of probabili-
ties) at which the function µv(p) reaches its maximal value. We define, a second
measure of dissimilarity as:

DSvπ{vDM,vF} = |π(vDM)−π(vF)|. (4)

2.1 General comments on the measures of dissimilarity
The various measures may appear at first glance to be unrelated and, somewhat
arbitrary, so a few comments and clarifications are in order. First, we should point
out that all the dissimilarity indices are distances. In all cases they assign to every
pair of (N,R or V) judgments a non-negative real number (DS = 0 only if the
two members of the pair are identical). The measures are symmetric, satisfy the
triangle inequality and induce a weak order over all pairs.

One could invoke other metrics for these comparisons. A particularly elegant
approach would be to use the same metric for all modalities. Technically, this
is feasible since numbers can be represented by point MFs (membership of 0
everywhere, and 1 for the chosen number) and ranges can be represented by flat
MFs (membership of 0 everywhere outside, and 1 everywhere within the chosen
range), and treated in the same fashion as the MFs obtained for verbal terms.
However, we believe that the metrics identified above are better suited for our
purposes because they are more in line with the particular level of (im)precision
implied by the three modalities.

The last comment is subtler. Our definition of similarity relies on a counter-
factual scenario that gives rise to a hypothetical entity - the DM’s spontaneous
judgment of the target event if he, or she, had the same prior probability distri-
bution and could access the same information that was used by the F as a ba-
sis for his/her judgment. Strictly speaking, this definition is meaningful only in
those cases where it makes sense to assume that a person’s judgment depends only
on the specific information presented. This implies that the relevant information
is unambiguous and does not lend itself to different (subjective) interpretations.
In other words, the observed variability among probabilities assigned to a target
event by different individuals can be attributed solely to different response styles
and/or random factors within the judges. This formulation makes perfect sense

1In most empirical applications the MFs are approximated by a set of n points over [0,1], so a
discrete version of this measure can be used to approximate it.
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for repeatable and exchangeable events, but not for unique events where subjec-
tive probabilities rely on internal epistemic uncertainty that can vary systemati-
cally across individuals. (Ariely, Au, Bender, Budescu, Dietz, Gu, Wallsten and
Zauberman [1] and Wallsten, Budescu, Erev and Diederich [15], discuss various
facets of this key distinction).

For example, it is quite unlikely that if we were to present anti-smoking ac-
tivists and tobacco lobbyists with the results of a new study on the effects of
second-hand smoking, they would agree in their estimation of the probabilities
that second-hand smoking has serious public health consequences. The differ-
ences between their estimates would reflect (a) their different prior probabilities,
and (b) their differential assessment of the quality, reliability and validity of the
new data. Clearly, no translation method can be expected to reconcile disagree-
ments of this type. Despite these irreconcilable differences in their opinions, we
can still take advantage of optimal translation schemes derived for various pairs
of communicators based on their judgments of a standard set of exchangeable
events. When these translation methods are applied they can reduce the effect of
other sources of variability among the participants and provide the most accurate
representation of the F’s assessment in the DM’s favorite communication mode,
where accuracy is measured by one of the dissimilarity metrics discussed above.

2.2 Methods of translation
We return now to our original question: how to best convert a judgment originally
expressed in the F’s favorite response mode (N, R or V), to an estimate in the
DM’s favorite mode (N, R or V). Before we discuss translation schemes for each
of the 9 cases, it makes sense to classify them into three distinct groups:

Common modalities - In three cases ([N,N], [R,R] and [V,V]) both individuals
share a common preference for mode of communication, so there is no need to
worry about differential precision. Conversions may be employed to account for
inter-personal differences in the way the relevant terms are chosen and used.

Resolving vagueness - In three cases ([R,N], [V,R] and [V,N]) the DM prefers
a more precise mode of communication than the F. Thus, the challenge is to find a
translation that resolves the vagueness implicit in the F’s judgment to achieve the
higher level of precision required by the DM.

Imputing vagueness - In the other three cases ([N,R], [N,V] and [R,V]) the
DM prefers a more vague mode of communication than the F. Thus, the challenge
is to find a translation that replaces the precision implicit in the F’s judgment to
reflect the higher level of vagueness expected by the DM.

We will discuss the three classes separately. In each case we describe and
justify a translation method designed to optimize our stated goal and, when ap-
propriate, we review and discuss relevant results from several empirical studies
that are described in the next section.
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2.3 The data
Over the last two years we have conducted four experiments designed to test the
efficacy and accuracy of various translation methods of probability phrases (V).
The studies vary in many specific details (Budescu and Karelitz [3] and Kare-
litz and Budescu [11]) but they share a set of common features that allow us to
analyze some of their results jointly. The focus on the N and V responses is nei-
ther accidental, nor arbitrary. Subjects rarely communicate their probabilities by
means of ranges even when offered the opportunity (e.g. references in Budescu
and Wallsten [6]). For example, in one of the studies analyzed below when this
option was present, it was used in less that 7.5% of the cases. Thus, we will not
present any empirical results concerning translations involving Rs.

The four studies involved a total of 128 individuals (all students at the Univer-
sity of Illinois in Urbana Champaign, and most of them native English speakers2).
All the experiments were computer controlled, and included the following three
tasks: (1) Selection of a personal verbal probability lexicon including 5-11 phrases
(In a few cases some, or all, the phrases were selected by the experimenters based
on previous research); (2) Elicitation of MFs for all the phrases; and (3) Numerical
and verbal estimation of probabilities of a common set of events.

Subjects created their lists by selecting combinations of words and semantic
operators (modifiers, intensifiers, etc.) from two lists, or typing in phrases. They
were instructed to select phrases that span the whole probability range, and they
tend to use regularly. Membership functions were elicited using a method vali-
dated by Budescu et al. [4]. Each phrase was presented with a set of eleven proba-
bilities ranging from 0 to 1 in increments of 0.1. The subjects judged the degree to
which the target phrase captured the intended meaning of each of the eleven nu-
merical probabilities by using a bounded scale, anchored by the terms ’not at all’
and ’absolutely’. In the last task, the participants saw a series of circular, partially
shaded, targets. Their task was to assess the likelihood that a dart, aimed at the
center of the target, would hit the shaded area. The shaded areas varied from one
trial to another and covered the full (0,1) range. On separate presentations these
probabilities were judged numerically (by selecting one value from a list of 21
probabilities, ranging from 0 to 1 in increments of 0.05), or verbally by selecting
(in some cases up to four) phrases from their lexicons.

2.4 Common modalities
[N,N] This is the ”gold standard” case of Bayesian decision analysis. Pre-
sumably numbers are universal and everyone understands, interprets and uses
them in identical fashion. Therefore, no transformation is required. There is, how-
ever, evidence that people’s mapping of their internal feelings of uncertainty into

2One of the studies was concerned with translation of probability phrases across languages and we
recruited native speakers of French, German, Spanish, Russian and Turkish.
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numbers is imperfect. In particular, most people over-(under-) estimate low(high)
probabilities (e.g. references in Erev, Wallsten and Budescu [9]), and it is con-
ceivable that there are systematic differences in the degree to which individuals
tend to avoid (or favor) the extreme values. In principle, one could quantify this
tendency and apply appropriate stretching (or contracting) transformations. To
illustrate this point consider multiple judges (1,2, . . . , j, j′, . . . ,J) who judge a set
of stochastic events (1,2, . . . , i, . . . , I). Assume that: (1) All judges have access to
the same amount of information, implying that differences in their judgments are
due only to (a) differences in their use of the response scales and (b) random
components. (2) All judges spontaneously recognize events that are impossible
(probability = 0), certain (probability = 1), and as likely as not (probability = 0.5).
(3) Assume an ”ideal judge” who is perfectly calibrated (no biases) and accurate
(no random component). Thus his/her judgments, p1, p2, . . . pi, coincide with the
events’ ”objective probabilities”.

The probability assigned by judge j to event i is denoted by pi j, and can be
expressed as a function of the objective probability, pi, his/her bias parameter, α j,
and the random component, ei j which we assume is distributed with µe = 0 and
(finite) σe. We use a variation of Karmarkar’s [10] model, that assumes that the
logit of the judged probabilities is a linear function of the logit of their objective
counterparts:

Log
[

pi j

(1− pi j)

]
= α j ·Log

[
pi

(1− pi)

]
+ ei j (5)

Individual differences between judges are captured by the parameter α j , which
is bounded from below by 0 (when all events are assigned a probability of 0.5).
An unbiased judge should have an α j of 1, but we expect that most individu-
als would have parameters between 0 and 1 that are consistent with the regressive
model described above. We used a least-squares procedure to estimate the individ-
ual parameter, α j, in model 5. The model fits the data well for almost all subjects
(median R2 = 0.98, median MSE = 0.13). The distribution of the individual pa-
rameters matches our expectations: 64 values (50%) are between 0.55 and 0.98,
45 participants (35.2%) are almost perfectly calibrated (0.99 ≤ α j ≤ 1.01), and
only 19 individuals (14.8%) have parameters values above 1. To verify that these
differences reflect systematic individual differences rather than pure random error,
we performed two additional analyses: (a) we compared these results with a model
where the parameter, α j, was constrained to be 1 (thus the model includes only
random error). A comparison of the two models in terms of R2

ad j favors slightly
the fitted model. The modal difference (34% of the cases) is 0, but there is a clear
majority (43% vs. 23%) of cases where the fitted model fits better (mean differ-
ence in fit = 0.02), even after we account for its extra parameter. Significance tests
comparing the fit of the two models (separately for each subject) revealed that this
differences was significant at the traditional 0.05 level, for 25.2% of the subjects.
(b) We re-analyzed two of the studies in which all subjects judged all the displays
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twice, so we could obtain two estimates of the parameter, α j , for each person.
In both studies (involving a total of 55 subjects) the between-subjects variance
component was considerably larger than the within-subject component (in fact
the within-subject component was not significantly greater then 0).

In principle, one could convert numerical estimates from one person to another
in an optimal fashion by applying simple stretching (contracting) transformation
based on the estimates of the individual parameters, α j, α j′.
[R,R] The use of precise ranges instead of simple point estimates reflects
one’s perceived level of imprecision in his or her estimate of the probability of the
target event. Clearly, the arguments invoked in the [N,N] case regarding the nature
of the numbers, apply here as well. This would suggest that no transformations
are indicated. It is conceivable, however, that there are systematic differences in
the degree of imprecision perceived by different individuals and this would in-
duce systematic differences in the widths of their ranges. One could quantify this
tendency and apply appropriate imprecision equating transformations.
[V,V] This situation is, probably, the most interesting and it has been the
focus of much of our recent research. This case is qualitatively different from
the previous two for several reasons. There is a large literature indicating that (a)
spontaneously, people tend to use highly different and diverse lexicons, and (b)
the numerical meanings (as well as other forms of representation) associated with
these words vary dramatically across people (e.g. review in Budescu and Wall-
sten [6]). Thus, one cannot assume that everyone is equally comfortable with, or
interprets identically terms such as ”likely”, ”poor chance”, etc. For this case we
advocate the following multi-stage procedure that is sensitive to these empirical
findings: (a) each participant selects his/her own subjective lexicon; (b) MFs are
elicited for all the terms in the list; (c) the MFs of the words selected by the F
and the DM are placed on a common probability scale and are matched accord-
ing to the criterion of choice (DSvµ or DSvp). Occasionally this procedure does
not yield a unique solution, i.e., one of the F’s words can be translated equally
well into several of the DM’s words. Of course, all these words are equally valid
translations of the F’s judgment. If practical considerations prevent one-to-many
translations, one of them can be selected randomly (or by some other sensible
tie-breaking procedure).

We have done quite a lot of empirical work documenting the efficacy of this
approach (Karelitz and Budescu [11], Karelitz, Dhami, Budescu, and Wallsten
[12]). In each of our studies we compared the level of agreement in assignment
of verbal phrases to the same events among numerous pairs of distinct individu-
als. We hypothesized that the lowest level of agreement would be observed with
spontaneous (un-aided), verbal discourse, and the best level of agreement would
be found in the case of numerical communication. Most importantly, we expect
that communication with converted phrases would be superior to un-aided verbal
communication, and closer in quality to the numerical case. To quantify the level
of inter-personal agreement we defined two indices of co-assignment. We use two
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measures because some of the events were judged more than once and yielded
different responses from the subjects. Both measures range from 0 to 1 (higher
values indicate stronger agreement), and can be interpreted as measures of the
accuracy of inter-personal communication of imprecise opinions.
PIA- Proportion of Identical Assignments- the proportion of comparisons where
both participants assigned the same phrase to a given event.
PMA- Proportion of Minimal Agreement - the proportion of stimuli for which
both participants assigned at least one common phrase to a given event.

In the interest of brevity we only report results based on PIA, which is a more
stringent measure than PMA (PIA ≤ PMA) because it weighs the agreement by
the number of comparisons made (The PMA results are very similar in a quali-
tative sense). Table 1 summarizes the results of 4 studies (details in Karelitz and
Budescu [11]). Each cell presents the mean (and SD) PIA in the various modes,
and across all pairs of subjects analyzed.

Table 1: Summary of agreement indices from 4 studies

Translation Criterion
Study No. of VJ: Unaided DSvµ DSvπ NJ: Unaided

pairs Verbal Judgments (Eq. 3) (Eq. 4) Numerical Judgments
1 306 0.05 (0.03) 0.23 (0.12) 0.22 (0.10) 0.29 (0.07)
2 90 0.04 (0.04) 0.22 (0.11) 0.19 (0.09) 0.36 (0.09)
3 86 0.04 (0.07) 0.35 (0.16) 0.35 (0.16) 0.40 (0.15)
4* 509 0.06 (0.09) 0.34 (0.15) 0.35 (0.14) 0.40 (0.13)

* Experiment 4 involves translations of words across various languages. VJ is based of the subjects’
spontaneous translation of words from their native languages to English.

The results clearly support our predictions: unaided VJ had the lowest values
for both indices in all the studies and NJ had the largest values. The two translation
criteria clearly outperformed the unaided verbal communication3.

2.5 Resolving vagueness
[R,N] In principle, any sensible person should be able to infer a single N
value from his/her partner range without invoking any translation scheme. The
individual differences discussed in the [N,N] and [R,R] cases apply here as well.
In principle, one could improve the quality of communication by (a) inferring the
F’s best guess (presumably, the center of the reported range) and, if necessary, (b)
applying the appropriate stretching (or contracting) transformation.
[V,N] Recall that every word in the F’s lexicon has a (single-peaked) MF
defined over the [0,1] interval that describes the degree to which the various prob-

3Dhami and Wallsten [7] and Karelitz and Budescu [11] report similar results with several other
translation methods.
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abilities match the intended meaning of that particular word. The MF’s peak,
π(v), is the single numerical probability that is most representative of the word’s
meaning and is the translation of choice. Occasionally, the MF does not have a
unique maximum, so all probabilities within a given range can be considered to
be equally good representations of the word’s meaning. In these cases it is conve-
nient to translate the word into the mid-range of these probabilities. To illustrate
the potential accuracy of this approach we compared the peaks of the 977 verbal
phrases used by 113 of the subjects in our experiments with the mean of their
numerical judgments when judging the same events. We found a remarkable sim-
ilarity between the two sets: (a) the median within-subject difference between
the two is 0.006 and the median absolute difference between them is 0.097; (b)
the median within-subject rank order correlation between the peaks of the words
and the mean numerical judgments is 0.89; and (c) the two sets are almost per-
fectly related linearly with a median within-subject intercept of −0.022, a median
within subject slope of 1.06, and a median R2

ad j of 0.90. These results indicate
that the translation procedure can map with high accuracy the intended meaning
of the words and predict accurately the numerical probabilities used to describe
the same events.
[V,R] Every MF is, essentially, a collection of ranges since every level of
membership, ν (0 ≤ ν ≤ 1), defines a range of values, R(ν), such that µ(v)≥ ν.
Typically, as ν increases, R(ν) becomes narrower indicating the range of values
that possess that (higher) level of membership is more restrictive. Thus, the trans-
lation from a V to a R boils down to the issue of which threshold, ν, to choose.
Presumably, there are systematic differences in the ”typical” threshold that indi-
viduals tend to use in these circumstances, so one could quantify this tendency
and identify the most appropriate range for each individual. We are not aware of
any studies that have collected both verbal and upper and lower numerical bounds
of the probabilities of the same events, so we are not in a position to assess the
efficacy of the proposed approach.

2.6 Imputing vagueness
[N,R] If numbers are the universal language of uncertainty and everyone
interprets them identically, any sensible DM would infer that the F’s single N is
the center of a range that describes his/her opinions, but there is no clue regarding
the implied imprecision of the F’s opinion. One could improve the quality of
communication by reversing the procedure described for [R,N], i.e., (a) applying
the appropriate stretching (or contracting) transformation for the DM, and (b)
imputing the DM’s typical band of imprecision. We are not familiar with any
empirical work along these lines.
[N,V] Recall that all the words in the F’s lexicon have single-peaked MFs
defined over the [0,1] interval. These functions describe the degree to which any
given probability matches the intended meaning of the various phrases. The pro-
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posed translation rule calls for the choice of that phrase that has the highest mem-
bership at the N in question. This procedure is not guaranteed to yield a unique
solution, i.e. there could be several words with equally high membership at that
probability, and all these words should be considered equally valid translations
of the numerical judgment. If necessary, one of these words can be selected ran-
domly (or by some other tie-breaking procedure). In analyzing our studies we
looked at responses from 118 subjects who used an average of 14.85 distinct nu-
merical judgments. We analyzed the verbal responses that were assigned by the
subjects to the events to which they assigned a certain numerical response. On
the average, each set of events that were judged to be equally probable (in the
numerical mode) generated 1.81 distinct verbal phrases, and in 68% of the cases
at least one4 of these verbal responses had, indeed, the maximal membership for
that probability. Another look at the same data indicates that for 59.7% of the nu-
merical judgments at least one of the verbal terms used was predicted from the
MFs. Interestingly, we found large individual differences: 30 subjects (25.4%)
are at, or below a 40% success rate, while for 27 subjects (22.9%) the rate of ac-
curate translation is greater than, or equal to 75%. Not surprisingly, the level of
agreement is considerably higher for the extreme (0 and 1), and the central (0.5)
numerical probabilities.
[R,V] All the words in the F’s lexicon have (single-peaked and continuous)
MFs defined over the [0,1] interval. For any fixed range of numerical probability
these functions describe the degree to which the probabilities in that range match
the intended meaning of the various phrases. The proposed translation rule calls
for the choice of that verbal term that has the highest average membership over the
R in question. It is possible that there would be several words with equally high
membership over that range probabilities. All these words should be considered
equally valid translations. We are not aware of studies that have collected the
relevant data for the empirical evaluation of this procedure.

3 General Discussion
In this paper we proposed a unifying conceptual framework for optimal interper-
sonal translation of probabilistic information for the 9 distinct cases we identified.
We discussed the 9 scenarios at different levels of details, and provided extensive
empirical support for some of them. Although the cases are not encountered with
similar frequency in applied settings, we decided to review all of them to illustrate
the generality, feasibility and flexibility of the overall approach.

This line of research is part of an effort to create a general Linguistic Probabil-
ity Translator (LiProT, for short) that could serve both as a useful research tool,
and a general decision aid. LiProT would facilitate communication of subjec-

4In 14.5% of the cases more than one word tied for the highest membership at a given probability.
The mean number of words tied for maximal membership was 1.14.



Budescu & Karelitz: Inter-personal Communication of Probabilities 103

tive uncertainties between participants in various decision situations - forecasters,
judges, experts and decision makers - by reducing the dangers of miscommunica-
tion of probabilities among the various members of the group.

To fix ideas consider a group of experts (physicians, intelligence officers, fi-
nancial forecasters, etc.) who communicate with each other, possibly electroni-
cally form various locations. As part of this process they need to exchange prob-
abilistic information based on the evidence available to them and reflecting their
own unique expertise. If various people in this group have differential preferences
for modes of communicating probabilities to others and receiving information
from others, then each of the 9 cases discussed above may be relevant for some
of the pairs. The procedures described and partially tested in this paper provide
a foundation for such a system. Before the meeting, the participants’ preferred
modes of communication are ascertained, their verbal probability lexicons are
mapped, and LiProT derives the appropriate translation scheme for each dyad.
During the meeting, every probability (N, R or V) used by each of the experts is
instantly converted optimally to the favorite modality (N, R or V) of each of the
other participants.

For example, assume that participant A prefers to communicate and to re-
ceive numbers, participant B has a universal preference for Vs, and participant C
prefers to communicate with V, but to receive Ns (the modal pattern according to
Wallsten et al. [18]). Every uncertainty judgment provided by A (using Ns) will
be translated by LiProT into the closest V in judge B lexicon (using the [N,V]
module), and into the most appropriate N for judge C (using the [N,N] module).
Similarly, the verbal uncertainty judgments provided by C will be translated into
the closest N for judge A (using the [V,N] module), and into the most appropriate
V in B’s lexicon (using the [V,V] module). Thus, all judges communicate their
opinions and receive information in their respective preferred modes. This ap-
proach may be too restrictive, since preferences for a particular mode may vary
as a function of the situation, the nature of the target event and its underlying
uncertainty. A good translator should allow the receiver of the communication to
choose the mode of communication. For example, judge B may choose to have
judge A numerical translated by LiProT into the closest V in judge in most cases,
but occasionally he/she may opt for a simpler, and more direct, translation into
the most appropriate N.

In closing we emphasize that this work has focused on communication of un-
certainty, and has not addressed the issue of the efficacy of the proposed transla-
tions in the context of specific decision situations. We are now conducting empiri-
cal work that seeks to determine the degree to which these translation rules, which
were shown to improve the inter-personal communication of uncertainties, could
also improve the quality of the ultimate decisions involving these uncertainties.
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