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Abstract

Let % be a preference relation on a convex set F . Necessary and sufficient
conditions are given that guarantee the existence of a set {ul} of affine util-
ity functions on F such that % is represented by U ( f ) = ul ( f ) if f ∈ Fl;
where each Fl is a convex subset of F . The interpretation is simple: facing a
“non-homogeneous” set F of alternatives, a decision maker splits it into “ho-
mogeneous” subsets Fl , and acts as a standard expected utility maximizer on
each of them.

In particular, when F is a set of simple acts, each ul corresponds to a
subjective expected utility with respect to a finitely additive probability Pl;
while when F is a set of continuous acts, each probability Pl is countably
additive.
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1 Introduction
Given a preference relation % on a convex set F, we provide necessary and suffi-
cient conditions that guarantee the existence of a set {ul} of affine utility functions
on F such that % is represented by

U ( f ) = ul ( f ) if f ∈ Fl ,
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where each Fl is a convex subset of F . This representation has a simple interpre-
tation: facing a “non-homogeneous” set of alternatives F , a decision maker splits
it into “homogeneous” subsets Fl and, on each of them, she behaves as a standard
expected utility maximizer. For example, the Fl can be commodities traded in a
local market l and F be the global market, or the Fl can be sets of lotteries on
which the decision maker feels she has the same information.

The idea underlying these results is close to the one of Castagnoli and Mac-
cheroni (2000), but the difference of setups heavily reflects on the techniques we
use in the proofs.

In particular, if F is a convex set of objective lotteries, the model falls in the
class of lottery dependent utility (see, e.g., Maccheroni, 2002, and the references
therein).

While, when F is a set of simple (resp. continuous) acts, each ul corresponds
to a subjective expected utility with respect to a finitely additive (resp. countably
additive) probability Pl. This time we are in the spirit of multiple priors mod-
els: for example, Choquet Expected Utility of Schmeidler (1989) and Maxmin
Expected Utility of Gilboa and Schmeidler (1989) are particular cases of the pro-
posed model when the family {Fl}l∈L consists of sets of comonotone and affinely
related acts, respectively. In fact, many recent papers focus on specific cases of the
model obtained here, and provide interesting interpretations on the derived family
of probabilities. See, e.g. Nehring (2001), Ghirardato, Maccheroni, and Marinacci
(2002), Kopylov (2002), Siniscalchi (2003). In particular, the latter work builds
on a similar idea and looks for conditions ensuring the uniqueness of the sub-
jective probability used to evaluate the expected utility of each act; furthermore,
differently from us, the sets Fl are elicited from the preference.

2 A general representation result
Let F be a convex subset of a vector space, X a nonempty convex subset of F ,
{Fl}l∈L a family of convex subsets of F such that F =

S

l∈L Fl and X ⊆ T

l∈L Fl ,
and % a binary relation on F . As usual, we denote by � and ∼ the asymmetric
and the symmetric parts of %. In the sequel we will make use of the following
assumptions on %.

Weak Order (WO): For all f1 and f2 in F : f1 % f2 or f2 % f1. For all f1, f2,
and f3 in F : if f1 % f2 and f2 % f3, then f1 % f3.

Local Independence (LI): For all l ∈ L, all f1, f2, and f3 in Fl , and all α in
(0,1): f1 % f2 implies α f1 +(1−α) f3 % α f2 +(1−α) f3. When L is a singleton
this property is the standard Independence (I).

Local Continuity (LC): For all l ∈ L and all f1, f2, and f3 in Fl : if f1 � f2
and f2 � f3, then there exist α and β in (0,1) such that α f1 + (1−α) f3 � f2
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and f2 � β f1 + (1−β) f3. When L is a singleton this property is the standard
Continuity (C).

Boundedness (B): For all f in F : there exist x1,x2 ∈ X such that x1 % f and
f % x2.

Quasiconcavity (Q): For all f1 and f2 in F and all α in (0,1): f1 ∼ f2 implies
α f1 +(1−α) f2 % f1.

As suggested by Siniscalchi (2003), a natural way to elicit the sets Fl from the
preference is to look for the maximal convex subsets of F on which it satisfies the
standard assumptions of expected utility. Next theorem shows that the first four
properties are necessary and sufficient to yield a piecewise affine representation
of %.

Theorem 1 Given a binary relation % on F, the following conditions are equiv-
alent:

(i) % satisfies WO, LI, LC, and B.

(ii) There exists a family {ul} of affine functionals on F such that the functional

U ( f ) = ul ( f ) if f ∈ Fl (1)

represents % on F and U (X) = U (F).

Moreover, U is unique up to positive affine transformations.

Ghirardato, Maccheroni, and Marinacci (2002), show that under suitable topo-
logical assumptions, the closed and convex hull of the family {ul} is the Clarke
subdifferential of U .

Next we show that the quasiconcavity assumption Q implies concavity of the
representation.

Corollary 1 Let % be a binary relation represented by (1). Then, % satisfies Q if
and only if {ul} can be chosen such that

U ( f ) = min
l∈L

ul ( f )

for all f ∈ F.

It is easy to see that the assumptions WO, LI, LC, B, and Q are indepen-
dent. Moreover, the Example on page 216 of Castagnoli and Maccheroni (2000)
with F = R

2 and X = {0} shows that WO, LI, and LC are not sufficient to ob-
tain a representation like (1). Further notice that U (α f +(1−α)x) = αU ( f ) +
(1−α)U (x) for all α ∈ [0,1], f ∈ F, and x ∈ X . We call this property X-affinity.
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A special case of interest is the one in which only F and X are a priori given
and, for all f ∈ F −X , Ff is the convex hull co { f ,X} of { f} and X . In this case
LI and LC can be restated with no explicit reference to the family Ff , moreover
they can be replaced by

X-Independence (X-I): For all f1, f2 in F , all x in X , and all α in (0,1): f1 % f2
iff α f1 +(1−α)x % α f2 +(1−α)x.

X-Continuity (X-C): For all x1,x2 ∈ X and all f in F: if x1 � f and f � x2,
then there exist α and β in (0,1) such that αx1 + (1−α)x2 � f and f � βx1 +
(1−β)x2.

The previous Theorem takes the following form.

Corollary 2 Let % be a binary relation on F, and Ff = co { f ,X} for all f ∈
F −X. The following statements are equivalent:

(i) % satisfies WO, LI, LC, and B.

(ii) % satisfies WO, X-I, X-C, and B.

(iii) There exists an X-affine functional U : F → R representing % and such that
U (X) = U (F).

Moreover, U is unique up to positive affine transformations.
In this case, % satisfies Q iff there exists a family U of affine functionals on F,

all of which are concordant on X, such that

U ( f ) = min
u∈U

u( f ) .

We think that the above general results shed some light on the common traits
of several well-known particular results in the literature. As an exemplification in
the next section we apply them to a problem of choice under uncertainty. We are
confident that they can be fruitfully employed to the study of different problems;
e.g., decision models in which F is the convex set of all (closed and convex) sets
of lotteries over a finite set Z of outcomes, and its elements are considered as
menus of alternatives available to a decision maker (see, e.g., Dekel, Lipman, and
Rustichini, 2001).

3 The Anscombe - Aumann setup
We now consider the special case in which F is a set of acts; more precisely, we
focus on two possible settings.

The first one is the classical Anscombe - Aumann setup. S is a nonempty set
of states of the world, Σ an algebra of subsets of S called events, X a convex set
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of outcomes. A simple act is just an X-valued, simple and Σ-measurable function;
F = Fs is the set of all simple acts. In this setting a probability on Σ is a finitely
additive set function P : Σ → [0,1] such that P( /0) = 0 and P(S) = 1.

The second one is a topological variation of the first. S is a compact metric
set, Σ its Borel σ-field, and X a finite dimensional simplex. A continuous act is
just an X-valued, continuous function; F = Fc is the set of all continuous acts. In
this setting a probability on Σ is a countably additive set function P : Σ → [0,1]
such that P( /0) = 0 and P(S) = 1.

For every f1, f2 ∈ F and α ∈ [0,1] we denote by α f1 +(1−α) f2 the act in
F which yields α f1(s)+(1−α) f2(s) ∈ X for every s ∈ S. With a slight abuse of
notation, we identify X with the set of all constant acts (thus making it a convex
subset of F).

We will replace assumption B with the mildly stronger conditions:

Monotonicity (M): For all f1 and f2 in F: if f1 (s) % f2 (s) on S, then f1 % f2.

Nondegeneracy (N): Not for all f1 and f2 in F , f1 % f2.

Let G ⊇ X be a subset of F , a functional U : G → R is said to be mono-
tone if g1 (s) % g2 (s) on S implies U (g1) ≥U (g2); automonotone if U (g1 (s)) ≥
U (g2 (s)) on S implies U (g1) ≥U (g2) (that is, if U is monotone with respect to
the pointwise dominance relation it induces on G). Next lemma is a little variation
on the von Neumann - Morgenstern Theorem to yield a subjective probability re-
sult à la Anscombe and Aumann (1963). In particular, the lemma guarantees an
expected utility representation for any preference % on G that satisfies WO, I, C,
M, and N.

Lemma 1 Let G ⊇ X be a convex subset of F, U : G → R a nonconstant, au-
tomonotone, affine functional, and u the restriction of U to X.1 There exists a
probability P on Σ such that

U (g) =

Z

S
(u◦g)dP

for all g ∈ G.

We are now ready to state the anticipated result.

Theorem 2 Given a binary relation % on F, the following conditions are equiv-
alent:

(i) % satisfies WO, LI, LC, M, and N.

1More precisely: denoted by xS the constant act taking value x for all s∈ S, u is the function defined
by u(x) = U (xS); the shorter expression we adopted derives from the identification of X with the set
of all constant acts.
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(ii) There exists a family {Pl}l∈L of probabilities on Σ, and an affine noncon-
stant function u on X, such that the functional

U ( f ) =

Z

S
(u◦ f )dPl if f ∈ Fl (2)

represents % on F and it is monotone.

Moreover, U is unique up to positive affine transformations.

In the next corollary we consider the special case when the quasiconcavity
axiom Q holds.

Corollary 3 Let % be a binary relation represented by (2). Then, % satisfies Q if
and only if {Pl}l∈L can be chosen such that

U( f ) = min
l∈L

Z

S
(u◦ f )dPl

for all f ∈ F.

The counterpart of Corollary 2 for F = F s is Theorem 1 of Gilboa and Schmei-
dler (1989), and we explicitly state it only in the case F = F c. Here, the set of all
probability measures is endowed with the weak* topology.

Corollary 4 A binary relation % on F c satisfies WO, X-I, X-C, M, N, and Q
iff there exist an affine function u : X → R and a compact and convex set C of
probability measures, such that

f % g ⇔ min
P∈C

Z

S
(u◦ f )dP ≥ min

P∈C

Z

S
(u◦g)dP

for all f ,g∈Fc. C is unique and u is unique up to a positive linear transformation.

Differently from the Gilboa and Schmeidler (1989) result, the set of priors C
consists of countably additive probability measures. This way of obtaining count-
able additivity is alternative to that used by Marinacci, Maccheroni, Chateauneuf,
and Tallon (2002); in fact, we add assumptions on the structure of the model rather
than assumptions on the preference.

4 Proofs
Next Lemma is a minor variation on the Hahn - Banach Extension Theorem. Its
proof is part of the one of Lemma 4 p. 829-830 in Maccheroni (2002).

Lemma 2 Let F ⊇ G ⊇ X be nonempty convex subsets of a vector space. If a
functional U : F → R is X-affine, concave, and U|G is affine, then there exists an
affine functional u : F → R such that u ≥U and u|G = U|G.
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The following is a topological version of the previous one. We refer to Alipran-
tis and Border (1999) Chapter 5 for the basic notation and results on topological
vector spaces’ theory.

Lemma 3 Let E be a vector space, E ′ be a total subspace of its algebraic dual,
and K be a σ(E ′,E)-compact subset of E ′. Set

I(e) = min
e′∈K

〈
e,e′
〉

for all e ∈ E. If I is affine on a convex subset C of E, there exists an extreme point
e′C of K such that I|C = e′C, i.e.

e′C ∈ Argmine′∈K
〈
e,e′
〉

for all e ∈C.

Proof of Lemma 3. For all e∈C, Argmine′∈K 〈e,e′〉 is a σ(E ′,E)-closed subset of
K. By compactness of K, it is enough to show that

Tn
j=1 Argmine′∈K

〈
e j,e′

〉
6= /0

for any e1,e2, ...,en ∈C. Choose w′ ∈ Argmine′∈K

〈
Σn

j=1
1
n e j,e′

〉
.

I
(
Σn

j=1e j
)

= nI
(

Σn
j=1

1
n

e j

)
= n

〈
Σn

j=1
1
n

e j,w′
〉

= Σn
j=1
〈
e j,w′〉

but, since I is affine on C

I
(
Σn

j=1e j
)

= nI
(

Σn
j=1

1
n

e j

)
= nΣn

j=1
1
n

I (e j) = Σn
j=1 min

e′∈K

〈
e j,e′

〉
.

We can conclude that w′ ∈ K and

Σn
j=1
〈
e j,w′〉= Σn

j=1 min
e′∈K

〈
e j,e′

〉
.

Hence 〈
e j,w′〉= min

e′∈K

〈
e j,e′

〉

for all j = 1,2, ...,n, that is w′ ∈ Tn
j=1 Argmine′∈K

〈
e j,e′

〉
.

Moreover,
T

e∈C Argmine′∈K 〈e,e′〉 is a nonempty intersection of compact ex-
treme sets, hence it is a compact extreme set, and it contains an extreme point.
Q.E.D.

Proof of Theorem 1 and Corollary 1.2 By the von Neumann - Morgenstern
Theorem for all l ∈ L there exists an affine functional

ul : Fl → R

2The proofs are not separated to avoid duplicate notation.
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representing % on Fl . We still denote by ul an arbitrarily fixed affine extension of
ul to F . Since ul|X is an affine representation of % on X , it is unique up to positive
affine transformations. Fix arbitrarily m ∈ L and set u = um|X . For all l ∈ L choose
ul so that ul|X = u.

By B, for all f ∈ F there exist x1,x2 ∈ X such that x1 % f % x2. Therefore
u(x1) = ul (x1) ≥ ul ( f ) ≥ ul (x2) = u(x2), for all l ∈ L such that f ∈ Fl , and there
exists α ∈ [0,1] such that

ul ( f ) = αu(x1)+(1−α)u(x2)

= u(αx1 +(1−α)x2)

= ul (αx1 +(1−α)x2) ,

therefore ul ( f ) does not depend on the choice of l ∈ L such that f ∈ Fl . Moreover,
the argument above shows that there exists x f ∈ X (i.e. αx1 +(1−α)x2) such that
x f ∼ f and

ul ( f ) = u(x f )

for all l ∈ L such that f ∈ Fl .
We set

U ( f ) = ul ( f ) if f ∈ Fl .

What precedes guarantees that U is well defined, and U ( f ) = u(x f ) = U (x f )
implies U (F) = U (X). For all f1, f2 ∈ F , let fi ∼ xi ∈ X to obtain

f1 % f2 ⇔ x1 % x2 ⇔ u(x1) ≥ u(x2) ⇔U ( f1) ≥U ( f2) .

If U ′ : F → R is affine on Fl for all l ∈ L and represents %, then u′ =U ′
|X = au+b

for some a > 0 and b ∈ R; for all f ∈ F , let f ∼ x f ∈ X to obtain

U ′ ( f ) = u′ (x f ) = au(x f )+b = aU ( f )+b.

This concludes the proof of Theorem 1.
For any α ∈ [0,1], f ∈ F, and x ∈ X , choose l ∈ L such that f ∈ Fl to obtain

U (α f +(1−α)x) = ul (α f +(1−α)x)

= αul ( f )+(1−α)ul (x)

= αU ( f )+(1−α)U (x) ,

this shows that U is X-affine.
Next we prove Corollary 1. If U is constant, the result is trivial. If U is not

constant, there exist f1, f2 ∈ F such that f1 � f2 and, by B, there exist x∗1,x
∗
−1 ∈ X

such that x∗1 � x∗−1. W.l.o.g. assume x∗−1 = −x∗1 (so that 0 ∈ X) and U (x∗1) = 1,
U
(
x∗−1
)

=−1, whence U (0) = U
( 1

2 x∗1 + 1
2 x∗−1

)
= 0. Then U is positively homo-

geneous. The (unique) positively homogeneous extension of U to the convex cone
H generated by F is the functional defined by

V (γ f ) = γU ( f )
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if f ∈ F and γ > 0. Let h ∈ H and y in the convex cone Y generated by X , there
exist γ > 0, f ∈ F and x ∈ X such that h = γ f and y = γx, whence

1
2

V (h+ y) =
1
2

V (γ( f + x))

= γV
(

1
2

( f + x)
)

= γU
(

1
2

f +
1
2

x
)

= γ
(

1
2

V ( f )+
1
2

V (x)
)

=
1
2

(V (h)+V (y)) ,

that is V (h+ y) = V (h)+V (y).
Let h1,h2 ∈ H; there exist γ > 0, f1, f2 ∈ F such that hi = γ fi. If V (h1) =

V (h2), U ( f1) = V ( f1) = V ( f2) = U ( f2), so that f1 ∼ f2 and U
( 1

2 f1 + 1
2 f2
)
≥

U ( f1) = 1
2U ( f1)+

1
2U ( f2), that is V (h1 +h2)≥V (h1)+V (h2). Else if V (h1) >

V (h2), there exists y∈Y such that V (y) =V (h1)−V (h2) (take (V (h1)−V (h2))x∗1),
then

V (h1 +h2)+V (y) = V (h1 +h2 + y)

≥ V (h1)+V (h2 + y)

= V (h1)+V (h2)+V (y) .

That is, V is superlinear and U is concave. Now using Lemma 2 for each Fl we
can choose vl such that vl : F → R is affine, vl ≥U and vl|Fl

= U|Fl
. Replace the

ul chosen at the beginning of the proof with vl to obtain

U ( f ) = vl ( f ) = min
i∈L

vi ( f )

if f ∈ Fl . The rest is trivial. Q.E.D.

Given Theorem 1 and Corollary 1, the proof of Corollary 2 is a long, simple
exercise.

We denote by B0 (S,Σ) the vector space of all real valued, simple and Σ-
measurable functions, endowed with the supnorm topology. If S is a compact
metric set, we denote by C (S) the vector space of all real valued, continuous
functions, endowed with the supnorm topology. It is well known that the topo-
logical dual of B0 (S,Σ) (resp. C (S)) is the vector space ba(S,Σ) of all bounded,
finitely additive set functions on Σ (resp. the vector space ca(S) of all countably
additive set functions on Σ): the duality being

〈ϕ,µ〉 =

Z

S
ϕdµ
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for all ϕ ∈ B0 (S,Σ) and µ ∈ ba(S,Σ) (resp. ϕ ∈C (S) and µ ∈ ca(S)). If k ∈ R, the
constant element of B0 (S,Σ) or C (S) taking value k on S will be denoted again by
k. A functional I on a subset of B0 (S,Σ) or C (S) is monotone if ϕ1 ≥ ϕ2 implies
I (ϕ1) ≥ I (ϕ2). A monotone linear functional I on B0 (S,Σ) or C (S) corresponds
to a positive set function µ.

Proof of Lemma 1. Let u =U|X ; obviously u is affine, (and continuous if F = F c).
For all g ∈ G, let x ∈ g(S) be such that u(x) ≥ u(g(s)) for all s ∈ S and x ∈ g(S)
be such that u(x) ≤ u(g(s)) for all s ∈ S. The existence of such x and x descends
from the finiteness of g(S) if F = F s, from the continuity of g and u if F = Fc.
Then U (x) ≤ U (g) ≤ U (x), and there exists xg ∈ X such that U (xg) = U (g).
Hence U (G) = U (X) and there exists x∗,x∗ ∈ intU (X) with U (x∗) < U (x∗).
Assume first −U (x∗) = U (x∗) = 1. Automonotonicity of U yields that g1,g2 ∈ G
and u◦g1 = u◦g2 imply U (g1) =U (g2). It is easy to see that Φ = {u◦g : g ∈ G}
is a convex subset of B0 (S,Σ) or C (S) containing the constant functions 1 and
−1.

Define I : Φ → R by
I (ϕ) = U (g)

if ϕ = u◦g. I is monotone, affine, I (0) = 0 and I (1) = 1. It is routine to extend I to
the vector subspace 〈Φ〉 of B0 (S,Σ) or C (S) generated by Φ and obtain a linear,
monotone functional Î : 〈Φ〉 → R such that Î (0) = 0 and Î (1) = 1. A classical
extension result of Kantorovich (see, e.g., Aliprantis and Border, 1999, Lemma
7.31) guarantees that there exists a linear, monotone extension Ĩ of Î to the whole
B0 (S,Σ) or C (S). We can conclude that there exists a probability P on Σ such that

U (g) = I (u◦g) =
Z

S
(u◦g)dP

for all g ∈ G.
Finally, if it is not the case that −U (x∗) = U (x∗) = 1, there exist a > 0 and

b ∈ R such that −(aU (x∗)+b) = (aU (x∗)+b) = 1, and the proposed technique
yields

aU (g)+b =
Z

S
(a(u◦g)+b)dP

for all g ∈ G, as wanted. Q.E.D.

Proof of Theorem 2 and Corollary 3.3 M implies B. If F = Fs, for any act f
take x ∈ f (S) such that x % f (s) for all s ∈ S and x ∈ f (S) such that f (s) % x
for all s ∈ S to obtain x % f and f % x. If F = Fc, let v : X → R be an affine
function that represents % on X ; for any act f , there exists s and s such that
v( f (s)) ≥ v( f (s)) ≥ v( f (s)) for all s ∈ S, then M guarantees that f (s) % f %
f (s). By Theorem 1 there exists a functional U : F → R, affine on Fl for all
l ∈ L, that represents % (and for all f ∈ F there exists x f ∈ X such that x f ∼ f ).

3The proofs are not separated to avoid duplicate notation.
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M also implies that U is automonotone on F (a fortiori on Fl for all l ∈ L). In
fact, U ( f1 (s)) ≥U ( f2 (s)) on S implies f1 (s) % f2 (s) on S and f1 % f2, whence
U ( f1)≥U ( f2). M and N imply that U is nonconstant on Fl for all l ∈ L (just take
f ∗1 � f ∗−1, and x∗1,x

∗
−1 ∈ X with x∗i ∼ fi to have U (x∗1) > U

(
x∗−1
)
). Apply Lemma

1 to Fl for each l ∈ L to obtain a family {Pl}l∈L of probabilities on Σ such that

U ( f ) =
Z

S
(u◦ f )dPl if f ∈ Fl ,

where u : X → R is the restriction of U to X . This proves Theorem 2.
Next we prove Corollary 3. Assuming Q holds, then U is concave.
If F = Fs, w.l.o.g. u(X)⊇ [−1,1], and {u◦ f : f ∈ F} is the set B0 (S,Σ,u(X))

of simple, Σ measurable functions from S to u(X).
Else if F = Fc, w.l.o.g. u(X) = [−1,1], and {u◦ f : f ∈ F} is the set C (S,u(X))

of continuous functions from S to u(X).4

For all ϕ ∈ B0 (S,Σ,u(X)) or C (S,u(X)), set

I (ϕ) = U ( f )

if ϕ = u◦ f . I is monotone, u(X)-affine, concave, I (0) = 0 and I (1) = 1. There-
fore, its positive homogeneous extension Î to B0 (S,Σ) or C (S) is monotone, su-
perlinear, and such that Î (ϕ+ k) = Î (ϕ)+ k for all ϕ ∈ B0 (S,Σ) or C (S) and all
k ∈ R. Moreover, being bounded on B0 (S,Σ, [−1,1]) or C (S, [−1,1]), Î is contin-
uous in the supnorm. Standard convex analysis results guarantee that there exists
a unique convex and weak* compact set C of probabilities such that

Î (ϕ) = min
P∈C

Z

S
ϕdP

(just take as C the superdifferential of Î at 0). The functional Î is affine on the
convex set Φl = {u◦ f : f ∈ Fl} for all l ∈ L. In fact, for all l ∈ L and all ϕi = u◦ fi
with fi ∈ Fl , and α ∈ [0,1] we have

Î (αϕ1 +(1−α)ϕ1) = I (u◦ (α f1 +(1−α) f2))

= U (α f1 +(1−α) f2)

= αU ( f1)+(1−α)U ( f2)

= αÎ (ϕ1)+(1−α) Î (ϕ2) .

By Lemma 3, there exist P′
l ∈ C such that

Î (ϕ) =

Z

S
ϕdP′

l

4Let x∗1 ∈ u−1 (1) and x∗−1 ∈ u−1 (−1). The restriction ν of u to
[
x∗−1,x

∗
1
]

is an homeomorphism
between

[
x∗−1,x

∗
1
]

and [−1,1]; so if ϕ : S → [−1,1] is continuous, f = ν−1 ◦ϕ : S →
[
x∗−1,x

∗
1
]
⊆ X is

a continuous act such that

u( f (s)) = u
(
ν−1 (ϕ(s))

)
= ν

(
ν−1 (ϕ(s))

)
= ϕ(s) .
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for all ϕ ∈ Φl . Therefore for all l ∈ L and all f ∈ Fl

U ( f ) = I (u◦ f ) = min
P∈C

Z

S
(u◦ f )dP =

Z

S
(u◦ f )dP′

l = min
m∈L

Z

S
(u◦ f )dP′

m.

The rest is trivial. Q.E.D.

The proof of Corollary 4 is immediate.
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