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Abstract

We present the application of a recently introduced nonparametric predictive
inferential method to compare two groups of data, consisting of observed
event times and right-censoring times. Comparison is based on imprecise
probabilities concerning one future observation per group.
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1 Introduction
We apply a recently introduced method for statistical inference, called ‘nonpara-
metric predictive inference’ (NPI) [1, 6], to the problem of comparing two groups
of data, or, if one prefers to use such terminology, two underlying populations,
where the data include right-censored observations. This generalizes the results
presented by Coolen [3], who did not allow censoring. Right-censoring typically
occurs in study of event times, e.g. survival times of patients in medical applica-
tions, or periods without failures of technical systems in reliability engineering,
where a right-censoring at a time t just implies that the event of interest has not
yet happened before or at time t. Throughout, we assume that no further infor-
mation is available about the random quantities corresponding to right-censored
observations, an assumption often called ‘noninformative censoring’ [6, 11, 13].
We also assume that the two populations compared are independent, in the sense
that any information about the random quantities from one population does not
influence our inferences on random quantities from the other population.

The method of statistical inference used here is based on quite minimal mod-
elling assumptions, and is directly in terms of random quantities representing
future observations. We assume that either a well-specified event happens, at a
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particular time, to each item for which, or individual for who, we have an obser-
vation, or that a time is reported at which such an event has not yet occurred. All
data are referred to as ‘observation (time)’, if it is a time at which the event of
interest actually occurred we call it ‘event (time)’, else ‘(right-)censoring (time)’.
Speaking in terms of ‘time’, we restrict attention to non-negative random quanti-
ties, so to random quantities and observations on the time-axis [0,∞). However,
the method presented is more widely applicable, as only a finite partition of (part
of) the real line is required.

In Section 2, the basics of nonparametric predictive inference are briefly sum-
marized. Section 3 presents the main result on predictive comparison of two
groups of lifetime data, which is illustrated, and briefly compared with an alterna-
tive nonparametric method, via two examples in Section 4. For ease of notation,
we assume that there are no ties of any kind in the data, so no two observations are
equal. In Section 5, we briefly discuss how the method can be adapted for dealing
with tied observations, and we add a few concluding remarks about the presented
method and results, including some attention to when this method might be used.

2 Nonparametric predictive inference
In this section, we summarize NPI for data including right-censored observations,
as recently presented by Coolen and Yan [6], to which we refer for the theoretical
justification and further detailed discussion of this method.

Let a single group of data consist of n observations, of which u are event times,
0 < t1 < .. . < tu, and v = n−u right-censoring times, 0 < c1 < .. . < cv. Let t0 = 0
and tu+1 = ∞, and let the right-censoring times in (ti, ti+1) be ci

1 < .. . < ci
li
. We

assume that there are no ties among the data, the method is easily adapted for ties
[6]. Let ñt be the number of items with observation time greater than or equal to
t. We call this the number of items ‘at risk just prior to time t’, at an observation
time the corresponding item is included in ñt .

Based on such data, Coolen and Yan [6] introduce, and justify, the assumption
‘right-censoring A(n)’ (rc-A(n)) for NPI, for the random quantity Xn+1 representing
the lifetime of a future item, or the survival time of a future individual. Right-
censoring A(n) generalizes Hill’s A(n) [7], which underlies NPI if the data do not
include right-censored observations [1, 3]. Description of rc-A(n) requires notation
for partial specification of probability distributions, called ‘M-function’.

Definition 1 (M-function) [6]
A partial specification of a probability distribution for a real-valued random
quantity X can be provided via probability masses assigned to intervals, without
any further restriction on the spread of the probability mass within each interval.
A probability mass assigned, in such a way, to an interval (a,b), is denoted by
MX(a,b), and referred to as M-function value for X on (a,b).
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Clearly, all M-function values for X on all intervals should sum up to one,
and each M-function value should be in [0,1].

Definition 2 (rc-A(n)) [6]
The assumption ‘right-censoring A(n)’ (rc-A(n)) is that the probability distribution
for a nonnegative random quantity Xn+1, based on u event times and v right-
censoring times, as described above, is partially specified by (i = 0, . . . ,u; k =
1, . . . , li)

MXn+1(ti, ti+1) =
1

n+1 ∏
{r:cr<ti}

ñcr +1
ñcr

,

MXn+1(c
i
k, ti+1) =

1
(n+1)ñci

k

∏
{r:cr<ci

k}

ñcr +1
ñcr

.

The product terms are defined as one if the product is taken over an empty set.
The M-function values for Xn+1 on other intervals are zero. This implicitly as-
sumes non-informative censoring, as a post-data assumption related to exchange-
ability of all items known to be at risk at any time t, see Coolen and Yan [6], who
also justify rc-A(n). We illustrate the M-function values in rc-A(n) via an example,
followed by a brief explanation of the key ideas behind rc-A(n).

Example 1
Table 1 gives the data for group A which are part of Example 2 in Section 4, where
the data are introduced in more detail. For this group, there are 10 observed event
times and 6 right-censoring times. Table 1 also presents the M-function values,
with corresponding intervals, according to rc-A(n) for these data.

These M-function values sum up to one (subject to a minor rounding effect),
and illustrate the effects of right-censoring. Notice, for example, that there is some
probability mass defined on each interval from a right-censoring time to the next
observed event time, and that a right-censored observation also leads to larger
M-function values between two later observed event times.

This assumption rc-A(n) is generalizing Hill’s assumption A(n) [7], the idea is
roughly as follows. If n+1 real-valued random quantities are exchangeable, and
we assume that ties occur with probability zero, then the n + 1-st of these ran-
dom quantities has equal probability 1/(n+1) to fall in each of the intervals that
form the partition created by the values of the other n random quantities, before
any of these random quantities are actually observed. Hill [7] proposed this same
property as a posterior predictive distribution, calling it A(n), and later he [8, 9]
discussed further properties of this assumption and its use as an inferential proce-
dure, and presented a prior process that leads to A(n) in the Bayesian framework
(under finite additivity). Generally speaking, use of A(n) makes sense in case of
very vague prior information, or indeed if one explicitly wishes not to use any
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Table 1: Cervical cancer example (> t: right-censoring at t)

data value
M(0,90) 0.05882

90 M(90,142) 0.05882
142 M(142,150) 0.05882
150 M(150,269) 0.05882
269 M(269,291) 0.05882
291 M(291,680) 0.05882

>468 M(468,680) 0.00535
680 M(680,837) 0.06417
837 M(837,1037) 0.06417

>890 M(890,1037) 0.00802
1037 M(1037,1297) 0.07219

>1090 M(1090,1297) 0.01203
>1113 M(1113,1297) 0.01684
>1153 M(1153,1297) 0.02527

1297 M(1297,1429) 0.12634
1429 M(1429,∞) 0.12634

>1577 M(1577,∞) 0.12634

such prior information. Our generalization adopts the same idea for the situation
of right-censored data, using the extra assumption that a right-censored item, at
the moment the censoring takes place, had an exchangeable residual time till event
with all those items for which the event had not yet taken place, and which had
not been censored previously. This exchangeability at time of censoring is indeed
a proper form of ‘noninformative censoring’, and the probabilities as specified by
rc-A(n), via M-function values, for a single future observation are then derived via
conditioning on possible values for the right-censored items. Further details of the
derivation and justification of rc-A(n) are given by Yan [16] and Coolen and Yan
[6].

Berliner and Hill [2] also presented the use of A(n) for right-censored data,
but instead of adding an assumption to deal with the exact censoring information,
they replaced each censored observation by just survival past the largest observed
event time smaller than the censoring time, in which case no assumptions need to
be added to A(n). This implies that at observed event times, our method coincides
with the Berliner-Hill method, but these two methods differ in between event
times if there are censoring times. In addition, Berliner and Hill assumed that the
probability mass per interval is uniformly distributed (except for the last interval
if there is no finite right-end point), whereas we use imprecise probabilities, as we
discuss next.
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It should be mentioned that, of course, imprecise probabilities have been used
before for situations where not all data are complete, in the sense that not each
event of interest has actually been observed. For example, Manski [12] considers
the logical bounds on conditional probabilities based on censored samples alone.
This would relate to our approach if we had not added any further assumption
about the right-censored data, the novelty of rc-A(n) is the extra exchangeability-
related assumption about the residual time till event for each censored observa-
tion, which has the effect of keeping imprecision relatively small, which is partic-
ularly useful if there are relatively many censored observations in the data set.

The partial specification of the probability distribution of Xn+1, via M-function
values as specified by rc-A(n), enables NPI if the problems considered can be
formulated in terms of a future observation Xn+1. However, for many problems
of interest, the M-function values only imply bounds for predictive probabilities,
where optimal bounds are imprecise probabilities [15].

As a consequence of the M-function values defined in rc-A(n), the events
{Xn+1 ∈ (ti, ti+1)}, for i = 0, . . . ,u, have precise probabilities [6]

P(Xn+1 ∈ (ti, ti+1)) = MXn+1(ti, ti+1)+
li

∑
k=1

MXn+1(c
i
k, ti+1).

3 Comparing two groups of lifetime data
For the comparison of two groups of lifetime data we use the notation as intro-
duced above, but consistently add an index a or b, corresponding to the groups
which we call A and B. For example, for group A we have na observations, con-
sisting of the event times 0 < ta,1 < .. . < ta,ua and right-censoring times 0 < ca,1 <
.. . < ca,va , and the right-censoring times in the interval (ta,i, ta,i+1) are denoted by
ci

a,1 < .. . < ci
a,la,i

, et cetera. Throughout we assume that there are no ties at all
among the observations (see Section 5), and that information on one group does
not have any effect on probabilities of random quantities corresponding to the
other group, so that Xa,na+1 and Xb,nb+1 are independent and that data from group
A does not influence our probabilities for Xb,nb+1, and vice versa. We summarize
this by stating that the groups are independent.

We require some additional notation, effectively counting the number of ob-
served event times from group B to the left of observations from group A:

sb(ta,i) = #{tb, j | tb, j < ta,i, j = 1, . . . ,ub},
sb(ci

a,k) = #{tb, j | tb, j < ci
a,k, j = 1, . . . ,ub},

for i = 1, . . . ,ua and k = 1, . . . , la,i. Similarly, we need notation for the number of
right-censoring times from group B in the interval (tb,sb(ta,i), ta,i):

sc
b(ta,i) = #{cb, j |cb, j ∈ (tb,sb(ta,i), ta,i), j = 1, . . . ,ub},
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for i = 1, . . . ,ua +1.
The main results of this paper, namely the lower and upper probabilities for

events Xa,na+1 > Xb,nb+1, based on the assumptions rc-A(na) and rc-A(nb), are pre-
sented as a theorem below. The proof of the theorem is simplified via a lemma,
which we present first, and which justifies the use of a variety of the theorem of
total probability with conditioning on nested intervals, with probability distribu-
tions partially specified via M-function values.

Lemma 1 For s≥ 2, let Jl = ( jl ,r), with j1 < j2 < .. . < js < r, so we have nested
intervals J1 ⊃ J2 ⊃ . . .⊃ Js with the same right end-point r (which may be infinity).
We consider two independent real-valued random quantities, say X and Y . Let the
probability distribution for X be partically specified via M-function values, with
all probability mass P(X ∈ J1) described by the s M-function values MX(Jl), so
∑s

l=1 MX (Jl) = P(X ∈ J1). Then, without additional assumptions, we have

s

∑
l=1

P(Y < jl)MX (Jl) ≤ P(Y < X , X ∈ J1) ≤ P(Y < r)P(X ∈ J1),

and these bounds are optimal, so they are the maximum lower and minimum upper
bounds that generally hold.

Proof. For any number s of nested intervals, the proof follows the same princi-
ple, so for ease of notation we present it for s = 3. We use the theorem of total
probability to condition further on the partition {J3,J2 \ J3,J1 \ J2} of J1 for the
random quantity X . The probability distribution of X on J1 is partially specified
via M-function values for X defined on J1,J2,J3. Let Ml

X (J) denote the (unknown)
part of the M-function value MX(Jl) that is actually in J ⊂ Jl , so we have

P(X ∈ J3) = M3
X (J3)+M2

X(J3)+M1
X(J3),

P(X ∈ J2 \ J3) = M2
X (J2 \ J3)+M1

X(J2 \ J3),

P(X ∈ J1 \ J2) = M1
X (J1 \ J2),

MX(J1) = M1
X (J1 \ J2)+M1

X(J2 \ J3)+M1
X(J3),

MX(J2) = M2
X (J2 \ J3)+M2

X(J3),

MX(J3) = M3
X (J3).

These M-function values are not further specified, but we can now use the theorem
of total probability, and then derive bounds by solving the constrained optimiza-
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tion problems. The lower bound follows from (with J4 = /0 for ease of notation)

P(Y < X , X ∈ J1) =
3

∑
l=1

P(Y < X , X ∈ Jl \ Jl+1)

=
3

∑
l=1

P(Y < X |X ∈ Jl \ Jl+1)P(X ∈ Jl \ Jl+1)

= P(Y < X |X ∈ J1 \ J2)M1
X (J1 \ J2)+

P(Y < X |X ∈ J2 \ J3)[M2
X (J2 \ J3)+M1

X(J2 \ J3)]+

P(Y < X |X ∈ J3)[M3
X(J3)+M2

X(J3)+M1
X(J3)].

With the constraints on these M-function values as given above, the lower bound
is achieved by effectively putting the probability masses for X at the infimums of
the intervals on which they are defined, so setting

M1
X (J2 \ J3) = M1

X(J3) = M2
X(J3) = 0,

and taking the lower bounds for the conditional probabilities for Y < X , given
X ∈ I, for the relevant I above, by replacing X ∈ I by X = inf(I), leading to the
terms Y < jl in the lower bound. The upper bound can be derived simultaneously,
but is rather trivial as these nested intervals have the same right end-point. The
fact that these bounds are optimal, without additional assumptions, follows easily
from this construction. 2

Bounds for the probability of Xa,na+1 > Xb,nb+1, based on rc-A(na) and rc-A(nb),
are presented in the following theorem. As these bounds are optimal, without any
additional assumptions, they are lower and upper probabilities [15], which we
denote by P(Xa,na+1 > Xb,nb+1) and P(Xa,na+1 > Xb,nb+1), respectively.

Theorem 1 Assume that data are available from two independent groups, A and
B, following the notation presented above. Based on the assumptions rc-A(na) and
rc-A(nb), predictive comparison of these two groups can be based on the following
lower and upper probabilities for Xa,na+1 > Xb,nb+1,
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P(Xa,na+1 > Xnb+1)

=
ua

∑
i=0

{[
sb(ta,i)−1

∑
j=0

P(Xb,nb+1 ∈ (tb, j, tb, j+1))

]
MXa,na+1(ta,i, ta,i+1)

+
la,i

∑
k=1






sb(ci
a,k)

∑
j=0

P(Xb,nb+1 ∈ (tb, j, tb, j+1))


MXa,na+1(c

i
a,k, ta,i+1)





 ,

P(Xa,na+1 > Xb,nb+1)

=
ua

∑
i=0

{[
sb(ta,i+1)−1

∑
j=0

P(Xb,nb+1 ∈ (tb, j, tb, j+1))

+P(Xb,nb+1 ∈ (tb,sb(ta,i+1)−1, tb,sb(ta,i+1)))

+

sc
b(ta,i+1)

∑
l=1

MXb,nb+1(c
sc
b(ta,i+1), tb,sb(ta,i+1)+1)

]
P(Xa,na+1 ∈ (ta,i, ta,i+1))

}
.

Proof. These lower and upper probabilities are derived by first writing

P(Xa,na+1 > Xb,nb+1) =
ua

∑
i=0

P(Xb,nb+1 < Xa,na+1, Xa,na+1 ∈ (ta,i, ta,i+1)),

and then applying the above lemma for each of the terms within this sum, and
using the intervals on which the M-function values for Xa,na+1 are defined accord-
ing to rc-A(na). Then, bounds for the resulting probabilities (compare the lemma
above) for Xb,nb+1 are determined, based on the corresponding M-function values
according to rc-A(nb), where a lower bound is derived by including only the M-
function values on intervals that are fully included in the interval in the event of in-
terest, and the upper bound is derived by including all M-function values on inter-
vals that have non-empty intersection with the interval in the event of interest. Fur-
ther details are relatively straightforward (see Yan [16] for a complete proof). 2

These lower and upper probabilities are not available in a nice closed form.
However, calculation is relatively easy as the individual terms are all product
forms following from the definition of rc-A(n). If the data do not include any
right-censorings, these lower and upper probabilities are identical to those pre-
sented by Coolen [3]. Although these formulae become fairly complex, the un-
derlying idea for these optimal bounds is straightforward. The lower probability
for Xa,na+1 > Xb,nb+1, based on the rc-A(n) assumptions per group, puts the prob-
ability masses as specified by the M-function values for Xa,na+1 at the infimums
of the intervals on which corresponding M-function values are specified, and for
Xb,nb+1 at the supremums of the intervals, so at this bound the probability masses
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are effectively least supportive for this event, given the partial specifications via
M-function values. Of course, the upper probability just relates to these probabil-
ity masses being put at the other end-points per interval.

We have presented the lower and upper probabilities for Xa,na+1 > Xb,nb+1.
Similar results are available for the complementary event Xb,nb+1 > Xa,na+1, which
can be derived by interchanging the indices for the groups above. However, it is
not necessary to calculate lower and upper probabilities for both these events, be-
cause the well-known conjugacy property for imprecise probabilities [15], P(E) =
1−P(Ec), holds, where Ec is the complementary event of E. Informally, this
holds because our bounds are optimal, and correspond to the same assessments
based on the rc-A(n) assumptions per group. Alternatively, one could only com-
pute either the lower or upper probabilities for both these events, requiring only a
single algorithm, and using this relation to derive the other imprecise probabilities
of interest.

Implicit in our results is that the probability of Xa,na+1 = Xb,nb+1 is zero, which
is reasonable for our method as long as there are no ties among the event times
of different groups (it would become a problem if a particular event time had
been observed twice or more in each group, we discuss ties briefly in Section 5),
and which is a consequence of our method of comparison, where effectively we
always put probability masses at end-points of different intervals. It should be
remarked, however, that a positive upper probability for Xa,na+1 = Xb,nb+1 could
also be justified on the basis of these rc-A(n) assumptions, but doing so consis-
tently would have made the analysis presented here more awkward, with little
relevance for most practical situations.

4 Examples
We illustrate our nonparametric predictive method for comparison of two groups
of lifetime data via two examples. We also compare our method with Mantel’s
two-sample test for censored data (see Section 11.7 of Hollander and Wolfe [10]
for details), an established nonparametric method for such comparison, and dis-
cuss the important difference between our predictive approach and Mantel’s hy-
pothesis test.
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Example 2
The data for this example are given in Table 2, and were also used by Parmar and
Machin [14] to illustrate nonparametric methods for survival data. It is a subset
of data obtained from 183 patients entered into a randomised Phase III trial con-
ducted by the Medical Research Council Working Party on Advanced Carcinoma
of the Cervix.

Table 2: Cervical cancer survival data (> t: right-censoring at t).

Control (A) New (B)
90 272

142 362
150 373
269 >383
291 >519

>468 >563
680 >650
837 827

>890 >919
1037 >978

>1090 >1100
>1113 1307
>1153 >1360

1297 >1476
1429

>1577

The data are on survival of 30 patients with cervical cancer, recruited to a
randomised trial aimed at analysing the effect of addition of a radiosensitiser to
radiotherapy (‘new treatment’, B), via comparison to the use of radiotherapy alone
(‘control treatment’, A). Of these 30 patients, na = 16 received the control treat-
ment A, and nb = 14 received the new treatment B. The data are in days since start
of the study, the event of interest is death of the patient caused by this cancer. Fur-
ther variables recorded for patients in the original study are not taken into account
(see Parmar and Machin [14] for further references to the original study), we only
use this subset of all the data to illustrate our new method for comparison of two
such groups of data.

Using the method presented in Section 3, we compare these two groups of
data predictively, by focussing on future observations Xa,17, assuming rc-A(16),
and Xb,15, assuming rc-A(14). The corresponding lower and upper probabilities
are

P(Xa,17 > Xb,15) = 0.226 and P(Xa,17 > Xb,15) = 0.473,
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which, by the conjugacy property for imprecise probability, imply

P(Xb,15 > Xa,17) = 0.527 and P(Xb,15 > Xa,17) = 0.774.

These imprecise probabilities indicate that a preference for the new treatment
B over the control treatment A would be reasonable, if no further information
(e.g. on side-effects) is taken into account, and if one aims at surviving longer. In
particular from an individual’s perspective, this seems to be a natural inference if
choice between two treatments is possible.

Although we do not discuss it explicitly here, such a choice could also take
further aspects into account via our general rc-A(n)-based inferential method. For
example, a patient may prefer the treatment with maximum lower probability of
surviving a particular length of time, it is fairly straightforward to calculate such
lower probabilities per treatment in our approach [6].

From a classical nonparametric point of view, inference on the difference be-
tween survival chances for the two treatments could, for example, be based on
application of Mantel’s two-sample test for censored data, which is a rank-based
test of a null-hypothesis of two equal survival functions, using asymptotic nor-
mality of the relevant test statistic. Applying this test for these cervical cancer
survival data leads to a one-sided p-value of 0.1020, which may not be regarded
as strong enough evidence against the null-hypothesis.

Example 3
The data for this example are given in Table 3, and were also used by Hollander
and Wolfe [10] to illustrate Mantel’s test. These data are from a clinical trial on
Hodgkin’s disease, a cancer of the lymph system. Two treatments were consid-
ered, a radiation treatment of the affected node (Treatment A; 25 patients), and
a radiation treatment of the affected node plus all nodes in the trunk of the body
(Treatment B; 24 patients). The data represent the relapse-free survival times in
days. If a relapse had not occurred before the end of the study, then the observation
for that patient is right-censored.

Our method, as presented in Section 3, applied to these data, leads to predic-
tive imprecise probabilities

P(Xb,25 > Xa,26) = 0.557 and P(Xb,25 > Xa,26) = 0.893.

These values indicate that the data suggest pretty strongly that Tb,25 > Ta,26, hence
it seems to be in a patient’s best interest to opt for Treatment B. Applying Man-
tel’s test to these data leads to an approximate one-sided p-value of 0.0006, which
suggests very strongly that the survival functions corresponding to these two treat-
ments are not equal.



Coolen & Yan: Comparing Two Groups of Lifetime Data 159

Table 3: Hodgkin’s disease survival data (> t: right-censoring at t).

Treatment A Treatment B
86 822 173 >1726

107 836 498 >1763
141 >1309 615 >1807
296 1375 950 >1879
312 >1378 >1190 >1889
330 >1446 >1242 >1897
346 >1540 1408 >1968
364 >1645 >1493 >1972
401 >1818 >1572 >2022
419 >1910 >1576 >2070
505 >1953 >1585 >2177
570 >2052 >1684
688 >1699

Clearly, testing equality of survival functions is quite a different inference than
our predictive comparison, and it is not unreasonable to consider the outcome
of both when trying to get more insight into the different survival chances per
treatment. In Example 2, our method suggests that the new treatment would be
better for a future patient than the control treatment, although Mantel’s test does
not strongly reject the hypothesis that both survival functions could be equal. In
Example 3, the conclusions from both methods seem to agree more.

In general, it could also happen that Mantel’s test would reject the null hy-
pothesis, while we would end up with lower and upper probabilities both close
to 0.5, so care should be taken on interpretation of the results of our method and
Mantel’s test. In situations where the real problem of interest is naturally in terms
of comparison of next observations, we believe that our new method should be
preferred.

The imprecision in our upper and lower probabilities in Examples 2 and 3 is
not unreasonably large, in particular when considering the relatively large number
of right-censored observations. This is explicitly due to our assumption rc-A(n),
without this exchangeability-related assumption for the residual times till event
for the right-censored items, logical bounds on the relevant conditional probabil-
ities would be much wider.

5 Concluding remarks
We suggest that our new method for comparison of two groups of survival data is
particularly useful in situations where such comparison takes place from a single
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individual’s perspective, e.g. when a person has a choice between the two treat-
ments. If one has more relevant information, e.g. covariates or prior knowledge,
some established statistical methods will be more appropriate. Our method can
then still serve as a sort of base method, which can provide insight into the effect
of further information or model assumptions, used with those alternative meth-
ods, by comparing the ultimate inferences. Extending our approach to possible
inclusion of covariates is an interesting and relevant topic for future research.

Generalization of this approach to more than two groups of data is feasible,
in a way similar to Coolen and van der Laan [5], who considered this problem
without censored observations. It is also possible to extend attention to multiple
future observations per group, but this would lead to rather complex computations
due to dependence of such future observations for the same group [4, 7].

Throughout, we have assumed that there are no ties in the data. If there are ties,
these can relatively easily be taken into account by breaking the ties, so assuming
that tied values are only nearly identical, applying our method, and then letting the
differences decrease to zero. For ties between the groups, one should break them
into all possible orderings among the groups, calculate lower (upper) probabilities
for each such ordering, and then take the minimum (maximum) of all these lower
(upper) probabilities as the actual lower (upper) probability to be used for the
comparison.
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