
Dynamic Programming for Discrete-Time
Systems with Uncertain Gain∗

G. DE COOMAN
Ghent University, Belgium

M. C. M. TROFFAES
Ghent University, Belgium

Abstract

We generalise the optimisation technique of dynamic programming for discrete-
time systems with an uncertain gain function. We assume that uncertainty
about the gain function is described by an imprecise probability model, which
generalises the well-known Bayesian, or precise, models. We compare vari-
ous optimality criteria that can be associated with such a model, and which
coincide in the precise case: maximality, robust optimality and maximinity.
We show that (only) for the first two an optimal feedback can be constructed
by solving a Bellman-like equation.

Keywords

optimal control, dynamic programming, uncertainty, imprecise probabilities

1 Introduction to the Problem
The main objective in optimal control is to find out how a system can be influ-
enced, or controlled, in such a way that its behaviour satisfies certain require-
ments, while at the same time maximising a given gain function. A very effective
method for solving optimal control problems for discrete-time systems is the re-
cursive dynamic programming method, introduced by Richard Bellman [1].

To explain the ideas behind this method, we refer to Figures 1 and 2. In Fig-
ure 1 we depict a situation where a system can go from state a to state c through
state b in three ways: following the paths αβ, αγ and αδ. We denote the associated
gains by Jαβ, Jαγ and Jαδ respectively. Assume that path αγ is optimal: Jαγ > Jαβ
and Jαγ > Jαδ. Then it follows that path γ is the optimal way to go from b to c. To

∗This paper presents research results of project G.0139.01 of the Fund for Scientific Research,
Flanders (Belgium), and of the Belgian Programme on Interuniversity Poles of Attraction initiated by
the Belgian state, Prime Minister’s Office for Science, Technology and Culture.

162

De Cooman & Troffaes: Dynamic Programming with Uncertain Gain 163

a c
b

α

β
γ

δ

Figure 1: Principle of Optimality

b

c

d

a e

λ
α

µ

ν

β
γ

δ
ε

η

Figure 2: Dynamic Programming

see this, observe that Jαν = Jα +Jν for ν ∈ {β,γ,δ} (gains are assumed to be addi-
tive) and derive from the inequalities above that Jγ > Jβ and Jγ > Jδ. This simple
observation, which Bellman called the principle of optimality, forms the basis for
the recursive technique of dynamic programming for solving an optimal control
problem. To see how this is done in principle, consider the situation depicted in
Figure 2. Suppose we want to find the optimal way to go from state a to state
e. After one time step, we can reach the states b, c and d from state a, and the
optimal paths from these states to the final state e are known to be α, γ and η, re-
spectively. To find the optimal path from a to e, we only need to compare the costs
Jλ + Jα, Jµ + Jγ and Jν + Jη of the respective candidate optimal paths λα, µγ and
νη, since the principle of optimality tells us that the paths λβ, νδ and νε cannot
be optimal: if they were, then so would be the paths β, δ and ε. This, written down
in a more formal language, is what is essentially known as Bellman’s equation. It
allows us to solve an optimal control problem very efficiently through a recursive
procedure, by calculating optimal paths backwards from the final state.

In applications, it may happen that the gain function, which associates a gain
with every control action and the resulting behaviour of the system, is not well
known. This problem is most often treated by modelling the uncertainty about the
gain by means of a probability measure, and by maximising the expected gain un-
der this probability measure. Due to the linearity of the expectation operator, this
approach does not change the nature of the optimisation problem in any essential
way, and the usual dynamic programming method can therefore still be applied.

It has however been argued by various scholars (see [11, Chapter 5] for a de-
tailed discussion with many references) that uncertainty cannot always be mod-
elled adequately by (precise) probability measures, because, roughly speaking,
there may not be enough information to identify a single probability measure. In
those cases, it is more appropriate to model the available information through an
imprecise probability model, e.g., by a lower prevision, or by a set of probability
measures. For applications of this approach, see for instance [4, 10].

Two questions now arise naturally. First, how should we formulate the optimal
control problem: what does it mean for a control to be optimal with respect to an
uncertain gain function, where the uncertainty is represented through an impre-

164 ISIPTA ’03

cise probability model? In Section 2 we identify three different optimality criteria,
each with a different interpretation (although they coincide for precise probability
models), and we study the relations between them. Secondly, is it still possible to
solve the corresponding optimal control problems using the ideas underlying Bell-
man’s dynamic programming method? We show in Section 3 that this is the case
for only two of the three optimality criteria we study: only for these a generalised
principle of optimality holds, and the optimal controls are solutions of suitably
generalised Bellman-like equations. To arrive at this, we study the properties that
an abstract notion of optimality should satisfy for the Bellman approach to work.

We recognise that other authors (see for instance [8]) have extended the dy-
namic programming algorithm to systems with imprecise gain and/or imprecise
dynamics. However in doing so, none of them seems to have questioned in what
sense their generalised dynamic programming method leads to optimal paths. In
this article we approach the problem from the opposite, and in our opinion, more
logical side: one should first define a notion optimality and investigate whether
the dynamic programming argument holds for this notion of optimality, instead
of blindly “generalising” Bellman’s algorithm. In the remainder of this section,
we introduce the basic terminology and notation that will allow us to give a pre-
cise formulation of the problems under study. We have omitted proofs of technical
results that do not contribute to a better understanding of the main ideas.

1.1 Preliminaries
1.1.1 The System

For a and b in N, the set of natural numbers c that satisfy a ≤ c ≤ b is denoted
by [a,b]. Let xk+1 = f (xk,uk,k) describe a discrete-time dynamical system with
k ∈ N, xk ∈ X and uk ∈ U. The set X is the state space (e.g., R

n, n ∈ N\{0}), and
the set U is the control space (e.g., Rm, m∈N\{0}). The map f : X ×U×N→X
describes the evolution of the state through time: given the state xk ∈ X and the
control uk ∈ U at time k ∈ N, it returns the next state xk+1 of the system. For
practical reasons, we impose a final time N beyond which we are not interested in
the dynamics of system. Moreover, it may happen that not all states and controls
are allowed at all times: we demand that xk should belong to a set of admissible
states Xk at every instant k ∈ [0,N], and that uk should belong to a set of admissible
controls Uk at every instant k ∈ [0,N −1], where Xk ⊆ X and Uk ⊆ U are given.
The set XN may be thought of as the set we want the state to end up in at time N.

1.1.2 Paths

A path is a triple (x,k,u·), where x ∈ X is a state, k ∈ [0,N] a time instant, and
u· : [k,N − 1] → U a sequence of controls. A path fixes a unique state trajectory
x· : [k,N] → X , which is defined recursively through xk = x and xi+1 = f (xi,ui, i)
for every i ∈ [k,N − 1]. It is said to be admissible if x` ∈ X` for every ` ∈ [k,N]

De Cooman & Troffaes: Dynamic Programming with Uncertain Gain 165

and u` ∈ U` for every ` ∈ [k,N − 1]. We denote the unique map from /0 to U by
u /0. If k = N, the control u· does nothing: it is equal to u /0.

The set of admissible paths starting in the state x ∈ Xk at time k ∈ [0,N] is
denoted by U(x,k), i.e., U(x,k) = {(x,k,u·) : (x,k,u·) admissible path}. For ex-
ample, U(x,N) = {(x,N,u /0)} whenever x ∈ XN and U(x,N) = /0 otherwise.

If we consider a path with final time M different from N, then we write
(x,k,u·)M (assume k ≤ M ≤ N). Observe that (x,k,u·)k can be identified with
(x,k,u /0)k; it is the unique path (of length zero) starting and ending at time k in
x. Let 0 ≤ k ≤ ` ≤ m. Two paths (x,k,u·)` and (y, `,v·)m can be concatenated if
y = x`. The concatenation is denoted by (x,k,u·, `,v·)m or (x,k,u·)` ⊕ (y, `,v·)m,
and represents the path that starts in state x at time k, and results from applying
control ui for times i∈ [k, `−1] and control vi for times i∈ [`,m−1]. In particular,

(x,k,u·)` = (x,k,u·)k ⊕ (x,k,u·)` = (x,k,u·)` ⊕ (x`, `,u·)`.

The set of admissible paths starting in state x ∈ Xk at time k ∈ [0,N] and ending
at time ` ∈ [k,N] is denoted by U(x,k)`. In particular we have that U(x,k)k =
{(x,k,u /0)k} if x ∈ Xk, and U(x,k)k = /0 otherwise. Moreover, for any (x,k,u·)` ∈
U(x,k)` and any V ⊆ U(x`, `), we use the notation (x,k,u·)`⊕V for the set

{(x,k,u·)`⊕ (x`, `,v·) : (x`, `,v·) ∈ V }.

1.1.3 The Gain Function

Applying the control action u∈U to the system in state x∈X at time k ∈ [0,N−1]
yields a real-valued gain g(x,u,k,ω). Moreover, reaching the final state x ∈ X at
time N also yields a gain h(x,ω). The parameter ω ∈ Ω represents the (unknown)
state of the world, used to model uncertainty of the gains. If we knew that the
real state of the world was ωo, we would know the gains to be g(x,u,k,ωo) and
h(x,ωo). As it is, the real state of the world is uncertain, and so are the gains,
which could be considered as random variables. It is important to note that the
parameter ω only influences the gains; it has no effect on the system dynamics,
which are assumed to be known perfectly well.

Assuming gain additivity, we can also associate a gain with a path (x,k,u·):

J(x,k,u·,ω) = ∑N−1
i=k g(xi,ui, i,ω)+h(xN ,ω),

for any ω ∈ Ω. If M < N, we also use the notation

J(x,k,u·,ω)M = ∑M−1
i=k g(xi,ui, i,ω).

It will be convenient to associate a zero gain with an empty control action: for
k ∈ [0,N] we let J(x,k,u·,ω)k = 0.

The main objective of optimal control can now be formulated as follows: given
that the system is in the initial state x ∈ X at time k ∈ [0,N], find a control se-
quence u· : [k,N − 1] → U resulting in an admissible path (x,k,u·) such that the

166 ISIPTA ’03

corresponding gain J(x,k,u·,ω) is maximal. Moreover, we would like this control
sequence u· to be such that its value uk at the time instant k is a function of x and
k only, since in that case the control can be realised through state feedback.

If ω is known, then the problem reduces to the classical problem of dynamic
programming, first studied and solved by Bellman [1]. We assume here that the
available information about the true state of the world is modelled through a co-
herent lower prevision P defined on the set L(Ω) of gambles, or bounded real-
valued maps, on Ω. A special case of this obtains when P is a linear prevision
P. Linear previsions are the precise probability models; they can be interpreted as
expectation operators associated with (finitely additive) probability measures, and
they are previsions or fair prices in the sense of de Finetti [6]. We assume that the
reader is familiar with lower previsions and coherence (see [11] for more details).

For a given path (x,k,u·), the corresponding gain J(x,k,u·,ω) can be seen as a
real-valued map on Ω, which is denoted by J(x,k,u·) and called the gain gamble
associated with (x,k,u·).1 In the same way we define the gain gambles g(xk,uk,k),
h(xN) and J(x,k,u·)M . There is gain additivity: J(x,k,u·, `,v·)m = J(x,k,u·)` +
J(x`, `,v·)m for k ≤ ` ≤ m ≤ N, and J(x,k,u·)k = 0. We denote by J (x,k) the set
of gain gambles for admissible paths from initial state x ∈ Xk at time k ∈ [0,N]:

J (x,k) = {J(x,k,u·) : (x,k,u·) ∈ U(x,k)} .

For fixed k ∈ [0,N−1] and x ∈ Xk, the gain J(x,k,u·,ω) can also be interpreted as
a map from U(x,k) to L(Ω); this map is denoted by J(x,k).

2 Optimality Criteria

2.1 P-Maximality
The lower prevision P(X) of a gamble X has a behavioural interpretation as a
subject’s supremum acceptable price for buying the gamble X : it is the highest
value of µ such that the subject accepts the gamble X − x (i.e., accepts to buy X
for a price x) for all x < µ. The conjugate upper prevision P(X) = −P(−X) of X
is then the subject’s infimum acceptable price for selling X . This way of looking
at a lower prevision P defined on the set L(Ω) of all gambles allows us to define
a strict partial order >P on L(Ω) whose interpretation is that of strict preference.

Definition 1 For any gambles X and Y in L(Ω) we say that X strictly dominates
Y, or X is strictly preferred to Y (with respect to P), and write X >P Y , if

P(X −Y) > 0 or (X ≥ Y and X 6= Y).

Indeed, if X ≥ Y and X 6= Y , then the subject should be willing to exchange
Y for X , since this transaction can only improve his gain. On the other hand,

1To simplify the discussion, we assume this map is bounded.

De Cooman & Troffaes: Dynamic Programming with Uncertain Gain 167

P(X −Y) > 0 expresses that the subject is willing to pay a strictly positive price
to exchange Y for X , which again means that he strictly prefers X to Y .

It is clear that we can also use the lower prevision P to express a strict pref-
erence between any two paths (x,k,u·) and (x,k,v·), based on their gains: if
J(x,k,u·) >P J(x,k,v·) this means that the uncertain gain J(x,k,u·) is strictly pre-
ferred to the uncertain gain J(x,k,v·). We then say that the path (x,k,u·) is strictly
preferred to (x,k,v·), and we use the notation (x,k,u·) >P (x,k,v·).

>P is anti-reflexive and transitive, and therefore a strict partial order on L(Ω),
and in particular also on J (x,k) and on U(x,k). But it is generally not linear: any
two paths need not be comparable with respect to this order, and it does not always
make sense to look for greatest elements, i.e., for paths that strictly dominate all
the others. Rather, we should look for maximal, or undominated, elements: paths
that are not dominated by any other path. Observe that a maximal gamble X in
a set K with respect to >P is a maximal element of K with respect to ≥ (i.e., it
is point-wise undominated) such that P(X −Y) ≥ 0 for all Y ∈ K . In case P is
a linear prevision P, maximal gambles with respect to >P are just the point-wise
undominated gambles whose prevision is maximal; they maximise expected gain.

Definition 2 Let k ∈ [0,N], x ∈ Xk and V ⊆ U(x,k). A path (x,k,u∗·) in V is
called P-maximal, or >P-optimal, in V if no path in V is strictly preferred to
(x,k,u∗·), i.e., (x,k,u·)6>P(x,k,u∗·) for all (x,k,u·) ∈ V . We denote the set of the
P-maximal paths in V by opt>P

(V). The operator opt>P
is called the optimality

operator induced by >P, associated with U(x,k).

The P-maximal paths in U(x,k) are just those admissible paths starting at
time k in state x for which the associated gain gamble is a maximal element of
J (x,k) with respect to the strict partial order >P. If we denote the set of these >P-
maximal gain gambles in J (x,k) by opt>P

(J (x,k)), then for all (x,k,u·)∈U(x,k):

(x,k,u·) ∈ opt>P
(U(x,k)) ⇐⇒ J(x,k,u·) ∈ opt>P

(J (x,k)) .

P-maximal paths do not always exist: not every partially ordered set has maximal
elements. A fairly general sufficient condition for the existence of P-maximal el-
ements in J (x,k) (and hence in U(x,k)) is that J (x,k) should be compact2 (and
of course non-empty). This follows from a general result mentioned in [11, Sec-
tion 3.9.2]. In fact, Theorem 1 is a stronger result, whose Corollary 1 turns out to
be very important in proving that the dynamic programming approach works for
P-maximality (see Section 3.2). Its proof is based on Zorn’s lemma.

Theorem 1 For every element X of a compact subset K of L(Ω) that is not a
maximal element of K with respect to >P there is some maximal element Y of K
with respect to >P such that Y >P X.

2In this paper, we always assume that L(Ω) is provided with the supremum-norm topology.

168 ISIPTA ’03

Corollary 1 Let k ∈ [0,N] and let x ∈ Xk. If J (x,k) is compact then for every
admissible, non-P-maximal path (x,k,u·) in U(x,k) there is a P-maximal path
(x,k,u∗·) in U(x,k) that is strictly preferred to it.

2.2 P-Maximinity
We now turn to another optimality criterion that can be associated with a lower
prevision P. We can use P to define another strict order on L(Ω):

Definition 3 For any gambles X and Y in L(Ω) we write X AP Y if

P(X) > P(Y) or (X ≥ Y and X 6= Y).

AP induces a strict partial order on U(x,k), since it is anti-reflexive and tran-
sitive on L(Ω). A maximal element X of a subset K of L(Ω) with respect to AP
is easily seen to be a point-wise undominated element of K that maximises the
lower prevision: P(X) ≥ P(Y) for all Y ∈ K .

We can consider as optimal in U(x,k) those admissible paths (x,k,u·) for
which the associated gain gamble J(x,k,u·) is a maximal element of J (x,k) with
respect to AP; they are the paths (x,k,u·) that maximise the ‘lower expected gain’
P(J(x,k,u·)) and whose gain gambles J(x,k,u·) are point-wise undominated.

Definition 4 Let k ∈ [0,N], x ∈ Xk and V ⊆ U(x,k). A path (x,k,u∗·) in V is
called P-maximin, or AP-optimal, in V if no path in V is strictly preferred to
(x,k,u∗·), i.e., (x,k,u·) 6AP (x,k,u∗·) for all (x,k,u·) ∈ V . We denote the set of the
P-maximin paths in V by optAP

(V). The operator optAP
is called the optimality

operator induced by AP, associated with U(x,k).

Proposition 1 P-maximinity implies P-maximality. For a linear prevision P, P-
maximinity is equivalent to P-maximality.

The existence of maximal elements with respect to AP in an arbitrary set of
gambles K is obviously not guaranteed. But if K is compact, then we may easily
infer from the continuity of any coherent lower prevision P, that the counterparts
of Theorem 1 and Corollary 1 hold for AP.

2.3 M -Maximality
There is a tendency, especially among robust Bayesians, to consider an imprecise
probability model as a compact convex set of linear previsions M ⊆ P (Ω), where
P (Ω) is the set of all linear previsions on L(Ω). M is assumed to contain the true,
but unknown, linear prevision PT that models the available information [2, 7].

A gamble X is then certain to be strictly preferred to a gamble Y under the
true linear prevision PT if and only if it is strictly preferred under all candidate
models P ∈ M . This leads to a ‘robustified’ strict partial order >M on L(Ω).

De Cooman & Troffaes: Dynamic Programming with Uncertain Gain 169

Definition 5 X >M Y if X >P Y for all P ∈ M .

Since M is assumed to be compact and convex, it is not difficult to show
that the strict partial orders >M and >P are one and the same, where the coher-
ent lower prevision P is the so-called lower envelope of M , defined by P(X) =
inf
{

P(X) : P ∈ M
}

for all X ∈ L(Ω).3 Conversely, given a coherent lower previ-
sion P, the strict partial orders >M (P) and >P are identical, where

M (P) = {P ∈ P (Ω) : (∀X ∈ L(Ω))(P(X) ≥ P(X))}

is the set of linear previsions that dominate P. These strict partial orders therefore
have the same maximal elements, and lead to the same notion of optimality.

But there is in the literature yet another notion of optimality that can be associ-
ated with a compact convex set of linear previsions M : a gamble X is considered
optimal in a set of gambles K if it is a maximal element of K with respect to
the strict partial order >P for some P ∈ M . This notion of optimality is called
‘E-admissibility’ by Levi [9, Section 4.8]. It does not generally coincide with the
ones associated with the strict partial orders >M and >P, unless the set K is con-
vex [11, Section 3.9]. We are therefore led to consider a third notion of optimality:

Definition 6 Let x ∈ X , k ∈ [0,N] and V ⊆ U(x,k). A path (x,k,u∗
·) ∈ V is said

to be M -maximal in V if it is P-maximal in V for some P in M , or in other words
if it is ≥-maximal in V and maximises P(J(x,k,u·)) over V for some P ∈ M . The
set of all M -maximal elements of V is denoted by optM (V).

Interestingly, for any set of paths V ⊆ U(x,k):

optM (V) =
[

P∈M
opt>P

(V) . (1)

3 Dynamic Programming

3.1 A General Notion of Optimality
We have discussed three different ways of associating optimal paths with a lower
prevision P, all of which occur in the literature. We now propose to find out
whether, for these different types of optimality, we can use the ideas behind the
dynamic programming method to solve the corresponding optimal control prob-
lems. To do this, we take a closer look at Bellman’s analysis as described in Sec-
tion 1, and we investigate which properties a generic notion of optimality must
satisfy for his method to work. Let us therefore assume that there is some prop-
erty, called ∗-optimality, which a path in a given set of paths P either has or does
not have. If a path in P has this property, we say that it is ∗-optimal in P . We

3Since M is compact, this infimum is actually achieved.

170 ISIPTA ’03

b

c

d

a e

λ
α

µ

ν

β
γ

δ
ε

η

Figure 3: A More General Type of Dynamic Programming

shall denote the set of the ∗-optimal elements of P by opt∗ (P). By definition,
opt∗ (P) ⊆ P . Further on, we shall apply our findings to the various instances of
∗-optimality described above.

Consider Figure 3, where we want to find the ∗-optimal paths from state a
to state e. Suppose that after one time step, we can reach the states b, c and d
from state a. The ∗-optimal paths from these states to the final state e are known
to be α, γ, and δ and η, respectively. For the dynamic programming approach to
work, we need to be able to infer from this a generalised form of the Bellman
equation, stating essentially that the ∗-optimal paths from a to e, a priori given by
opt∗ ({λα,λβ,µγ,νδ,νε,νη}), are actually also given by opt∗ ({λα,µγ,νδ,νη}),
i.e., the ∗-optimal paths in the set of concatenations of λ, µ and ν with the respec-
tive ∗-optimal paths α, γ, and δ and η. It is therefore necessary to exclude that the
concatenations λβ and νε with the non-∗-optimal paths β and ν can be ∗-optimal.
This amounts to requiring that the operator opt∗ should satisfy some appropriate
generalisation of Bellman’s principle of optimality that will allow us to conclude
that λβ and νε cannot be ∗-optimal because then β and ε would be ∗-optimal as
well. Definition 8 below provides a precise general formulation.

But, perhaps surprisingly for someone familiar with the traditional form of
dynamic programming, opt∗ should satisfy an additional property: the omission
of the non-∗-optimal paths λβ and νε from the set of candidate ∗-optimal paths
should not have any effect on the actual ∗-optimal paths: we need that

opt∗ ({λα,λβ,µγ,νδ,νε,νη}) = opt∗ ({λα,µγ,νδ,νη}) .

This is obviously true for the simple type of optimality that we have looked at
in Section 1, but it need not be true for the more abstract types that we want to
consider here. Equality will be guaranteed if opt∗ is insensitive to the omission of
non-∗-optimal elements from {λα,λβ,µγ,νδ,νε,νη}, in the following sense.

Definition 7 Consider a set S 6= /0 and an optimality operator opt∗ defined on the
set ℘(S) of subsets of S such that opt∗ (T)⊆ T for all T ⊆ S. Elements of opt∗ (T)
are called ∗-optimal in T. opt∗ is called insensitive to the omission of non-∗-
optimal elements from S if opt∗ (S) = opt∗ (T) for all T such that opt∗ (S)⊆ T ⊆ S.

De Cooman & Troffaes: Dynamic Programming with Uncertain Gain 171

The following proposition gives an interesting sufficient condition for this in-
sensitivity in case optimality is associated with a (family of) strict partial order(s):
it suffices that every non-optimal path is strictly dominated by an optimal path.

Proposition 2 Let S be a non-empty set provided with a family of strict partial
orders > j, j ∈ J. Define for T ⊆ S, opt> j

(T) =
{

a ∈ T : (∀b ∈ T)(b 6> j a)
}

as the
set of maximal elements of T with respect to > j, and let optJ (T) =

S

j∈J opt> j
(T).

Then opt> j
, j ∈ J and optJ are optimality operators. If for some j ∈ J,

(∀a ∈ S\opt> j
(S))(∃b ∈ opt> j

(S))(b > j a), (2)

then opt> j
is insensitive to omission of non-> j-optimal elements from S. If (2)

holds for all j ∈ J, then optJ is insensitive to omission of non-J-optimal elements
from S.

Proof. Consider j in J, and assume that (2) holds for this j. Let opt> j
(S) ⊆

T ⊆ S, then we must prove that opt> j
(S) = opt> j

(T). First of all, if a ∈ opt> j
(S)

then b 6> j a for all b in S, and a fortiori for all b in T , so that a ∈ opt> j
(T).

Consequently, opt> j
(S) ⊆ opt> j

(T). Conversely, let a ∈ opt> j
(T) and assume

ex absurdo that a 6∈ opt> j
(S). It then follows from (2) that there is some c in

opt> j
(S) and therefore in T such that c > j a, which contradicts a ∈ opt> j

(T).
Next, assume that (2) holds for all j ∈ J. Let optJ (S) ⊆ T ⊆ S, then we must

prove that optJ (S) = optJ (T). Consider any j ∈ J, then opt> j
(S) ⊆ optJ (S) ⊆

T ⊆ S, so we may infer from the first part of the proof that opt> j
(S) = opt> j

(T).
By taking the union over all j ∈ J, we find that indeed optJ (S) = optJ (T). 2

We are now ready for a precise formulation of the dynamic programming
approach for solving optimal control problems associated with general types of
optimality. We assume that we have some type of optimality, called ∗-optimality,
that allows us to associate with the set of admissible paths U(x,k) starting at time
k in initial state x, an optimality operator opt∗ defined on the set ℘(U(x,k)) of
subsets of U(x,k). For each such subset V , opt∗ (V) is then the set of admissible
paths that are ∗-optimal in V . The principle of optimality states that the optimality
operators associated with the various U(x,k) should be related in a special way.

Definition 8 (Principle of Optimality) ∗-optimality satisfies the principle of op-
timality if it holds for all k ∈ [0,N], x ∈ Xk, ` ∈ [k,N] and (x,k,u·) in U(x,k) that
if (x,k,u·) is ∗-optimal in U(x,k), then (x`, `,u·) is ∗-optimal in U(x`, `).

This may also be expressed as:

opt∗ (U(x,k)) ⊆
[

(x,k,u·)`∈U(x,k)`

(x,k,u·)`⊕opt∗ (U(x`, `)) .

The Bellman equation now states that applying the optimality operator to the right
hand side suffices to achieve equality. (Usually this is stated with ` = k +1.)

172 ISIPTA ’03

Theorem 2 (Bellman Equation) Let k ∈ [0,N] and x ∈ Xk. Assume that ∗-opti-
mality satisfies the principle of optimality, and that the optimality operator opt∗
for U(x,k) is insensitive to the omission of non-∗-optimal elements from U(x,k).
Then for all ` ∈ [k,N]:

opt∗ (U(x,k)) = opt∗
[

(x,k,u)`∈U(x,k)`

(x,k,u)` ⊕opt∗ (U(x`, `)) ,

that is, a path is ∗-optimal if and only if it is a ∗-optimal concatenation of an
admissible path (x,k,u·)` and a ∗-optimal path of U(x`, `).

Proof. Fix k in [0,N], ` ∈ [k,N] and x ∈ Xk. Define

V1 =
[

(x,k,u)`∈U(x,k)`

(x,k,u)` ⊕opt∗ (U(x`, `)) , and,

V2 =
[

(x,k,u)`∈U(x,k)`

(x,k,u)` ⊕ (U(x`, `)\opt∗ (U(x`, `))).

Obviously, U(x,k) = V1 ∪ V2 and V1 ∩ V2 = /0. We have to prove that
opt∗ (U(x,k)) = opt∗ (V1). By the principle of optimality, no path in V2 is ∗-
optimal in U(x,k), so V2 ∩opt∗ (U(x,k)) = /0. This implies that opt∗ (U(x,k)) ⊆
V1 ⊆ U(x,k), and since opt∗ is assumed to be insensitive to the omission of non-
∗-optimal elements from U(x,k), it follows that opt∗ (U(x,k)) = opt∗ (V1). 2

3.2 P-Maximality
Let us now apply these general results to the specific types of optimality intro-
duced before. We first consider the optimality operator opt>P

that selects from a
set of gambles (or paths) S those gambles (or paths) that are the maximal elements
of S with respect to the strict partial order >P. The following lemma roughly states
that the preference amongst paths with respect to >P is preserved under concate-
nation and truncation. It yields a sufficient condition for the principle of optimality
with respect to P-maximality to hold. Moreover, the lemma, and the principle of
optimality, do not necessarily hold for preference with respect to P-maximinity.

Lemma 1 Let k ∈ [0,N] and ` ∈ [k,N]. Consider the paths (x,k,u·)` in U(x,k)`
and (x`, `,v·), (x`, `,w·) in U(x`, `). Then (x`, `,v·) >P (x`, `,w·) if and only if
(x,k,u·)` ⊕ (x`, `,v·) >P (x,k,u·)`⊕ (x`, `,w·).

Proof. Let X , Y and Z be gambles on Ω. The statement is proven if we can show
that Y >P Z implies X +Y >P X +Z. Assume that Y >P Z. If P(Y −Z) > 0, then
P((X +Y)− (X +Z)) = P(Y −Z) > 0. If Y ≥ Z, then X +Y ≥ X +Z, and finally,
if Y 6= Z, then X +Y 6= X +Z. It follows that X +Y >P X +Z. 2

De Cooman & Troffaes: Dynamic Programming with Uncertain Gain 173

Proposition 3 (Principle of Optimality) Let k ∈ [0,N], x ∈ Xk and (x,k,u∗·) ∈
U(x,k). If (x,k,u∗·) is P-maximal in U(x,k) then (x`, `,u∗·) is P-maximal in U(x`, `)
for all ` ∈ [k,N].

Proof. If (x`, `,u∗·) is not P-maximal, there is a path (x`, `,u·) such that
(x`, `,u·) >P (x`, `,u∗·). By Lemma 1 we find that

(x,k,u∗·)`⊕ (x`, `,u·) >P (x,k,u∗·)` ⊕ (x`, `,u∗·) = (x,k,u∗·).

This means that (x,k,u∗·)` ⊕ (x`, `,u·) is preferred to (x,k,u∗·), and therefore
(x,k,u∗·) cannot be P-maximal, a contradiction. 2

As a direct consequence of Corollary 1 and Proposition 2, we see that if J (x,k)
is compact, then the optimality operator opt>P

associated with U(x,k) is insen-
sitive to the omission of non->P-optimal elements. Together with Proposition 3
and Theorem 2, this allows us to infer a Bellman equation for P-maximality.

Corollary 2 Let k ∈ [0,N] and x ∈ Xk. If J (x,k) is compact, then for all `∈ [k,N]

opt>P
(U(x,k)) = opt>P

[

(x,k,u)`∈U(x,k)`

(x,k,u)` ⊕opt>P
(U(x`, `)) , (3)

that is, a path is P-maximal if and only if it is a P-maximal concatenation of an
admissible path (x,k,u·)` and a P-maximal path of U(x`, `).

Corollary 2 results in a procedure to calculate all P-maximal paths. Indeed,
opt>P

(U(x,N)) = {u /0} for every x∈XN , and opt>P
(U(x,k)) can be calculated re-

cursively through Eq. (3). It also provides a method for constructing a P-maximal
feedback: for every x ∈ Xk, choose any (x,k,u∗· (x,k)) ∈ opt>P

(U(x,k)). Then
φ(x,k) = u∗k(x,k) realises a P-maximal feedback.

3.3 M -Maximality
We now turn to the optimality operator optM , satisfying (1). By Proposition 2
and (1), it follows that optM is insensitive to the omission of non-M -maximal
elements of U(x,k) whenever J (x,k) is compact. By Proposition 3, optM satisfies
the principle of optimality (indeed, if a path is M -maximal, then it must be P-
maximal for some P ∈ M , and by the proposition any truncation of it is also
P-maximal, hence also M -maximal). This means that the Bellman equation also
holds for M -maximality under similar conditions as for P-maximality. As already
mentioned in Section 2.3, both types of optimality coincide if J (x,k) is convex.

3.4 P-Maximinity
Finally, we come to the type of optimality associated with the strict partial order
AP. It follows from Proposition 2 and the discussion at the end of Section 2.2

174 ISIPTA ’03

a
b

c

d

α
β

γ

Figure 4: A Counterexample

that if J (x,k) is compact, the optimality operator optAP
for U(x,k) is insensi-

tive to the omission of non-AP-optimal paths from U(x,k). But, as the following
counterexample shows, we cannot guarantee that the principle of optimality holds
for AP-optimality, and therefore dynamic programming may not work here—not
even with a vacuous uncertainty model. Essentially, this is because the partial or-
der AP is not a vector ordering on L(Ω)—it is not compatible with gain additivity:
contrary to expected gain, lower expected gains are not additive.

Example 1 Consider the dynamical system depicted in Figure 4. Let Ω = {], [},
let P be the vacuous lower prevision on Ω, and denote the gamble] 7→ x, [7→ y
by 〈x,y〉. Assume that J(α) = 〈2,0〉, J(β) = 〈0,−1〉 and J(γ) = 〈−2,0〉 (there is
zero gain associated with the final state). Then αβ 6AP αγ: indeed, 〈2,−1〉 does
not dominate 〈0,0〉 point-wise, and inf〈2,−1〉 6> inf〈0,0〉 or equivalently 〈0,0〉
maximises the worst expected gain. Hence, we find that αγ is P-maximin. But
β AP γ: indeed, inf〈0,−1〉 > inf〈0,−2〉 which means that γ is not P-maximin.
Thus the “principle of P-maximin optimality” does not hold here.

3.5 Yet Another Type of Optimality
We end this discussion with another type of optimality associated with a strict par-
tial order, introduced by Harmanec in [8, Definition 3.4]. In our setting (precisely
known system dynamics), its definition basically reduces to

X >?
P Y if P(X) > P(Y) or (X ≥ Y and X 6= Y).

It can be shown easily that if J (x,k) is compact, the optimality operator induced
by >?

P for U(x,k) is insensitive to the omission of non->?
P-optimal paths from

U(x,k). But, as the following counterexample shows, we cannot guarantee that
the principle of optimality holds for >?

P-optimality, and therefore the dynamic
programming approach may not work here—not even with a vacuous uncertainty
model. Again, this is because the partial order AP is not compatible with gain ad-
ditivity. It also indicates that the solution of the Bellman-type equation advocated
in [8] will not necessarily lead to optimal paths, in the sense we described above.

Example 2 Consider the dynamical system depicted in Figure 4. Let Ω = {], [},
let P be the vacuous lower prevision on Ω, and denote the gamble] 7→ x, [7→ y

De Cooman & Troffaes: Dynamic Programming with Uncertain Gain 175

by 〈x,y〉. Assume that J(α) = 〈2,0〉, J(β) = 〈0,0〉 and J(γ) = 〈−1,−1〉 (there is
zero gain associated with the final state). Then αβ 6>?

P αγ: indeed, 〈2,0〉 does not
dominate 〈1,−1〉 point-wise, and, inf〈2,0〉 6> sup〈1,−1〉. Hence, we find that αγ
is >?

P-maximal. But β >?
P γ: indeed, 〈0,0〉 dominates 〈−1,−1〉 point-wise, which

means that γ is not >?
P-maximal. Thus the “principle of >?

P-maximal optimality”
does not hold for this example.

4 Conclusion
The main conclusion of our work is that the method of dynamic programming can
be extended to systems with imprecise gain. Our general study of what conditions
a generalised notion of optimality should satisfy for the Bellman approach to work
is of some interest in itself too. In particular, besides an obvious extension of
the well-known principle of optimality, another condition emerges that relates to
the nature of the optimality operators per se: the optimality of a path should be
invariant under the omission of non-optimal paths from the set of paths under
consideration. If optimality is induced by a strict partial ordering of paths, then
this second condition is satisfied whenever the existence of dominating optimal
paths for non-optimal ones is guaranteed.

Another important observation is that, in contradistinction to P-maximality
and M -maximality, the dynamic programming method cannot be used to solve
optimisation problems corresponding to P-maximinity: for this notion the princi-
ple of optimality does not hold in general.

Throughout the paper we assumed the system dynamics to be deterministic,
that is, independent of ω. This greatly simplifies the discussion, still encompasses
a large number of interesting applications, and does not suffer from the compu-
tational issues often encountered when dealing with non-deterministic dynamical
systems—simply because in general the number of possible (random) paths tends
to grow exponentially with the size of the state space X . However, we should note
that dropping this assumption still leads to a Bellman-type equation, connecting
operators of optimality associated with random states x : Ω → X . A discussion of
these matters has been omitted from the present paper due to limitations of space.

Acknowledgements

This paper presents research results of project G.0139.01 of the Fund for Scientific
Research, Flanders (Belgium), and of the Belgian Programme on Interuniversity
Poles of Attraction initiated by the Belgian state, Prime Minister’s Office for Sci-
ence, Technology & Culture. The scientific responsibility rests with the authors.

176 ISIPTA ’03

References
[1] BELLMAN, R. Dynamic Programming. Princeton University Press, Prince-

ton, 1957.

[2] BERGER, J. O. The robust Bayesian viewpoint. In Robustness of Bayesian
Analyses, J. B. Kadane, Ed. Elsevier Science, Amsterdam, 1984.

[3] BERNARDO, J. M., H., D. J., V., L. D., AND SMITH, A. F. M., Eds.
Bayesian Statistics. University Press, Valencia, 1980.

[4] CHEVÉ, M., AND CONGAR, R. Optimal pollution control under imprecise
environmental risk and irreversibility. Risk Decision and Policy 5 (2000),
151–164.

[5] DE COOMAN, G., COZMAN, F. G., MORAL, S., AND WALLEY, P., Eds.
ISIPTA ’99 – Proceedings of the First International Symposium on Imprecise
Probabilities and Their Applications (Ghent, 1999), Imprecise Probabilities
Project.

[6] DE FINETTI, B. Theory of Probability: a Critical Introductory Treatment.
Wiley, London, 1975.

[7] GIRON, F. J., AND RIOS, S. Quasi-Bayesian behaviour: A more realistic
approach to decision making? In Bernardo et al. [3], pp. 17–38.

[8] HARMANEC, D. Generalizing Markov decision processes to imprecise
probabilities. Journal of Statistical Planning and Inference 105, 1 (June
2002), 199–213.

[9] LEVI, I. The Enterprise of Knowledge. An Essay on Knowledge, Credal
Probability, and Chance. MIT Press, Cambridge, 1983.

[10] UTKIN, L. V., AND GUROV, S. V. Imprecise reliability models for the
general lifetime distribution classes. In de Cooman et al. [5], pp. 333–342.

[11] WALLEY, P. Statistical Reasoning with Imprecise Probabilities. Chapman
and Hall, London, 1991.

Gert de Cooman is a member of the SYSTeMS research group of Ghent University.
Address: Technologiepark – Zwijnaarde 914, B-9052, Zwijnaarde, Belgium.
E-mail: gert.decooman@ugent.be

Matthias Troffaes is a member of the SYSTeMS research group of Ghent University.
Address: Technologiepark – Zwijnaarde 914, B-9052, Zwijnaarde, Belgium.
E-mail: matthias.troffaes@ugent.be

