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Abstract

In this paper we adopt the geometric approach to the theory of evidence to
study the geometric counterparts of the plausibility functions, or upper prob-
abilities. The computation of the coordinate change between the two natural
reference frames in the belief space allows us to introduce the dual notion
of basic plausibility assignment and understand its relation with the classical
basic probability assignment. The convex shape of the plausibility space Π is
recovered in analogy to what was done for the belief space, and the pointwise
geometric relation between a belief function and the corresponding plausi-
bility vector is discussed. The orthogonal projection of an arbitrary belief
function s onto the probabilistic subspace is computed and compared with
other significant entities, such as the relative plausibility and mean probabil-
ity vectors.
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1 Introduction
Uncertainty measures are assuming a mayor role in fields like artificial intelli-
gence and computer vision, where problems requiring formalized reasoning are
common. However, during the last decades a number of different descriptions of
uncertain state of knowledge have been proposed, as alternatives or extensions of
the classical probability theory. The theory of evidence is one of the most popular
formalisms, thanks perhaps to its nature of quite natural extension of the classical
Bayesian methodology.

In a series of recent works ([7], [6]) we have proposed a geometric interpre-
tation of the theory of evidence based on the notion of belief space, the set of all

∗This work has been supported by the Autonomous Navigation and Computer Vision Lab, Depart-
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the b.f.s defined on a fixed domain. It is well known that upper and lower proba-
bilities, belief functions, possibility measures, fuzzy sets can be all thought of as
fuzzy measures. Hence, it would be highly desirable to find a common environ-
ment where to discuss and compare all these uncertainty descriptions in an unified
fashion.

In this perspective, this paper proposes a geometric picture of the connections
between upper and lower probabilities in the belief space framework. After re-
calling the basic notions of the theory of evidence, we will briefly introduce the
geometric approach to the ToE. After computing the change of coordinates be-
tween the orthogonal and oblique reference frames in the belief space, the notion
of basic plausibility assignment will be defined and its analytic relation with the
basic probability assignment unveiled (Section 3). This will allow us to describe
the space of all the plausibility vectors as a simplex, called plausibility space, and
give a natural interpretation of its vertices in terms of degrees of belief.

Next (Section 4) we will try and understand the pointwise geometry of upper
probabilities by noticing that the line connecting a belief function s and the corre-
sponding plausibility function P∗

s is orthogonal to the Bayesian subspace P . This
will allow us to compute the orthogonal projection s⊥P of s onto P and prove that
it is a probability distribution. We will also find the position of the mean proba-
bility vector s+P∗

s
2 and the condition under which P∗

s is the reflection of s through
the probabilistic subspace.

Finally, we will express the credal set of the probabilities consistent with s as
a simplex, noticing that its center of mass is the geometric counterpart of the so
called pignistic transformation, and discuss the geometry of these points in the
perspective of the probabilistic approximation problem. To improve the readabil-
ity of the paper the proofs of the major results have been moved to an appendix.

1.1 Previous work
The geometric approach to the theory of evidence and generalized probabilities is
due to the author, even if close references can be the works of Ha and Haddawy
[9] and Wang et al. [17]. Anyway, some interesting papers have been recently
published on the geometry of lower probabilities and plausibilities of singletons.
P. Black, in particular, has dedicated its doctoral thesis to the study of belief func-
tions [2]. An abstract of his results on the geometry of belief functions and other
monotone capacities can be found in [3], where he uses shapes of geometric loci
to give a direct visualization of the distinct classes of monotone capacities. In
particular a number of results about lengths of edges of convex sets representing
monotone capacities are given, together with their size meant as the sum of those
lengths.

A number of papers, on the other side, have been published on the approxi-
mation of belief functions (see [1] for a review), mainly in order to find efficient
implementations of the rule of combination aiming to reduce the number of focal
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elements (see for instance the works of Tessem [16] and Lowrance et al. [11]).

2 Geometric approach to the Theory of Evidence
The theory of evidence [13] has been introduced in the late Seventies by Glenn
Shafer as a way of representing epistemic knowledge, starting from a sequence
of seminal works of Arthur Dempster [8]. In this formalism the best representa-
tion of chance is a belief function (b.f.) rather than a Bayesian mass distribution.
Following Shafer [13] let us call the finite set of possible outcomes for a decision
problem frame of discernment or simply frame. In the following we will denote
by Ac the complement of an arbitrary set A, by A \B .

= A∩Bc the difference of
two sets A and B, and by |A| the cardinality (number of elements) of A.

A basic probability assignment (b.p.a.) over a frame Θ is a function m : 2Θ →
[0,1] on its power set 2Θ = {A ⊂ Θ} such that

m( /0) = 0, ∑
A⊂Θ

m(A) = 1, m(A) ≥ 0 ∀A ⊂ Θ.

The subsets of Θ associated with non-zero values of m are called focal elements
and their union C core.
The belief function s : 2Θ → [0,1] associated with a basic probability assignment
m is defined as s(A) = ∑B⊂A m(B), while m can be uniquely recovered from s by
means of the Moebius formula

m(A) = ∑
B⊂A

(−1)|A\B|s(B). (1)

In particular, a Bayesian belief function s is a belief function such that ms(A) = 0
for all A s.t. |A|> 1. Hence, finite probabilities are nothing more than special b.f.s.

Belief functions representing distinct bodies of evidence can be combined by
means of the Dempster’s rule of combination [8]. The orthogonal sum s1 ⊕ s2
of two belief functions is a new belief function whose focal elements are all the
possible intersections between the combining focal elements and whose b.p.a. is
given by

m(C) =
∑i, j:Ai∩B j=C m1(Ai)m2(B j)

1−∑i, j:Ai∩B j= /0 m1(Ai)m2(B j)
. (2)

where {Ai} and {B j} are the focal elements of s1,s2 respectively.
When all the intersections between focal elements of the two functions are empty,
the denominator of Equation (2) goes to zero and we say that s1 and s2 are not
combinable.

A dual representation of the evidence encoded by a belief function s is called
upper probability1, and expresses the amount of evidence not against a proposi-

1The name comes from the fact that belief values and upper probability values are respectively
lower and upper bounds for the probabilities of the events.
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tion A
P∗(A)

.
= 1− s(Ac) = 1− ∑

B⊂Ac
m(B) = ∑

B∩A6= /0
m(B) ≥ s(A). (3)

Now, consider a frame of discernment Θ and introduce in the Euclidean space
R
|2Θ|−1 an orthonormal reference frame {XA}A⊂Θ,A6= /0 such that each coordinate

function xA measures the belief value associated with the i-th subset of Θ.

Definition 1 The belief space associated with Θ is the set of points SΘ of R
|2Θ|−1

corresponding to a belief function.

We usually assume the domain Θ fixed, and denote the belief space by S . Let us
call A-th basis belief function

PA
.
= s ∈ S s.t. ms(A) = 1, ms(B) = 0 B 6= A

the unique belief function assigning all the mass to a single subset A of Θ. It can
be proved that (see [7], [6]), calling Es the list of focal elements of s,

Theorem 1 The set of all the belief functions with focal elements in a given col-
lection X is closed and convex in S : {s : Es ⊂ X} = Cl({PA : A ∈ X}).

The shape of S follows immediately from Theorem 1.

Corollary 1 The belief space S coincides with the convex closure of all the basis
belief functions, S = Cl(PA, A ⊂ Θ, A 6= /0).

Moreover, any belief function s ∈ S can be written as a convex sum as follows:

s = ∑
A⊂Θ, A6= /0

ms(A) ·PA. (4)

Clearly, since a probability is a belief function assigning non zero masses
to singletons only, Theorem 1 implies that the set P of all the Bayesian belief
functions is a subset of the border of S , precisely P = Cl(P{θi}, i = 1, ..., |Θ|).

3 Geometry of Plausibility Functions
Analogously to what done for the vectors of R

N (N .
= |2Θ|−1) representing belief

functions, we would like to understand the geometric properties of the plausibility
vectors [P∗

s (A),A ⊂ Θ]′. A plausibility vector can indeed be expressed as

P∗
s = ∑

A⊂Θ
P∗

s (A) ·XA (5)

where {XA,A ⊂ Θ} is the orthogonal reference frame of the belief space.
The basis belief functions PA form a set of independent vectors in R

N , so that the
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collections {XA} and {PA} form two distinct coordinate frames in the belief space.
To understand the place a plausibility vector takes in the belief reference frame
{PA} we then need to compute the coordinate change between these frames. We
first notice that basis b.f.s can be expressed as PA = ∑E⊃A XE .

Proposition 1 The coordinate change between the two coordinate frames {XA}
and {PA} is given by

XA = ∑
B⊃A

PB · (−1)|B\A|. (6)

3.1 Basic Plausibility Assignment
Let us now replace expression (6) in Equation (5), obtaining for P∗

s
2

∑
A⊂Θ

P∗
s (A) ·XA = ∑

A⊂Θ
P∗

s (A) · ∑
B⊃A

PB · (−1)|B\A| = ∑
B⊂Θ

PB · ∑
A⊂B

(−1)|B−A|P∗
s (A)

and after introducing the quantity

µ(A)
.
= ∑

B⊂A
(−1)|A−B|P∗

s (B) (7)

we can write
P∗

s = ∑
A⊂Θ

µ(A) ·PA. (8)

We call the function µ : 2Θ → R defined by expression (7) basic plausibility as-
signment. It is easy to recognize the Moebius equation for plausibilities, which
implies P∗

s (A) = ∑B⊂A µ(B). A few calculations allow us to understand the rela-
tion between basic probabilities and plausibilities.

Theorem 2
µ(A) =

{
(−1)|A|+1 ∑E⊃A m(E) A 6= /0
0 A = /0.

(9)

It is easy to see that basic plausibility assignments meet the normalization con-
straint. In fact

∑
A⊂Θ

µ(A) = − ∑
A⊂Θ,A6= /0

(−1)|A| ∑
E⊃A

m(E) = − ∑
E⊂Θ

m(E) · ∑
A⊂E,A6= /0

(−1)|A| = 1

since −∑A⊂E,A6= /0(−1)|A| = −(0− (−1)0) = 1 for the expression of Newton’s
binomial ∑n

k=0
(n

k

)
pkqn−k = (p + q)n, where in this case k = |A|, p = −1, q = 1.

However, µ(A) is not always positive, so we can just infer that any plausibility
vector lies on the affine subspace generated by the basis belief functions {PA}.

2Note that P∗
s ( /0) = 0 so the expression is correct even if X /0 does not exist.
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3.2 Plausibility Space
Analogously to what done for belief functions, let us call plausibility space the
region Π of R

N whose points correspond to admissible plausibility functions. It
is not difficult to prove that

Theorem 3 Π is a simplex

Π = Cl(ΠA,A ⊂ Θ,A 6= /0), ΠA = − ∑
B⊂A

(−1)|B|PB. (10)

Proof. We just need to re-assemble expression (8) as a convex combination of
points, getting (through Equation (9))

P∗
s = ∑

A⊂Θ
µ(A) ·PA = ∑

A⊂Θ,A6= /0
(−1)|A|+1 · ∑

E⊃A
m(E) ·PA =

= ∑
A⊂Θ,A6= /0

∑
E⊃A

(−1)|A|+1m(E) ·PA = ∑
E⊂Θ,E 6= /0

m(E) · ∑
A⊂E,A6= /0

(−1)|A|+1PA

= ∑E 6= /0 m(E)ΠE , that is a convex combination since basic probability assign-
ments have unitary sum. 2

It is easy to notice that Π{θ} = −(−1)|{θ}| ·P{θ} = P{θ}∀θ ∈ Θ, so that P ⊂
S ∩Π. The inverse relation between basis belief functions and basis plausibilities
has the same form of Equation (10):

Theorem 4
PA = − ∑

B⊂A
(−1)|B| ·ΠB. (11)

Proof. The proof follows the sketch of Proposition 1. Replacing expression (11)
in Equation (10) yields for ΠA

− ∑
B⊂A

(−1)|B|PB = ∑
B⊂A

(−1)|B| · ∑
E⊂B

(−1)|E|ΠE = ∑
E⊂A

(−1)|E|ΠE · ∑
E⊂B⊂A

(−1)|B|

but then, analogously to what previously done (see the Appendix),

∑
E⊂B⊂A

(−1)|B| =

{
(−1)|A| E = A
0 E 6= A

and the thesis easily follows. 2

The vertices of the plausibility space have a natural interpretation.

Theorem 5 The vertex ΠA of the plausibility space is the plausibility vector as-
sociated with the basis belief function PA, ΠA = P∗

PA
.
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Figure 1: Geometric relations between upper and lower probabilities in the be-
lief space for a binary frame Θ = {x,y}. The belief space S and the plausibility
space Π are both simplices with vertices {PΘ = (0,0),Px = (1,0),Py = (0,1)} and
{ΠΘ = (1,1),Πx = Px,Πy = Py} respectively. In the picture a belief function s and
the corresponding plausibility function P∗

s are indicated, showing that they are in
symmetric positions with respect to the common subspace P . The location of the
relative plausibility of singletons P̃∗

s is also shown, as intersection of the proba-
bilistic subspace with the line joining P∗

s and PΘ = (0,0). A dual line joining s
and ΠΘ also appears.

Figure 1 shows the relation between belief and plausibility space for a the bi-
nary frame Θ = {x,y}. Without reporting the calculations, we may notice another
few interesting facts. The two simplices are perfectly symmetric with respect to
the probabilistic subspace. Furthermore, upper and lower probability vectors de-
termine a line that is orthogonal to P , and they also lie on symmetric positions
with respect to the Bayesian region. Notice that the relative plausibility vector P̃∗

s
(normalized version of P∗

s ) does not coincide at all with the orthogonal projection
of s (or P∗

s ) onto P . In the following we will try and understand what of those
features retain their validity in the general case.

4 Upper and lower probability vectors
It is in fact natural to wonder what is the pointwise relation between vectors rep-
resenting upper and lower probability functions generated by the same evidence.



Cuzzolin: Geometry of Upper Probabilities 195

Luckily enough, orthogonality turns out to be an actual property of those uncer-
tainty descriptions.

4.1 Orthogonal projection
Let us first denote with Px the basis belief function for A = {x}. Being P =
Cl(Px,x ∈ Θ) an affine subspace, it can be written as the translated version of
a vector space as P = Px + span(Py −Px,∀y ∈ Θ,y 6= x), where the n−1 vectors
Py −Px form a basis of this vector space. They show a peculiar symmetry

Py −Px(A) =





1 A ⊃ {y},A 6⊃ {x}
0 A ⊃ {x},{y} or A 6⊃ {x},{y}
−1 A 6⊃ {y},A ⊃ {x}.

that can be usefully exploited for our goals. In particular, we can appreciate that

(Py−Px)(A) = 1⇒A⊃{y},A 6⊃ {x}⇒Ac ⊃{x},Ac 6⊃ {y}⇒ (Py−Px)(Ac) =−1

and vice-versa, while (Py −Px)(A) = 0 ⇒ A ⊃ {y},A ⊃ {x} or A 6⊃ {y},A 6⊃ {x}
so that in the first case Ac 6⊃ {x},{y}, in the second one Ac ⊃ {x},{y} but in both
situations (Py −Px)(Ac) = 0. Summarizing we can write

(Py −Px)(Ac) = −(Py −Px)(A) ∀A ⊂ Θ

which directly implies that

Theorem 6 The line connecting P∗
s and s is orthogonal to the probabilistic sub-

space, i.e.
s−P∗

s ⊥P .

It is then clear that the orthogonal projection of s onto P is simply the intersection
of this line with the probabilistic subspace,

s⊥P =~sP∗
s ∩P .

We just have to find the value of α such that s+α(P∗
s − s) ∈ P .

Theorem 7 The coordinates of the orthogonal projection of s onto P with respect
to the basis {PA} can be expressed in terms of the basic probability assignment m
of s as follows:

ms⊥P ({x}) = m({x})+ ∑
A⊇{x}

m(A) · ∑|A|>1 m(A)

∑|A|>1 m(A)|A| . (12)

Equation (12) ensures that ms⊥P ({x}) is always positive for each x ∈ Θ, so that
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Corollary 2 The orthogonal projection s⊥P of any arbitrary belief function s onto
the probabilistic subspace P is a Bayesian belief function.

This fact is not just a trivial consequence of its definition, since the probability
simplex is a small region of span(P ) in general. A symmetric version of the for-

mula can be obtained after realizing that ∑|A|=1 m(A)

∑|A|=1 m(A)|A| = 1, so that we can write

ms⊥P ({x}) = s({x}) · ∑|A|=1 m(A)

∑|A|=1 m(A)|A| +[P∗
s − s]({x}) · ∑|A|>1 m(A)

∑|A|>1 m(A)|A| . (13)

It is natural to wonder whether the upper probability vector is actually the
reflection of the lower probability vector through the probabilistic subspace as in

the binary case, i.e. if s⊥P =
s+P∗

s

2
. In [5] we will show that

Proposition 2 Orthogonal projection and mean probability coincide iff

∑
|A|>1

m(A)|A| = 2 ∑
|A|>1

m(A).

This apparently arid result is strictly related to the duality isuue concerning the
geometric counterparts of upper and lower probabilities. Is this duality associated
with some kind of symmetry through the probabilistic subspace? Further analysis
[5] seem to hint that the situation is a bit more complex.

4.2 Simplex of Consistent Probabilities
It is well known, on the other side, that belief functions can be formally interpreted
in terms of classes of unknown probabilities. Given the nature of basic probability
assignments, it is natural to conjecture that the set of probabilities P(s) consistent
with a given belief function s has also the shape of a simplex. Is there any relation
between the orthogonal projection of s onto P and this simplex?

Following Shafer [13] we can think of m(A) as a probability free to move
inside A. If we assign the mass of each focal element Ai to one of its elements
ai, intuitively we should get an extremum of the region of consistent probabili-
ties. More formally, to each focal element A corresponds a mass m(A) distributed
among its elements, m(A) ·Cl(Pa, a ∈ A), so that P(s) can be expressed as

P(s) = ∑
A⊂Θ

m(A) ·Cl(Pa, a ∈ A).

Then, given an arbitrary belief function s with focal elements A1, ...,Am, we can
define for each choice of m representatives {a1, ...,am}, ai ∈ Ai ∀i,

Pa1...am
.
=

m

∑
i=1

m(Ai) ·Pai. (14)

It can be proved that [5] (as suggested by our intuition)
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Proposition 3

P(s) = Cl(Pa1...am ,{a1, ...,am} ∈ A1 × ...×Am).

Accordingly, the center of mass P̄(s) of P(s) gets the form

1
∏i |Ai|

· ∑
{a1,...,am}∈A1×...×Am

Pa1...am =
1

∏i |Ai|
· ∑
{a1,...,am}∈A1×...×Am

m

∑
i=1

m(Ai)Pai =

1
∏i |Ai| ∑

a∈Cs

Pa ∑
A j⊃{a}

m(A j)
∏i |Ai|
|A j|

= ∑
a∈Cs

Pa ∑
A j⊃{a}

m(A j)

|A j|
= ∑

x∈Θ
Px ∑

A⊃{x}

m(A)

|A|
(15)

since no focal elements include points outside the core. Equation (15) possesses
several interesting interpretations.

4.2.1 Center of mass and pignistic transformation

In his popular transferable belief model [15] Philippe Smets has proposed an ap-
proach to the theory of evidence in which beliefs are represented at credal level
(as convex sets of probabilities or belief functions), while decisions are made by
resorting to a probabilistic approximation of belief function called pignistic trans-
formation (see for instance [4]). Smets justifies his transformation by means of a
so-called “rationality” requirement, which mathematically translates into a linear-
ity constraint (see Theorem 3 of [14]).

It is pretty surprising to see that the pignistic transformation Pign[s] of a belief
function s is exactly expressed by Equation (15)

Pign[s](x) = ∑
A⊃{x}

m(A)

|A| ,

making clear that the geometric counterpart of the pignistic transformation coin-
cides with the center of mass of the simplex P(s) of consistent probabilities. The
full implications of this fact are still unclear, and deserve further investigations.

4.2.2 Consistency and Epsilon Contamination

The geometric analysis of the convex region of the consistent probabilities can
be also related to a popular technique in robust statistics, the Epsilon Contam-
ination Model. For a fixed 0 < ε < 1 and a probability distribution P∗, the as-
sociated ε-contamination model is a convex class of distributions of the form
{(1− ε)P∗+ εQ} where Q is arbitrary.
Teddy Seidenfeld has proved that (for discrete domains) any ε-contamination
model is equivalent to a belief function, whose corresponding consistent prob-
abilities form the largest convex set induced by the collection of coherent lower
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probabilities the model specifies for the elements of the domain (see [12], The-
orem 2.10). It is worth noticing that in this special case P∗ has the meaning of
barycenter of the convex set, providing then another interesting interpretation of
Equation (15).

5 Comments
What we have learned about the pointwise geometry of upper and lower proba-
bilities can then be eventually depicted as in Figure 2. Each belief function s is
associated with a simplex of consistent probabilities (the shaded triangle) P(s)
in the probabilistic subspace P (the larger triangle), whose center of mass P̄(s)
(representing the pignistic transformation of s) is in general different from the or-
thogonal projection of s onto P . The line sP∗

s is orthogonal to P but s and P∗
s are

not on symmetric positions in general.

s

*

s
P

P

)(sP

{ }1x
P

{ }2x
P

{ }
n

x
P

P
s^

)(sP

}{
A

X

Figure 2: Geometric relation between upper and lower probability vectors.

The binary case turns out to be rather peculiar, since, recalling the definition
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of basic plausibility assignment (Section 3.1),

P̄(s) = ∑x∈Θ2 Px ∑A⊃x
m(A)
|A| = Px · (m(x)+ m(Θ)

2 )+Py · (m(y)+ m(Θ)
2 ),

s+P∗
s

2 = Px · m(x)+m(x)+m(Θ)
2 +Py · m(y)+m(y)+m(Θ)

2 +

+PΘ · m(Θ)−m(Θ)
2 = Px · (m(x)+ m(Θ)

2 )+Py · (m(y)+ m(Θ)
2 ),

s⊥P = Px · [m(x)+(1−m(y)−m(x)) · m(Θ)
2m(Θ) ]+Py · [m(y)+ 1−m(x)−m(y)

2 ]

= Px · (m(x)+ m(Θ)
2 )+Py · (m(y)+ m(Θ)

2 )

and these three quantities coincide.
In our vision this knowledge could represent a step towards a more compre-

hensive understanding of the various uncertainty measures that can be introduced
on finite domains: classical probabilities, upper and lower probabilities, belief
functions, possibility measures, fuzzy sets. A number of papers have been re-
cently published, for instance, on the connection between fuzzy measures and
belief functions ([10] among the others). The belief space framework could pro-
vide a unifying environment where those connections may emerge more clearly
and lead to a better comprehension of the field.
In this paper, in particular, we have seen how the dual concept of plausibility func-
tion or upper probability transfer into a dual convex geometry. The analogous of
basis belief functions and probability assignments have been developed and their
geometric interpretation exposed. We concentrated our efforts on understanding
the pointwise relation between lower and upper probability vectors, proving their
orthogonality with respect to the probabilistic subspace.
We also analyzed the comparative geometry of relative plausibility, orthogonal
projection and center of mass of the set of consistent probabilities. This can be
seen as a preliminary work in the perspective of a geometric solution to the proba-
bilistic approximation problem. Coherently, we are also working on the geometry
of finite fuzzy sets and possibility measures, to investigate more closely the idea
of duality between probabilistic and possibilistic measures and discuss possible
alternative consonant approximations of belief functions.

From a purely technical viewpoint, it is not clear yet what is the exact posi-
tion in the belief space of a generic plausibility vector, and its geometric relation
with other significant points like the relative plausibility of singletons P̃∗

s . In the
next future [5] we will show how this quantity turns out to be the best Bayesian
approximation of a belief function in the framework of Dempster’s combination
rule, and “perfectly” represents (in a very precise way) the original belief func-
tion in probabilistic subspace. It will be interesting to compare these findings with
the results of a recent working paper Cobb and Shenoy [4], where they describe
some properties of the relative plausibility of singletons and discuss its nature of
probability function that is equivalent to the original belief function.

The study of consistent probabilities could play as well an important role in
the search for an alternative to Dempster’s rule of combination, for their descrip-
tion in terms of convex sets opens the way to the application of our commutativity
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results [6]. Understanding their behavior in an inference process could give us a
hint of the properties a combination rule should possess to guarantee coherency
in terms of the corresponding credal sets.

Appendix: Mathematical Proofs

Proof. (Proposition 1) If the thesis is true we have, by replacing XA with expres-
sion (6),

PA = ∑
E⊃A

XE = ∑
E⊃A

∑
B⊃E

PB · (−1)|B−E| = ∑
B⊃A

PB · ∑
B⊃E⊃A

(−1)|B−E|.

Let us consider the factor ∑A⊂E⊂B(−1)|B−E|. When A = B then E = A = B and
the coefficient becomes 1. On the other side, when B 6= A we have

∑
A⊂E⊂B

(−1)|B−E| = ∑
F⊂B\A

(−1)|B\A\F| = 0

for Newton’s binomial. Hence PA = PA. 2

Proof. (Theorem 2) The definition (3) of upper probability yields

µ(A) = ∑
B⊂A

(−1)|A−B|P∗
s (B) = ∑

B⊂A
(−1)|A−B|(1− s(Bc)) =

= ∑
B⊂A

(−1)|A−B|− ∑
B⊂A

(−1)|A−B|s(Bc)
(16)

where for Newton’s binomial ∑B⊂A(−1)|A\B| = 0 if A 6= /0, (−1)|A| otherwise. If
B ⊂ A then Bc ⊃ Ac, so that the second addendum becomes

− ∑
B⊂A,B6= /0

(−1)|A−B| ∑
E⊂Bc

m(E) = − ∑
E⊂Θ

m(E) · ∑
B:B⊂A,Bc⊃E

(−1)|A−B| =

= − ∑
E⊂Θ

m(E) · ∑
B⊂A∩Ec

(−1)|A−B| (17)

for Bc ⊃ E,B ⊂ A is equivalent to B ⊂ Ec,B ⊂ A ≡ B ⊂ (A∩Ec).
Let us now analyze the function of E

f (E)
.
= ∑

B⊂A∩Ec
(−1)|A−B|.

If A∩Ec = /0 then B = /0 and the sum is (−1)|A|. If A∩Ec 6= /0, instead, we can
write F .

= Ec ∩A and obtain (since B ⊂ F ⊂ A and |A−B|= |A−F|+ |F −B|)

f (E) = ∑
B⊂F

(−1)|A−B| = ∑
B⊂F

(−1)|A−F|+|F−B| = (−1)|A−F| · ∑
B⊂F

(−1)|F−B| = 0
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given that ∑B⊂F(−1)|F−B| = 0 for Newton’s binomial again. Eventually

f (E) =

{
0 Ec ∩A 6= /0
(−1)|A| Ec ∩A = /0.

We can then rewrite expression (17) as follows

− ∑
E⊂Θ

m(E) f (E) = − ∑
E:Ec∩A6= /0

m(E) ·0− ∑
E:Ec∩A= /0

m(E) · (−1)|A| =

= (−1)|A|+1 ∑
E:Ec∩A= /0

m(E) = (−1)|A|+1 ∑
E⊃A

m(E)

and replacing it in Equation (16) yields Equation (9), after distinguishing the two
cases A = /0, A 6= /0. 2

Proof. (Theorem 5) Expression (10) is equivalent to ΠA(X) =

− ∑
B⊂A,B6= /0

(−1)|B|PB(X) ∀X ⊂ Θ. But since PB(X) = 1 if X ⊃ B and 0 oth-

erwise we have that

ΠA(X) = − ∑
B⊂A,B⊂X,B6= /0

(−1)|B| = − ∑
B⊂A∩X,B6= /0

(−1)|B|.

Now, if A∩X = /0 there is no addenda in the above sum, that goes to zero. Other-
wise, for Newton’s binomial, we have ΠA(X) =−{[1+(−1)]|A∩X|− (−1)0}= 1.
But then the definition of upper probability yields exactly

P∗
PA

(X) = ∑
B∩X 6= /0

mPA(B) =

{
1 A∩X 6= /0
0 A∩X = /0.

2

Proof. (Theorem 6) Clearly P∗
s − s = ∑A⊂Θ XA · [P∗

s (A)− s(A)], where [P∗
s −

s](Ac) = P∗
s (Ac)− s(Ac) = 1− s(A)− s(Ac) = 1− s(Ac)− s(A) = P∗

s (A)− s(A) =
[P∗

s − s](A). Hence,

〈P∗
s − s,Py −Px〉 = ∑A⊂Θ[P∗

s − s](A) · [Py−Px](A) =

= ∑|A|≤b|Θ/2|c[P∗
s − s](A) · [(Py−Px)(A)− (Py −Px)(Ac)] = 0

since (Py −Px)(A) = −(Py −Px)(Ac). 2

Proof. (Theorem 7) The desired condition implies that, for any subset A ⊂ Θ,
s(A)+ α · [P∗

s (A)− s(A)] = s(A)+ α · [1− s(Ac)− s(A)] ∈ P . In particular, when
A = {x} is a singleton,

s({x})+α · [1− s({x}c)− s({x})] ∈ P . (18)
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This point belongs to P iff the normalization criterion for singletons is met, i.e.

∑
x∈Θ

s({x})+α · ∑
x∈Θ

(1−s({x}c)−s({x}))= 1⇒α =
1−∑x∈Θ s({x})

∑x∈Θ(1− s({x}c)− s({x}))

and after replacing this value of α into Equation (18) we get

s⊥P ({x}) = s({x})+
1−∑y∈Θ s({y})

∑y∈Θ(1− s({y}c)− s({y})) · (1− s({x}c)− s({x})) =

=
s({x}) · [∑y∈Θ(1− s({y}c)− s({y}))− (1−∑y∈Θ s({y}))]

∑y∈Θ(1− s({y}c)− s({y})) +

+
(1− s({x}c)) · (1−∑y∈Θ s({y}))

∑y∈Θ(1− s({y}c)− s({y})) =

=
s({x}) · [∑y∈Θ(1− s({y}c))−1]+ (1− s({x}c)) · (1−∑y∈Θ s({y}))

∑y∈Θ(1− s({y}c)− s({y}))

that using the definition of plausibility function can be rewritten as

s⊥P ({x}) =
s({x}) · (∑y6=x P∗

s ({y})−1)+P∗
s ({x}) · (1−∑y6=x s({y}))

∑y∈Θ[P∗
s ({y})− s({y})] . (19)

Equation (19) determines the coordinate of the orthogonal projection of a belief
function s onto P . The expression for the basic probability assignment associated
with this projection (Equation (12)) can be found after a few passages, extensively
reported in [5]. 2
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