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Abstract

The nature of much information available to decision makers is vague and
imprecise, be it information for human managers in organisations or for pro-
cess agents in a distributed computer environment. Several models for han-
dling vague and imprecise information in decision situations have been sug-
gested. In particular, various interval methods have prevailed, i.e. methods
based on interval estimates of probabilities and, in some cases, interval util-
ity estimates. Even if these approaches in general are well founded, little has
been done to take into consideration the evaluation perspective and, in partic-
ular, computational aspects and implementation issues. The purpose of this
paper is to demonstrate a tool for handling imprecise information in decision
situations. The tool is an implementation of our earlier research focussing
on finding fast algorithms for solving bilinear systems of equations together
with a graphical user interface supporting the interpretation of evaluations of
imprecise data.
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1 Introduction
The idea of using computers to support decision making has been around almost
as long as computers have been available for humans in usable form. The past
decades have witnessed a tremendous development in the graphical user inter-
face, which facilitates the use of more advanced computational techniques to
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a wider group of users. As a consequence, several decision analytic tools have
emerged during the last decade. Decision software based on classical decision
theory, such as Standard & Poor’s DPL (www.dpl.adainc.com), Palisades’ Pre-
cisionTree (www.palisade.com), and TreeAge’s DATA (www.treeage.com), have
successfully been commercialised and are used by various professional decision
analysts and decision makers to aid them in their work.

However, most classical decision models and software based on them con-
sist of some straightforward set of rules applied to precise numerical estimates of
probabilities and values. Matrix, tree, and influence diagram models have prolif-
erated, but since they mostly handle precise numeric figures, sensitivity analysis
is often not easy to carry out in more than a few dimensions at a time. The require-
ment to provide numerically precise information in such models has often been
considered unrealistic in real-life decision situations, and a number of models
with representations allowing imprecise statements have been suggested. Some of
them use standard probability theory while others contain some specialised for-
malism. Most of them focus more on representation and probabilistic inference,
and less on evaluation [15], [21], [22], [23], [24].

The purpose of this paper is to present a new decision tool currently being
developed, called DecideIT. It allows the decision maker to be as deliberately
imprecise as he feels is natural and provides him with the means of expressing
varying degrees of imprecision in the input sentences, facilitating both the use of
decision trees and influence diagrams as decision models. The application takes
advantage of a set of algorithms defined as the DELTA method [4], [5], [8], [9],
combined with a user-friendly interface which provides an intuitive graphical rep-
resentation of evaluation results.

Pre-release versions of DecideIT have been used in a number of various ar-
eas and situations, such as contract formulations [1], investment decisions [7],
and insurance policies and flood management [10]. DecideIT is currently in a
beta-stage of the development phase and will be distributed by Doctor Decide
(www.doctordecide.com). Academic licenses will be available for a symbolic fee.

2 The DELTA Method
The main concern of the DELTA method is evaluation of decision problems, with
probability and utility intervals to express numerically imprecise information. The
method originates from research on handling decision problems involving a finite
number of alternatives and consequences [16].

Interval sentences are of the form: “The probability of ci j lies between the
numbers ak and bk” and are translated into pi j ∈ [ak,bk]. Comparative sentences
are of the form: “The probability of ci j is greater than the probability of ckl”.
Such a sentence is translated into an inequality pi j ≥ pkl . The conjunction of
constraints of the types above together with ∑ j pi j = 1 for each alternative Ai
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involved is called the probability base (P). The value base (V ) consists of similar
translations of vague and numerically imprecise value estimates.

A collection of interval constraints concerning the same set of variables is
called a constraint set. For such a set of constraints to be meaningful, there must
exist some vector of variable assignments that simultaneously satisfies each in-
equality, i.e., the system must be consistent. The orthogonal hull is a concept that
in each dimension signals which parts are incompatible with the constraint set,
thus it consists of consistent value assignments for each variable.

Definition 1: Given a consistent constraint set X in {xi}i∈I , I = {1, . . . ,n}, and a
function f , X max( f (x)) =de f sup(a|{ f (x) > a}∪X is consistent).
Similarly, X min( f (x)) =de f inf(a|{ f (x) < a}∪X is consistent).

Definition 2: Given a consistent constraint set X in {xi}i∈I , I = {1, . . . ,n}, the set
of pairs {〈X min(xi),

X max(xi)〉} is the orthogonal hull of the set and is denoted
〈X min(xi),

X max(xi)〉n.

The orthogonal hull greatly simplifies the computational effort and can be pictured
as the result of wrapping the smallest orthogonal hyper-cube around the constraint
set. For the probability base P, such a wrapping of a consistent system yields
feasible interval probabilities, in the sense that none of the lower and upper bounds
of the probability assignments are inconsistent [24].

2.1 Strength of Alternatives
An information frame contains the probability and value bases. In an information
frame, an alternative Ai is represented by its consequence set Ci = {ci1, . . . ,cihi}.

Definition 3: Given an information frame 〈{C1, . . . ,Cn},P,V〉 the strength, δi j,
denotes the expression E(Ci)−E(C j), i.e., ∑k pik · vik −∑k p jk · v jk, over all con-
sequences in the consequence sets Ci and C j.

To analyse the strength of the alternatives, PVmax(δi j) is calculated. This means
that we choose the feasible solutions to the constraints in P and V that are most
favourable to E(Ci) and demeaning to E(C j). This means that if there are no de-
pendencies1 between the alternatives, PVmax(δi j) =PVmax(E(Ci))−PVmin(E(C j))
and PVmin(δi j) =PVmin(E(Ci))−PVmax(E(C j)). The concept of strength expresses
the maximum differences between the alternatives under consideration. It is how-
ever used in a comparative way so that formally the maximum and minimum is
calculated. In this way, we get a measure about the proportions of the information
frame, where the respective alternatives are dominant. When applying the hull

1cf. [4] for details when there are various dependencies between the alternatives.
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cut operation (see section 2.2), we also receive a measure of the stability of these
differences.

This is, however, not enough. Sometimes, the decision maker wants to put
more emphasis on the maximal difference (displaying a difference-prone behaviour).
At other times, the minimal difference is of more importance. This is captured in
the medium difference.

Definition 4: Given an information frame 〈{C1, . . . ,Cn},P,V 〉, let α ∈ [0,1] be
a real number. The α-medium difference of δi j in the frame is PV[α]mid(δi j) =
α ·PVmax(δi j)+(1−α) ·PVmin(δi j).

The α can be considered a precedence parameter that indicates if one boundary
should be given more weight than the other. It is, consequently, a measure of
difference in strength between the consequence sets. This view duality is a key to
understanding the selection process. This is further discussed in [6].

For the pairwise evaluation of our alternatives, [4] suggests the two algorithms
PBOpt and VBOpt. The first algorithm (probability bilinear optimisation) can han-
dle any statement except comparisons between value variables from different Ci’s,
and is described as follows.

Definition 5: Given an information frame 〈{C1, . . . ,Cn},P,V 〉, let Ci be the set
{ci1, . . . ,cihi}. Then VEmax

i is pi1 · ai1 + . . . + pihi · aihi , where ain, 1 ≤ n ≤ hi, is
sup(b|{b = vin}∪{ai(n−1) = vi(n−1)}∪ . . .∪{ai1 = vi1} is consistent with V ).

Further, VEmin
i is pi1 · ai1 + . . . + pihi · aihi , where ain,1 ≤ n ≤ hi, is inf(b|{b ≥

vin}∪{ai(n−1) = vi(n−1)}∪ . . .∪{ai1 = vi1} is consistent with V ).
Let C j be the set {c j1, . . . ,c jh j}. Then V δi j is VEmax

i −V Emin
j .

The idea behind this is to transform a bilinear expression into a linear expres-
sion with the property of having the same extremal value under specific condi-
tions. Under conditions satisfied by a majority of information frames, maxδi j =
maxV δi j and minδi j = minV δi j. When comparisons between value variables from
different Ci’s are important, the VBOpt algorithm should be considered instead.
VBOpt is a twin algorithm to PBOpt, working essentially in the same way, but for
other preconditions [4].

2.2 Cutting the Orthogonal Hull
A problem with evaluating interval statements is that the results could be overlap-
ping, i.e., an alternative might not be dominating2 for all instances of the feasible
values in the probability and value bases. A suggested solution to this is to further
investigate in which regions of the bases the respective alternatives are dominat-
ing. For this purpose, the hull cut is introduced in the framework. The hull cut

2Alternative i dominates alternative j iff PVmin(δi j) > 0.
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can be seen as generalised sensitivity analyses to be carried out to determine the
stability of the relation between the consequence sets under consideration. The
hull cut avoids the complexity in combinatorial analyses, but it is still possible to
study the stability of a result by gaining a better understanding of how important
the interval boundary points are.

If dominance is evaluated on a sequence of ever-smaller sub-bases, a good
appreciation of the strength’s dependency on boundary values can be obtained.
This is taken into account by cutting off the dominated regions indirectly using
the hull cut operation. This is denoted cutting the bases, and the amount of cutting
is indicated as a percentage p, which can range from 0 % to 100 %. For a 100 %
cut, the bases are transformed into single points, and the evaluation becomes the
calculation of the ordinary expected value.

Definition 6: X is a base with the variables x1, . . . ,xn, π ∈ [0,1] is a variable
referred to as the cut level. 〈ai,bi〉n is the orthogonal hull, and k = (k1, . . . ,kn)
is a consistent point in X . A π-cut of X is to add the interval statements {xi ∈
[ai + π · (ki − ai),bi − π · (bi − ki)] : i = 1, . . . ,n} to the base X . k is called the
contraction point.

If no consistent contraction point is given explicitly by the decision maker, De-
cideIT suggests one by minimising the distance to the orthogonal hull midpoints.
The choice of the calculated contraction point is motivated by being the centroid
in the (non-explicit) second-order belief distributions over the intervals [12]. In-
tuitively, the hull cuts in DecideIT are based on values closer to the centre of
the interval being more reliable, i.e., there is an underlying assumption that the
second-order distributions have a mass concentrated to the centre. Since the be-
lief in peripheral values is somewhat less, the interpretation of the cut is to zoom
in on more believable values that are more centrally located. The centroid of a
distribution is exactly this point where this geometrical property of the distribu-
tion can be regarded as concentrated. Furthermore, it has very attractive properties
from computational as well as intuitive view-points [12].

By co-varying the cutting of an arbitrary set of intervals, it is possible to gain
much better insight into the influence of the structure of the information frame
on the solutions. Contrary to volume estimates, hull cuts are not measures of the
sizes of the solution sets but rather of the strength of statements when the origi-
nal solution sets are modified in controlled ways. Both the set of intervals under
investigation and the scale of individual hull cuts can be controlled.

2.3 Risk Constraints and Security Levels
It is reasonable to extend the framework based on the principle of maximising the
expected utility with other decision rules. A number of rules have been suggested,
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see, e.g., [14], [18] and [20], but these are mostly applicable to decisions under
strict uncertainty.

A more general approach is to introduce risk constraints that provide thresh-
olds beyond which a strategy is undesirable. However, when the information is
numerically imprecise, the meaning of such thresholds is not obvious. In [11] it is
suggested that the interval limits together with stability analyses should be consid-
ered in such cases. In DecideIT, such thresholds are referred to as security levels,
and the exclusion of undesirable consequence sets takes the following form,

S(Ci,r,s) = ( ∑
vi j≤r

pi j ≤ s)

where r denotes the lowest acceptable value and s the highest acceptable proba-
bility of ending up with a lower value than r. This means that the sum of the prob-
abilities, where the consequences violate the security level r, must not exceed s.
When dealing with interval statements it is not obvious what r and s represents,
but one approach is to study the worst and best case by using lower and upper
bounds. The contraction points can be used to study the normal case. The con-
cept of security levels is of general use when implementing risk constraints, as
suggested in [8].

3 The Tool
The decision tools currently available on the market (e.g., DPL, PrecisionTree,
DATA etc.) have set a useful de facto standard for how users may interact with the
software, and construct models of their decision problems. Therefore, DecideIT
has about the same look-and-feel as these tools.
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Figure 1: Screenshot of DecideIT holding an influence diagram that has been converted
to a decision tree.

Currently, three types of nodes may be used in the application: decision nodes,
chance nodes, and consequence nodes. Work is carried out on deterministic nodes
for influence diagrams.

3.1 Decision Trees
A decision tree is graphically illustrated on the screen, showing explicitly the
probabilities and values for all nodes. Interaction with the model is performed
through the GUI. Editing probabilities, values, and other properties of a certain
node is performed through a node property frame.

Figure 2: Entering imprecise probabilities, using a probability template for the outcome
leading to E6. For the outcome C12, we explicitly set the contraction point to 0.55.
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3.2 Influence Diagrams
Influence diagrams are, when evaluated, transformed into a corresponding sym-
metric decision tree using a conversion algorithm that creates a total ordering of
all connected nodes in the diagram, barren nodes discarded. This conversion algo-
rithm traverses along the directed arcs, and orders the nodes according to a set of
rules. In some cases, when only the topology of the graph is not enough to order
the nodes, a node placed to the left is converted before a node to the right. It is
also possible to convert an influence diagram into an instance of a decision tree,
and continue the modelling work on this tree.

Editing the properties of a node in an influence diagram is analogous to the
same procedure for a decision tree. There is, however, some differences between
the node property frames of the two models. In an influence diagram, the user
gets an overview of the conditional expansion order when editing properties of a
conditionally dependent chance node.

Figure 3: Entering conditional probabilities for a conditionally dependent chance node
in an influence diagram.

Reversal of arcs is possible between two chance nodes in an influence diagram,
who shares a common information state and have no other directed path between
them. Thus, according to Shachter, the two chance nodes must inherit each other’s
conditional predecessors before reversal of an arc between them [19]. Bayes’ the-
orem is invoked, and to determine the lower bound we maximise the denominator
and minimise the numerator, and vice versa for the upper bound. This means that
as of today reversal of arcs in DecideIT simply employ the intuitive concept of
conditional probability, and a re-flip of the arc will not restore the values for in-
terval probabilities as they do in the precise case. One solution is to implement
the Fertig and Breese algorithm [13], but since we do not wish to lose the up-
per bounds this solution seems less interesting. There does not exist one superior
algorithm for this problem taking both lower and upper bounds in account [2],
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[3].
Because of this drawback, development of DecideIT will focus on employing

the canonical concept of conditional probabilities [24], but this is a matter of
further research regarding the computational aspects. The user of DecideIT may
however choose not to let the software automatically suggest any new conditional
probabilities when flipping an arc.

3.3 Probability and Value Statements
In a chance node in a tree or influence diagram, it is possible to set comparative
statements between the probabilities of different outcomes. These statements are
then added to the constraint sets. Value statements are set in an analogous fashion.

Figure 4: Setting a comparative probability statement, that the probability of the out-
come leading to C5 is at least 0.05 higher than the probability of ending up with C3.

Note that by using this feature, it is possible to handle qualitative probabilities and
utilities in a common framework together with the interval approach. Such state-
ments let both decision trees and influence diagrams handle both quantitative and
qualitative information, as a step towards evaluation of more qualitative models
defined in [17].

3.4 Presentation of Evaluation Results
Results are presented as a graph. Along the x-axis we have the cut in per cent
ranging from 0% to 100%, and along the y-axis the possible differences of the
expected values between a pair of alternatives. It is also possible to compare one
alternative against an average of a set of alternatives. In Figure 5, the upper line is
max(δ13), the middle is PV [0.5]mid(δ13), and the lower is min(δ13). The shrink-
ing area depicts the expected value under different degrees of cutting. As can be
seen, the higher cut level that is used, the more equal the alternatives seem to be,
according to the principle of maximising the expected utility. For a 100% cut,
where the results from the algorithms coincide with the ordinary expected value,
the result implies that A3 is the better alternative. However, taking impreciseness
in account, it may not be that simple.
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Figure 5: Pairwise comparison of two alternatives, using the DELTA method. After
about 75% cut, we see that PV [0.5]mid(δ13) < 0.

3.5 Security Levels
In Figure 6, we investigate at which cut level a given security level will hold in the
worst case3. An all-green (light grey) alternative can then from this perspective
be considered as completely safe.

Figure 6: A security analysis with a security level of -100 as the lowest acceptable value
and 0.02 as the highest acceptable probability.

A3 does not violate the security levels for any cut level and seems to be the de-
sired course of action for a risk avoidant decision maker. This is represented by
green (brighter) in the figure above. After a 70% cut level, A2 does not violate
the given security level. If the decision maker is eager for choosing A1 or A3, the
security analysis imply that A1 is more risky than A3, leaving the decision maker
to seriously consider choosing A3 over A1.

3It is possible to investigate best and normal cases as well.
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3.6 Preference Ordering Among Consequences
In complex decision situations with large sets of consequences, it might be time-
consuming to identify the preference ordering of consequences, and DecideIT
offers a graphical overview of such a relation on a set of consequences. The or-
dering is easily determined by checking whether vi j − vkl > 0 is consistent with
the value base. If not, vi j is before vkl in the partial ordering. Thereafter, obvious
transitive relationships are removed.

Figure 7: Preference order among consequences, where C1 is the most preferred conse-
quence.

3.7 Critical Values
Even though the concept of hull cut is a general form of sensitivity analysis, a
model may be further investigated through identifying the most critical elements
of a decision problem. By varying each event’s probability and utility values
within their intervals, it is possible to identify the elements with highest impact
on the expected value. This feature lets a decision maker identify where to put his
efforts in the information gathering procedure in order to make more safe deci-
sions.
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Figure 8: Identifying the critical elements of a decision problem, illustrated as a tornado
diagram.

For probability variation, the event E6 has the highest impact on the expected
value. By varying the probabilities for this uncertain event, the expected value
may differ 397.9 value units. For value variation, the impreciseness in the value
of consequence C6 affects the expected value the most.

4 Concluding Remarks
Based on our earlier research on fast algorithms for solving bilinear problems, we
have presented a tool integrating various procedures for handling vague and nu-
merically imprecise probabilities and utilities. The tool has been tested in several
real-life applications, and provides means for evaluating decision situations using
alternative evaluation principles beside the conventional pointwise maximisation
of the expected utility. The latter has turned out to be too limited in many situ-
ations. Thus, we also suggest that the alternatives should be further investigated
with respect to their relative strengths and also to the number of values consistent
with the given domain. Furthermore, the alternatives can also be evaluated rela-
tive to a set of security parameters considering how risky they are. To refine the
evaluations, we have also shown how hull cut procedures can be introduced in the
model. These indicate the effects of choosing different degrees of reliability of the
input data. In this way, it is possible to investigate critical variables and the sta-
bility of the evaluations. The result of such an analysis often point out reasonable
strategies, but also what aspects are crucial to consider for a reliable and stable
result.
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