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Abstract

A generalization of deFinetti’s Fundamental Theorem of Probability facili-
tates coherent assessment, by iterated natural extension, of imprecise proba-
bilities or expectations, conditional and unconditional. Point values are gen-
eralized to assessed bounds, accepted under weak coherence, that is, allow-
ing the input of redundant loose bounds. The method is realized in a conve-
nient interactive computer program, which is demonstrated here, and made
available as open source code. This work suggests that a consulting expert’s
fees should not be paid unless his/her assessed probabilities cohere.
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1 Introduction

We consider previsions of random quantities, loosely, expectations of random
variables, a probability being the prevision of an event, or 0-1 random quantity.
Prevision assessments can either be intended as estimates of frequencies, more
generally averages, or they can be intended as mere quantitative expressions of
human uncertainty. In either case, they should be coherent, that is, extendible to
at least one full probability distribution. For estimates of frequencies or averages
to be taken seriously, this says that their values must not be impossible when in-
terpreted together as limiting frequencies or limiting averages in an experiment.
They can describe a conceivable, possibly infinite, population. For previsions in-
tended as expressions of uncertainty, coherence is a kind of rationality, a direct
generalization of non-contradiction for statements of fact, a self-consistency in
the sense that, if taken as a person’s betting prices, the person could not be made
a sure-loser merely by combining a finite number of bets at such prices.
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2 Coherent Assessment by Iterated Natural Exten-
sion

Itis becoming more widely known that deFinetti’s Fundamental Theorem of Prob-
ability [12, 13] provides a dynamic for interactive computational assessment of
coherent previsions. For a sequence of mathematically related random quantities
(including logically related events), if coherent prevision values are given for an
initial segment of the sequence, the available cohering values for the prevision of
the next quantity comprise an interval whose endpoints can be computed by lin-
ear programming (first noted by Boole [2], Hailperin [14], and Bruno and Gilio
[6] ). Walley [22] calls this interval the “natural extension” of the given coherent
previsions.

The linear-programming variables are interpretable as the probabilities of the
“constituent” events, the events of the joint-range points of the random quantities.
Coherence restricts the prevision vector of the quantities to the convex hull of the
joint- range set, that is, the prevision point must be some weighted average of the
join-range points. The assessed previsions impose additional linear constraints.

In textbook-type problems, where a probability is determined by given proba-
bilities, the extension interval reduces to a single value. If the given values, them-
selves, are not coherent, the linear programming calculation will so indicate by
reporting that there are “no feasible solutions,” which implies an empty extension
interval. Coherent previsions are always capable of being extended coherently
with the value for any further random quantity assignable in an extend-assess cy-
cle. If supplementary calculations are made of the extension interval for a random
quantity of special interest, the interval will be seen to shrink to a subinterval
whenever a further coherent prevision is assessed.

The method generalizes to include conditional previsions, as inputs and/or
outputs. In addition, since prevision is a linear operator, a linear combination of
previsions can be assessed directly as the prevision of a linear combination of ran-
dom quantities. For example, if the assessor defines the difference of two events
as a random quantity, then the difference of their probabilities can be assessed
as a prevision, and so included in the analysis. The convenience of the method
suggests that any consulting expert should not be paid unless her/his probability
assessments cohere.

3 Coherence for Imprecise Assessments

An interval, or even a single bound, generalizes a point value, and experts may
only be willing to report such imprecise previsions. So how do the coherence
concept and the iterated extend-assess algorithm generalize to handle imprecise
previsions?

If mere bounds are input, instead of precise values, the output extension in-
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terval consists of all the available values for the further prevision for which there
exists at least one mutually coherent list of precise values satisfying the input
bounds. And, of course, for each such precise list, the corresponding cohering
values for the further random quantity would form a subinterval of the output
interval. This was defined as the problem of probability logic by Hailperin [15]
(following Boole [2]), included as “natural extension” by Walley [22], and pre-
sented in a generalization of deFinetti’s Fundamental Theorem by Lad, Dickey,
and Rahman [18, 19]. The latter two papers are the basis for the algorithm coded
in the present program. A prototype program written in Mathematica in 1991 has
had limited distribution.

So, what assessed further bounds should one say “cohere” with the output
extension interval?

Definition 1 (Weak Coherence) Assessed bounds that do not contradict the out-
put bounds will be said to cohere weakly with the given input bounds. An assessed
lower (upper) bound must not lie above (below) the output upper (lower) bound,
that is, the assessed interval must overlap the extension interval. Also, of course,
an assessed lower (upper) bound must not be higher (lower) than the correspond-
ing assessed upper (lower) bound. Weak coherence is directly equivalent to the
prevention of sure-loss combined bets.

Definition 2 (Strong Coherence) Assessed bounds that neither contradict, in the
weak-coherence sense, nor relax the output bounds will be said to cohere strongly
with the given input bounds. So, in addition, an assessed lower (upper) bound
must not lie below (above) the output lower (upper) bound, that is, the assessed
interval must be a subinterval of the extension interval.

P. Walley [22] uses the term “coherence” to refer to strong coherence, with
the interpretation that an assessed lower (upper) value is asserted as the highest
(lowest) agreeable relative purchase (selling) price for the random quantity scaled
in monetary units, an interpretation under which dynamic refinement of assessed
previsions would seem less than natural. Whereas, weakly coherent buying (sell-
ing) prices can be interpreted as conservative purchase offers (offers to sell) that
can be refined upward (downward). The weak version of coherence was termed
“g-coherence” by Biazzo and Gilio [3]. Weak coherence is relevant to our pro-
gram, for if a user chooses a bound that is a relaxation of the latest extension
interval, it has no effect on any subsequent computed interval. Being subject to
later refinement, it need not be the tightest bound, now.

In a trivial mathematical sense, the order in which assessments are made does
not matter. If an expert asserts the same coherent bounds in a different order, then
the same coherent joint bounds will result. (The tightest implied bounds prevail,
of course.) In a practical sense, however, ones psychological reaction to encoun-
tering different computed intervals for a different order can make a substantial
difference in ones assessed values or bounds.
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Relevant further references on coherence and coherence methods for impre-
cise unconditional and conditional previsions, as suggested by referees, include

(11, [71. [8]. [9]. [10], [11], [16].

4 Implementation

This is to introduce an interactive computer program for coherent assessment of
imprecise previsions by iterated coherent extension, in which the user communi-
cates with the program through a combined input-output text file. The interaction
proceeds as a series of steps, each in the form of an extend-assess cycle:

1. Based on all the prevision bounds assessed so far, the program computes
natural extensions, the implied extension interval(s), for the previsions of
one or more user-selected quantities.

2. The user assesses a lower and/or upper bound (or a point value) for a pre-
vision, cohering with its computed extension interval.

4.1 Algorithm

To calculate the extension interval for the unspecified prevision of a quantity, say
Pn = P(X,), the program must determine the convex hull of the joint range set of
the considered quantities, and then impose the linear constraints of the assessed
prevision values and bounds. Denote by X (n x 1) the vector of n quantities, R (n X
N) the matrix of N joint-range points, and C (N x 1) the vector of N “constituent”
events (joint point-value events). Then C is a partition, and X = RC. The convex
hull of the set of columns of R is the set of all convex combinations,

p =Rq, (1)

where q > 0 and 1Tq = 1. Now, suppose our assessments impose the further con-
straints,
Ap <b,

some of the inequalities of which may be equalities. The prevision variable to
be optimized is p, = rlq, from Eq. (1). This fully defines the relevant linear-
programming calculations.

The steps to achieve this construction and calculation are:

1. Define the product quantities needed for any conditional previsions consid-
ered.

2. Define subroutines to reject the potential columns of R that do not satisfy
the logical and mathematical constraints on X.
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3. Border R for any new random quantities, or start over to reconstruct R from
scratch if any old quantities are omitted or redefined.

4. For each prevision to be optimized, form a linear-programming input file
and run the routine Ip-solve. (Perform a change-of-variables if a conditional
prevision is to be optimized.)

4.2 Zero Probabilties

A coherent prevision conditional on an event of zero probability is not determined
by the usual unconditional previsions: if P(A) =0, then P(XA) =0 and P(X|A) =
0/0, which is indeterminate. Nor can such a conditional prevision have any co-
herent effect on unconditional prvisions: if P(A) = 0, then P(X) = P(X|A)P(A) +
P(X|nA)P(nA) = P(X|nA). So, although the program can accept, as input, previ-
sion assessments that are conditional on an event of probability zero, as presently
coded, it will not respond to a request to calculate extension bounds on such a
prevision. The practical reason for this is that the program solves the fractional-
programming problem for a bound on conditional prevision by a change-of-variable
that divides by P(A). Improvements in this aspect of the program are contem-
plated.

4.3 Input/Output

The combined input/output file is organized as a sequence of records, or lines,
separated by carriage returns. The following two types of records represent utter-
ances about previsions.

1. Assessed lower and/or upper bound(s) (or point value) on the prevision of
a quantity. (Input.)

2. A computed extension interval for the prevision of a quantity. (Output.)

In each type of utterance about a prevision, the case of equal lower and up-
per bounds, a single point value, is handled by special notation. (A pair of equal
bounds are optional on input.)

In order to keep track of what assessed bounds are assumed as the bases for
computed intervals, and to promote the stepwise coherence-preserving use of the
method, a step number is assigned to a new assessment the first time it is imposed
in the calculation of an extension interval. That step number is also assigned to
all extension intervals that are subsequently calculated before any further assess-
ments are introduced.

It should be noted that a computed interval will only guarantee coherence
of an assessment one new quantity at a time. If more than one quantity’s new
assessment is uttered in the same step, the linear programming routine could find
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that they are not coherent, even though each new assessment would be coherent
if added singly. The program will issue a warning, yet it will not prevent the user
from introducing multiple new assessments in a single step. The user may happen
to know that coherence will be preserved, or may just wish to take a chance.

A third type of record provides the framework for prevision utterances:

3. A definition of a random quantity, stated with identifying name, description,
range set, and relation(s) (if any) to preceding random quantities. An event
is a quantity with the range set {0, 1}.

The records that define random quantities are spaced out in the file in the order
they are introduced, and each is immediately followed by its corresponding previ-
sion utterances, with step numbers. This format seems an important contribution,
lending great convenience to the use of the program. The program actually allows
the prevision utterances to be placed arbitrarily, but arranging them by quantity
seems helpful. What the program requires for quantities is that they be defined
and listed in a logical order that facilitates the computation of the joint range set.

4.4 Relations and the Joint Range

Hailperin [14, 15] seems not to have noticed that logical and other mathematical
relations among random quantities can substantially reduce the size of their joint
range set and, hence, diminish computing costs. It is not necessary, first, to define
a full product space and then discard all the points made impossible by the rela-
tions. The program brings in only the possible points during the formation of the
joint range set. Each definition of a quantity, imposing constraints relating it to
previously defined quantities, enables the program to construct only those points
that are possible as each quantity is introduced to the joint range. Any reference
to a quantity that has not yet been introduced will raise an exception. Of course,
the user can wait until the very last quantity defined in the file to impose all the
relations, but this can be very inefficient, hence even nonfeasible.

Consider, for example, a partition, Ay,...,A,. The relationA; +...+A, =1,
meaning mutually exclusive and exhaustive (for 0 — 1 quantities), can be more
efficiently imposed piecemeal, as A1 + ... +Ag < 1 at each definition of Ay, k =
1,...,n—1, and then = 1 at k = n. However, a more convenient approach, also
efficient, is to define the A;’s as the value events of an artificial random quantity X
with the arbitrary range {1,...,n}. After first defining X with that range, let Ay :
X =k, fork=1,...,n. ThenAy,...,A, will automatically comprise a partition.

4.5 Availability

The program, a moderately large Perl script wrapper on a publicly available open-
source linear programming routine, Ip-solve, currently runs under unix/linux. User
control is through a program command line and the vi editor. The menu for the



224 ISIPTA °03

MENU
FILE: ACTION:
n New a  Assess
o Open au  Undo Assessment
s Save e  Extend
p Print eu Undo Extension
q Quit t Option

Figure 1: Program menu.

command line is shown in Fig. 1. To obtain the program via e-mail or ftp transfer,
contact the author at dickey @stat.umn.edu. A tutorial file is also available.

S Example: A Medical Screening Test

We demonstrate the use of the program with a simplified example of medical
diagnosis. The assessed probability values here will help introduce the program,
but they are not necessarily appropriate to the real problem, nor is the problem
claimed to be a typical use of the program. Interaction with the program in the
example will be described by showing the progressive states of the input/output
file.

Suppose a person from the general population receives a positive test result,
event S, in a screening skin test for tuberculosis. What is the conditional probabil-
ity of the event T that she/he has tuberculosis, P(T|S)? This is a classic Bayes’
Theorem problem, but the program does not see it as such, treating it more directly
as a problem of implied bounds on conditional probability.

Assuming, first, the bounds on the prior probability, 5 x 107> < P(T) < 1074,
and the test-performance probabilities, P(S|T) = 1, 1/20 < P(S|aT) < 1/10, we
will obtain the implied bounds on the marginal symptom probability, .05005 <
P(S) <.10001, and the posterior-probability bounds, .0004998 < P(T|S) < .001996.
This posterior probability, following a positive symptom, is small; but of course,
it lies between about ten and twenty times the prior probability.

We will then use the computed extension interval of the marginal probabil-
ity, 0.05005 < P(S) < 0.1001, as a coherent guide for a further, precise assess-
ment, P(S) = 0.07. It could be known, for example, that the relevant empiri-
cal frequency of positive test readings is equal to this value. The program then
outputs the corresponding step-2 extension intervals. The interval for the con-
ditional false-positive probability will shrink almost to a single point, .06991 <
P(S|nT) <.06995, and the posterior probability of having the disease will be con-
fined to the subinterval, 0.0007143 < P(T'|S) < 0.001429. Again, this is small;
but it’s about 15 times the prior probability.
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* TITLE/DESCR: -> SCREENING TEST FOR TB <-

* Separate fields by “; ” (semicolon space(s)). Records (lines) by <Enter>.

* EVENT/QUANT DEFN FIELDS: xname; descr; rangeSet(or”fun”); relation(or
expr)

* PROB/EXPEC FIELDS: (Indent)P(xname); bdL; bdU; “a’(assess) or

“e”(extend)stepN

T; Patient has TB; o, 1); none
P(T); 5.00e-05; 1.00e-04; a
nT; Doesn’t have TB; fun; not $T
S; Pos skin test; 0, 1); none
P(S|T);  eq; 1; a
P(S|nT); 1/20; 1/10; a
P(S); ; ; €

Figure 2: Initial input file.

6 Using the Program

The initial input file is given in Fig. 2. Four automatic header lines, each starting
with a star “*”, consist of: title/description of the problem (as entered by user),
a line giving formats, and two lines defining the fields of the quantity-definition
lines and the fields of the prevision-utterance lines. (We drop these header lines
in the subsequent figures.) The user-input lines of the three types follow.

The three left-justified lines here define the events, 7', nT (for notT), and S.
The ranges of T and S are given as the Perl list “(0, 1)”, followed by “none” (for
no relation). The event nT is defined as the function (“fun”), not T, of the 0-1
event quantity 7. (The dollar sign in the expression “not $T” signifies a variable
in Perl.) Alternatively, nT could be defined as an event subject to a relation, with
the fields, “(0,1); ($T or $nT) == 1".

The remaining indented lines are prevision utterances. The second and third
fields are for lower and upper bounds, respectively, or for a point value when “eq”
is entered in the second field followed in the third field by a single number. In the
fourth field of a prevision utterance, the user indicates whether an assessment is
being asserted (“a”) or an extension requested (“‘e¢”). Perpetual calculation, at each
step, of the current extension interval for a quantity is the default action triggered
by “e”. (To prevent the automatic later extensions, enter “e!”.) For a check on
the effectiveness of assessed bounds, “a” also, by default, triggers the perpetual
calculation of extension intervals. (Use “a!” to prevent it.) After an interval is
calculated, the current step number is automatically appended to the fourth field.

Fig. 3 shows the file updated to report the calculation of three extension inter-
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T; Patient has TB; ©, 1); none
P(T); 5.00e-05; 1.00e-04; al
; [5e-05; 0.00017]; el

nT; Doesn’t have TB; fun; not $T
S; Pos skin test; 0, 1); none
ST, SandT; fun; $S and $T
S_nT; S andnT; fun; $S and $nT
P(S|T); eq; 1; al
P(S|nT); 1/20; 1/10; al
; [0.05; 0.1]; el
P(S); [0.05005; 0.1001]; el

Figure 3: First output

P(T|S); [0.0004998; 0.001996]; el

Figure 4: Second output (fragment)

vals: for P(T); for P(S|nT), both as checks; and for P(S), the marginal probabil-
ity of a positive skin test result. Note the new events, (Sand T) and (Sand nT),
automatically defined by the program as needed to work with bounds on the condi-
tional probabilities, P(S|T) = P(Sand T) / P(T) and P(S |nT) = P(Sand nT) / P(nT).

After including a new request for the conditional (“posterior”) probability
P(T|S), we obtain the output as given in Fig. 4, differing only in this one line
from the output in Fig. 3. Note that, because no additional assessments were in-
put, the assigned step number remains at 1.

Finally, we use the computed extension interval of the marginal probability
0.05005 < P(S) < 0.1001, as a coherent guide for a further, precise assessment,
P(S) =0.07. Then the program outputs the corresponding step-2 extension inter-
vals as given in Fig. 5.

7 Relevance of the Method

It seems to the author that these interactive methods could potentially be em-
ployed to advantage by real-time decision makers, such as physicians or military
commanders. In personal discussion, Glen Meeden has suggested simultaneous
cooperative use by a group of experts as an aid to achieving a jointly agreeable
coherent assessment.
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T; Patient has TB; ©, 1); none
P(T); 5.00e-05; 1.00e-04; al
; [5e-05; 0.00017]; el
; [5e-05; 0.00017]; e2
P(T|S); [0.0004998; 0.001996]; el
; [0.0007143; 0.001429]; e2
nT; Doesn’t have TB; fun; not $T
S; Pos skin test; O, 1); none
ST, SandT; fun; $S and $T
S.nT; SandnT; fun; $S and $nT
P(S|T); eq; 1; al
P(S|nT); 1/20; 1/10; al
; [0.05; 0.1]; el
; [0.06991; 0.06995]; e2
P(S); [0.05005; 0.1001]; el
; eq; 0.07; a2
; EQ; [0.07]; e2

Figure 5: Third output

Because of the convenience of this coherent assessment algorithm and its in-
teractive implementation, and the flexibility afforded by imprecise assessments,
the method would seem destined for heavy use. However, the need for and advan-
tage of such a method hinges on the recognition of logical and other mathemat-
ical relations among the quantities whose previsions are subject to assessment.
It seems still an open question whether such relations are rare or common in
practice. Early Wittgenstein, in what has been called his Logical Independence
Thesis, might be interpreted as claiming that such relations tend not to be basic in
an analyses. Quoting from the Tractatus [23]:

The world divides into facts [Prop. 1.2]

Each can be the case or not the case, while the others remain the same
[Prop. 1.21]

(See also [Props. 2.061, 2.062].)
In the opinion of a referee, this is no longer an open question, “We simply have

applications where logical independence holds and other cases where the random
quantities are not logically independent.”
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8 Further Developments

1. Events or quantities having special properties are amenable to special cod-
ing:

(a) Exchangeable events. Logical independence is usually assumed. Di-
rect definition of variables representing the common invariant joint
probabilities seems preferable to imposing the equality constraints
for exchangeability on probability variables for a large number of
events: n + 1 variables with 1 constraint, versus 2" variables with
2" — n constraints.

(b) Interval events on a random quantity. These can usefully accommo-
date envelope and other statements regarding the c.d.f.

2. Various upper and lower probability systems (C.A.B. Smith, Dempster-
Shafer, etc.) can be incorporated as special program modes. Comparisons
can be made in such applications as the use of multiple messages with
specifiable reliabilities.

3. Reconciliation of incoherent previsions, by minimum distance under weighted
least squares, or other, metric. See, for example, Nau [20, 21].

4. A graphical user interface (Perl/Tk) is being put onto the current function-
ality, for unix/linux and win32.

5. Charles Geyer has suggestied integration of the program into the emacs
editor environment with separate simultaneous displays for the menu and
input/output file.

6. Charles Geyer suggested that the program be recast as an ad hoc computing
language, for possible inclusion in rweb, or other general system.

9 A Plea

The author would like to hear from conference participants and others interested
in using or improving the program. Advice is welcome on what to do or how to
do it better, and collaborative and coding help is especially welcome.

Acknowledgement

The author is grateful to anonymous referees for valuable suggestions that im-
proved the paper.



Dickey: Coherent Imprecise Prevision Assessments 229

References

[1] M.Baioletti, A.Capotorti, S.Tulipani, B.Vantaggi. Simplification rules for
the coherent probability assessment problem, Annals of Mathematics and
Artificial Intelligence, 35 (2002), 11-28.

[2] G. Boole. An Investigation of the Laws of Thought. Walton and Maberly,
London, 1854.

[3] V. Biazzo, A. Gilio. “A generalization of the fundamental theorem of de
Finetti for imprecise conditional probability assessments”. International
Journal of Approximate Reasoning 24, 251-272, 2000.

[4] V. Biazzo, A. Gilio. “On the linear structure of betting criterion and the
checking of coherence”, Annals of Mathematics and Atrtificial Intelligence
35: 83-106, 2002.

[5] V. Biazzo, A. Gilio, G. Sanfilippo. “Coherence checking and propagation of
lower probability bounds”, Soft Computing 7 (2003), 310-320.

[6] G. Bruno and A. Gilio. Applicazione del metodo del simplesso al teorema
fondamentale per le probabilita nella concezione soggettivistica. Statistica,
Vol. 40, 1980, No. 3, pp 337-344.

[7] A.Capotorti, B.Vantaggi. A simplified algorithm for inference by lower con-
ditional probabilities, Proc. 72nd ISIPTA? (2001) Ithaca (New York), 68-76;

[8] A.Capotorti, B.Vantaggi. Locally strong coherence in inferential processes,
Annals of Mathematics and Artificial Intelligence, 35 (2002), 125-149.

[9] G.Coletti. Coherent numerical and ordinal probabilistic assessments, IEEE
Trans. on Systems, Man, and Cybernetics, 24(12) (1994), 1747-1754.

[10] G.Coletti, R.Scozzafava. The Role of Coherence in Eliciting and Handling
Imprecise Probabilities and its Application to Medical Diagnosis. Informa-
tion Science, 130 (2000), 41-65.

[11] G.Coletti, R.Scozzafava. Probabilistic logic in a coherent setting. Trends in
logic n.15, Kluwer, Dordrecht/Boston/London 2002.

[12] B. deFinetti. La prévision, ses lois logiques, ses sources subjectives. Annales
de L’'Institute Henri Poincaré, Vol. 7, 1937, pp 1-68. H. Kyburg (tr.) Fore-
sight, its logical laws, its subjective sources, in Kyburg, H., and Smokler,
H. (eds.) Studies in Subjective Probability, Wiley, New York, 1964; 2nd ed.,
Krieger, New York, 1980.

[13] B. deFinetti. Theory of Probability, Vol. 1. English translation of Teoria delle
Probabilita (1970). Wiley, London, 1974.



230 ISIPTA °03

[14] T. Hailperin. Best possible inequalities for the probability of a logical func-
tion of events. American Mathematical Monthly, Vol. 72, 1965, pp. 343-359.

[15] T. Hailperin. Sentential Probability Logic. Lehigh University Press, Bethle-
hem, PA, 1996.

[16] B. Jaumard; P. Hansen; M. Poggi de Aragao. Column generation methods
for probabilistic logic, ORSA J. Comput. 3 (1991) 135-148.

[17] F. Lad. Operational Subjective Statistical Methods. Wiley, New York, 1996.

[18] F. Lad; J. Dickey; M. Rahman. The fundamental theorem of prevision. Sta-
tistica, Vol. 50, 1990, No. 1, pp 15-38.

[19] F. Lad; J. Dickey; M. Rahman. Numerical application of the fundamental
theorem of prevision. J. of Statistical Computation and Simulation, Vol 40,
1992, pp 135-151.

[20] R. Nau. Decision Analysis with Indeterminate or Incoherent Probabilities.
Annals of Operations Research, 1989.

[21] R. Nau. Indeterminate Probabilities on Finite Sets. Annals of Statistics,
1992.

[22] P. Walley. Statistical Reasoning with Imprecise Probabilities. Chapman and
Hall, London, 1991.

[23] L. Wittgenstein. Tractatus Logico-Philosophicus. English translation by D.
F. Pears and B. F. McGuiness from the German, in Annalen der Natur-
pholosophie (1921). Routledge & Kegan Paul Ltd, London, 1961.

James Dickey is with the School of Statistics of the University of Minnesota.



