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Abstract

For cancers with more than one risk factor, the sum of probabilistic estimates
of the number of cancers attributable to each individual factor may exceed
the total number of cases observed when uncertainties about exposure and
dose-response for some factors is high. In this study we outline a method
to bound the fraction of lung cancer fatalities not attributed to specific well-
studied causes in which available data and expert judgment are used to at-
tribute portions of the observed lung cancer mortality to known causes such
as smoking, residential radon, and asbestos fibers. An upper bound on the
residual risk due to other causes is then inferred using a coherence constraint
on the total number of deaths, a maximum uncertainty principle, and impre-
cise probabilities.
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1 Introduction
Usually, the health risk of exposure to an environmental contaminant is calcu-
lated using a “front-to-back” procedure, which involves estimating toxic releases,
modeling environmental and physiological transformations, and then employing
exposure models and dose-response functions, see for example [6]. That method-
ology works best when the relevant science is well developed; however, when
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Well characterized factors Less well characterized factors
Cigarette smoking Occupational exposures:
Passive smoking Asbestos
Indoor radon Arsenic

Chromates
Chloromethyl ethers
Diesel exhaust
Nickel

Polycyclic aromatic hydrocarbons (PAHs)
Ambient air pollution

Table 1: Examples of environmental risk factors for lung cancer

there are several risk factors (as the expression is used in the epidemiology liter-
ature), and uncertainty about some of the science is large, such a procedure can
lead to estimates for the numbers of cancers attributable to the various factors that,
summed, exceed the total number of cases actually observed.

Morgan [12] argued that methods of bounding analysis could be used for
environmental risk analysis. For health risks with multiple external causes, the
available knowledge constrains the magnitude of the poorly characterized risks.
If most risks were known with precision, this would be a simple subtraction prob-
lem. However disease risks from environmental causes are often estimated from
models or inferred from studies involving limited numbers of subjects and incon-
sistent notions of controls or have other methodological problems that contribute
to the uncertainty of the results. It is common to see the central tendencies of such
risk estimates expressed as ranges, especially when there are competing plausible
models. Sometimes the sum of the individual risks exceeds the total risk. How to
quantify and bound the residual “unclaimed” risk is the subject of this paper.

Using lung cancer mortality from environmental factors as an illustrative ex-
ample, this paper presents a method for bounding the remaining uncertainty when
only some of the risk factors are well characterized. The result is an upper bound
on the mortality that can be attributed to all other, less well-characterized fac-
tors. Some of the major environmental risk factors for lung cancer are shown in
Table 1. “Well characterized” here means that population-wide longitudinal attri-
butional studies exist.

In the method presented, expert judgment is used to attribute a portion of
the observed cancers to known causes such as smoking, radon and asbestos. In-
formation about the risks from unspecified causes is inferred using a coherence
constraint on the total number of deaths, and a principle we term maximum un-
certainty.

Our method builds upon the work of Walley [23, chapter 4]. Mathematically,
this is an application of Smets’ Transferable Belief Model [20], which was de-
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veloped to solve some paradoxes in combining expert opinion in the theory of
evidence [19]. We elicit information about a finite set of variables (risk factors
for cancer) and represent this information as constraints on a linear programming
problem involving a convex family of probabilities. We invoke the maximum un-
specificity criterion in order to estimate the upper bound for the less well-studied
members of the set.

Ours is not the first combination of linear programming, expert elicitation,
and imprecise probabilities. Lins combined these elements [10] to assess prior
probabilities for a single continuous parameter.

The paper is organized as follows. Section 2 presents the conceptual model,
which is an application of the mathematical Transferable Beliefs Model to risk
assessment. Based on this, Section 3 discusses our method to elicit and validate
expert opinion using a maximum unspecificity criterion. From our reading of the
literature, we then provide a tentative attribution among the causes (because the
expert elicitation phase of this project is currently incomplete), and in Section 4
illustrate the method with a numerical application.

2 Model

2.1 Multiple pollutants may cause lung cancer
Let N denote the magnitude of the health end-point, in this case, the total annual
number of lung cancer deaths. Let Ω denote the set of all possible causes of lung
cancer deaths. For example, Ω = {C, R,A,X}where C means tobacco smoke
primarily from cigarettes, R means indoor exposure to radon, A means asbestos
and X is the group of all other more poorly understood environmental factors of
interest.

The model assumes that N is readily observable and therefore known with
precision. While this is not strictly true in the case of lung cancer [3, 2] the as-
sumption is not limiting, since the results of the method can be stated in percent-
age terms and then applied to a range of possible numerical values of N. We also
assume exposure to be binary, which is of course not true, but the assumption is
consistent with the exposure definitions used in the supporting epidemiological
studies. With these two assumptions, each death can be linked to zero or more
possible causes in Ω. Most lung cancer deaths are caused by smoking alone, but
there are synergistic cases in which more than one cause is involved, such as
smoking and radon.

Figure 1 shows one way to subdivide N by causes that includes synergistic
effects. We denote the number of deaths linked to cause s as n(s), where s is any
subset of Ω. In our example we consider four possible causes in Ω, so there could
be sixteen (= 24) possible s, but to simplify the analysis and to be consistent with
the cancer literature, we will consider only the two-factor interactions involving
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n(�) n(C) n(R) n(CR) n(X) n(XC) n(XR) n(Ω)

-�

N = All lung cancer cases

Figure 1: The basic statistic n, simplified to include only the risk factors cigarettes
(C), radon (R), and all other causes (X). N is the total number of lung cancer fatal-
ities. n is the number of fatalities attributable to each risk factor, or combination
of factors. n(�) is the background number of lung cancer deaths that would occur
absent all the various risk factors. n(Ω) = n(CRX), those cases for which no risk
factor can be excluded.

cigarette smoke.
To adopt a more precise and cautious definition, n(s) is the number of cases

not caused by pollutants not in s. This implies that causes not in s are known to
be non-contributing to that lung cancer. For deaths in n(s), any cause in s may
have caused the lung cancer, but which one is uncertain and there may have been
synergies.

Our intuitive interpretation for this definition of “ambiguous causality” is that
n(s) represents the number of cases that were exposed to the possibly multiple
risk factors in s.

The number of lung cancer deaths where all causes of Ω have been positively
excluded is n(�) shown to the left of the bar in Figure 1. Cases that could not be
linked to any pollutant in Ω are considered spontaneous lung cancer. It is impor-
tant to underline that n(�) does not have the same status as n(X), which will be
deduced as a residual. It corresponds to the background rate of lung cancer that
occurs in a population without exposure to any environmental, dietary, occupa-
tional or other carcinogen.

The function n does not come from real data. Direct measurement of the basic
statistic n is impossible, since exposure to a pollutant does not necessarily result
in a cancer fatality and because retrospectively, lifetime exposures to the various
carcinogens can only be roughly estimated. It is only a mathematical tool used in
to support expert elicitation of consistent bounds, as discussed next.

2.2 Bounding the risk attributable to single and joint pollu-
tants

The basic statistic n can be used to bound the number of cases attributable to
smoking C as follows, where n(C) and n(C) denote the upper and lower bounds
on n(C), respectively:

• The lower bound is the number of cases attributed only to smoking (we
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n(C) n(CX) n(X) n(�)

-�

Lower bound on C
-�

Upper bound on X
-�

Upper bound on C
-�

Lower bound on X

-�

Synergistic effects

Figure 2: Upper and lower bounds on the number of lung cancer deaths at-
tributable to C and X

lump both passive and active smoking together). That is n(C)=n(C).

• The upper bound is the number of cases exposed to smoke and possibly
other factors. That is n(C) = n(C)+ n(XC)+ n(CR)+ n(XCR)+n(CA)+
n(XCA)+n(CRA)+n(XCRA) or:

n(C) = ∑
E

n(E) for all subsets E of Ω containing C

Figure 2 illustrates this definition of the upper and lower bounds of the num-
ber of lung cancer deaths attributable to X and C. For clarity the figure is drawn
showing only two causes, with Ω = {C,X}.

In epidemiologists’ terms, the attributable fraction of pollutant C is the pro-
portion of all cases that could be avoided if this pollutant were eliminated, denoted
a f (C). The model suggests the following bounds for smoking attributable frac-
tion:

n(C)

N
(1− r0) ≤ a f (C) ≤ n(C)

N
(1− r0) (1)

The lower bound accounts for the 1− r0 share of spontaneous lung cancer
cases in those cases exposed to cigarettes. The upper bound attributes all cigarette-
exposed deaths to this factor.

For this paper we will assume that the background rate of lung cancer mor-
tality in the U.S., r0, is 3 deaths per 100 000 people. This background rate is the
number of lung cancer deaths in the unexposed population divided by the unex-
posed population. Denoting pC, pR and pA as the exposure probabilities of C,R,A;
and T as the total population; assuming independence (meaning that people who
smoke are no more or less likely to be exposed to radon or to asbestos):

r0 =
n(�)

(1− pC)(1− pR)(1− pA)T
(2)
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Consider now the bounds on deaths attributed to multiple synergistic causes.
Denote these causes s, a subset of Ω, for example s = CR. For the lower bound
on the number of deaths attributable to these causes acting jointly, we continue to
adopt the number of cases exposed only to these causes, that is:

n(s) = n(s) (3)

And as the upper bound, we continue to adopt the number of cases exposed to
s and possibly other factors, that is:

n(s) = ∑
E

n(E) for all subsets E of Ω containing s (4)

This n corresponds to the commonality function in the Transferable Belief
Model [20]. Bounds on the attributable fraction can be computed as in equation 1.

2.3 Unspecificity, a measure of uncertainty
Structurally, the only uncertainty in this bounding analysis model comes from the
synergistic causes, because it is not possible to attribute the cancer to any one of
these causes. Consider these two (of the three) extreme cases:

• If each death were attributed to exactly one cause, then there would be no
uncertainty, and all lower bounds would coincide with their upper coun-
terpart. We would have n(C)+n(R)+n(A)+n(X) = N −n(�). Note that
since n is a positive function that sums up to N, this implies that n(s) = 0
for all other subsets.

• If no information were available, each death would be attributed to the syn-
ergy of all factors. We would have all the lower bounds at 0 and all upper
bounds at N. Mathematically, this is n(Ω) = N. Note that this constitutes
a proper uninformative distribution: it is not the Bayesian uniform prior
probability distribution on Ω. It represents the family of all probability dis-
tributions that can be defined on Ω.

Unspecificity is an numeric indicator that equals one in the first case, and in
the second case equals the number of elements of Ω. It is the expected value of the
number of elements of s with respect to the probability distribution m(s) = n(s)

N ,
that is:

U =
n(C)+n(R)+n(A)+n(X)+2(n(CR)+n(RA)+ . . .)+3 . . .+4n(Ω)

N
(5)

In this paper unspecificity is a kind of generalized cardinality, that specifies
the number of alternatives. The reason for using this word is that when a death is
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attributed to the synergy of k factors, it can be said that the unspecificity of this
information is k. See [16] for an extensive discussion of this concept.

A lower unspecificity measure corresponds to better information, so a third
extreme case needs discussion: unspecificity is zero when and only when n(�) =
N. This is the case when for all deaths, all non-spontaneous causes of Ω have been
positively excluded. It means that all the substances in Ω are actually safe (with
respect to lung cancer). This is the highest level of information achievable, to the
point that it makes Ω irrelevant.

Regarding unspecificity as a measure of information allows to implement nu-
merically the general principle of maximum uncertainty, also known as Laplace’s
principle of “raison insuffisante”. The principle states that one should select the
statistic that is the most unspecific, compatible with existing information. This is
the principle that we use in the next section to estimate the bounds on the unknown
cause, given information about all others.

3 Expert elicitation

3.1 Procedure
When we apply this procedure, we will elicit a set of judgments regarding n(s)
from a number of leading health scientists using methods previously developed
for expert elicitation in domains in which there is considerable scientific evi-
dence [13, 14, 15]

The results from an elicitation will be interpreted as linear constraints on n.
These constraints determine a set B of basic statistics, that is a set of n that are all
compatible with the expert’s judgments. The most unspecific n in B is chosen to
represent the expert judgment, according to the maximum uncertainty principle.
This amounts to solving a linear program in a space with 2|Ω| dimensions.

Other ways of translating judgments into constraints are possible, for exam-
ple using relative risk, but are not used in this introductory paper. Note that both
quantitative and comparative judgments are possible, which may ultimately be
important because some of the pollutants have been well studied, but we are in-
terested in the less well-known pollutants.

In addition to elicited information, we impose these constraints:

• It is understood that all n(s) are non-negative, summing up to N.

• Three-way interactions and higher are not allowed. That is, n(s) = 0 if s has
3 or more elements.

The constraint on three-way interaction is a zero-order approximation. We as-
sume that that the number of deaths caused by multiple interactions are a very
small number that can be neglected. In a more sophisticated approach, this as-
sumption could be replaced by explicit considerations about causes interactivity
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and independence. But there is little scientific empirical knowledge about these
interactions.

3.2 Ensuring consistency
Maximizing unspecificity is possible only if B is not empty. This means that the
different items of information given by the expert should be coherent with each
other. For example, one could not allow the expert to say that the lower bound
for C is 90 percent, and the lower bound for R is 20 percent at the same time,
because that would exceed 100 percent. Walley has shown [23] that the coherence
condition is:

a f (si)+ ∑
j 6=i

a f (s j) ≤ 1 ≤ a f (si)+∑
j 6=i

a f (s j)

The double inequality should hold for all causes i in {1, . . . , |Ω|}.
Besides mathematical consistency, it is also important to provide safeguards

so that the expert can check that formal implications of the elicited n are consistent
with its informal understanding of the problem. We propose two checks.

The first check on n is to make sure that the results in terms of bounds on
relative risks and on interactions between pollutants make sense. The definition
of relative risk for smoking cigarettes rr(C), for example, is the lung cancer rate
associated with exposure to tobacco smoke divided by the background lung cancer
rate. Given exposure probabilities in the general population, we will assess the
bounds on the relative risk for the various pollutants using the formula in [6,
appendix C p. 229].

The second check on n is to make sure that the risk-ranking it implies makes
sense. We will ask experts to rank risks during the elicitation process. The con-
sistency of results will be assessed by comparing the partial order derived from n
with the expert’s a priori risk ranking.

Informally, this partial order says that the lung cancer risk related to R is not
larger than the risk related to C when we know with certainty that R causes fewer
lung cancer deaths than C. For example, one sufficient condition for this is that
the lower bound on C is greater than the upper bound on R. But the mathematical
definition of the natural partial order relation associated with a basic statistic n
requires more explanations.

Let P denote a function such that P(C)+P(R)+P(A)+P(X)= N. It is a basic
statistic with unspecificity one, describing an hypothetical world where each lung
cancer death is attributed to one and only one cause. For such a P, the number of
deaths caused by any set of causes s is ∑x P(x), for all causes x in s. We say that P
is compatible with the basic statistic n if and only if for all s, that number respects
the bound determined by n in the following way:
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∀s ⊂ Ω, ∑
x∈s

P(x) ≤ ∑
y,s∩y6=�

n(y) (6)

The right hand side of Equation 6 can be interpreted in the present model as
the upper bound on the number of deaths related to the causes in s acting either
jointly or separately. This function of s corresponds to the belief function in the
Transferable Belief Model.

The heart of the problem is that P is hypothetical. Because there are inter-
actions, more than one P is compatible with n. Denote P the family of all P
compatible with n. The natural partial order is mathematically defined by:

R �C ⇔ ∀P ∈ P , P(R) ≤ P(C) (7)

Numerically, this is determined by checking the sign of the minimum of
P(C)−P(R) under constraint 6. It is tractable to work with the full partial or-
der, since there is at most |Ω|(|Ω| − 1)/2 comparisons. Assuming |Ω| = 7 for
example, there are no more than 21 information items, which can be presented
naturally in the diagonal half of a table. Moreover, practically there will be fewer
than 21 items, since not all risks can be compared. It is to be expected, for exam-
ple, that some experts may prefer to find that some of the less-known risks are not
comparable, because of missing scientific information.

4 Application
Our numerical simulations were performed using a Mathematica notebook1. The
code directly implements matrix calculus for belief functions as outlined in [21].
This is the most straightforward method given that Ω remains small, but it would
not scale well to tens of pollutants, since it involves square matrices with 22|Ω|

elements. For example, 10 pollutants implies storing in memory arrays with 1M
numbers.

In our illustration Ω, the set of possible causes of lung cancer, consists of:
C Smoking
R Radon
A Asbestos, glass wool, ceramic fibers
X All other environmental risk factors

Based on our own review of the literature [6, 7, 4, 18, 22, and others] we have
constructed a set of judgments attributing lung cancer deaths among the major
causes, as the expert elicitations have not at this time been performed. We offer
the following breakdown: Cigarette smoking combined with passive smoking ac-
counts for 70 to 95 percent of lung cancer mortality; indoor radon exposures for
02 to 21 percent; asbestos, 1 to 5 percent.

1Available on the web at http://www.andrew.cmu.edu/user/mduong, or upon request,
under the GNU General Public License.
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Bounds C R A X
a f 95% 21% 5% 3.2%
a f 70% 02% 1% 0%

Exposure probability 45% 50% 5% 5%
rr 43.2 1.53 2.05 1.66
rr 6.19 1.04 1.20 1.

Table 2: Results of optimization: Upper and lower bounds on attributable fractions
and relative risks

We used a 3% background rate [1, 5, 11, 9, 17]. With our assumptions on
exposure probabilities, equation 2 implies that n(�) = 0.013N.

The next table shows the implications for bounds of a f and rr of the most
unspecific imprecise probability distribution compatible with these constraints.
The exposure probabilities needed to compute rr are exogenous: radon exposure
is defined as living in a home with radon concentration at or above 25 Bqm−1,
and exposure to X is our estimate. The effect of this calculation on the bounds
of rr would serve as a calibration/validation reference for the expert who may be
more familiar with small sample studies than population effects, and might adjust
his or her initial responses in light of seeing their mathematical implications.

This result attributes between 0 and 3.2 percent of lung cancer deaths to X ,
the group of unknown environmental pollutants. For the group of known and sus-
pected lung carcinogens other than C, A and R, the risk analyst concludes that, if
one is confident in the bounds assigned to the well understood risk factors, the
sum of the effects of the other factors accounts for no more than 3.2% of total
lung cancer mortality.

The implication for judging future risk assessments of members of X is that,
if the assessment projects the lung cancer risk in the U. S. population from these
pollutants to be in excess of 3.2% of the annual lung cancer mortality, then the
assumptions of the model should be re-examined and the upper bound on the
resulting estimate constrained.

5 Concluding remarks

5.1 Discussion
With less than ten pollutants, computing time is not a problem. Expert elicitation
could be done interactively, solving for n after each expert’s reply. This would al-
low the interviewer to point out and resolve inconsistency when there is no solu-
tion. But assuming that experts were willing to form judgments on a wider range
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of pollutants, the curse of dimensionality can be addressed along the following
lines. Rather than using matrix calculus, it is possible to use faster algorithms
(namely the Fast Möbius transform) for belief function computations. If this is
not enough, further simplifications can be made if additional assumptions on n,
for example disallowing 3-way or higher interactions, are accepted.

The proposed method takes all information items provided by the expert with
equal force. A potential advance of this research could be to ask experts to rank
the reliability of each information item, or even to give an estimate of confidence
for them.

Further research could deal with inter-expert validation, a question linked with
the unresolved issue of judgment fusion. The Transferable Belief Model under-
lying this work offers a measure of contradiction between different sources of
information: it reinterprets n(�), the number of spontaneous lung cancer deaths
found when one combines the opinion of all experts. The problem is how to com-
bine the experts.

Each expert’s judgment determines a set B of coherent basic statistics. If the
intersection of all these sets is non-empty, then experts agree on this intersection.
The principle of maximum unspecificity can be used to form a group judgment.

If the intersection is empty, the experts contradict each other. Studying which
information items cause the contradiction (which constraints make the LP infeasi-
ble) can identify the substantive sources of disagreement, and in that way inform
both future research priorities as well as the decision-making process. How (or
if) to fuse the judgments and quantify the degree of contradiction is still an active
research question, see [8] for example.

5.2 Conclusion
This paper has proposed an application of the Transferable Belief Model [20] to
estimate an upper bound on the number of lung cancers caused annually by the
group of causes for which comprehensive longitudinal studies are lacking. Such a
result is interesting from a risk management perspective, as it gives an indication
of the level of effort control of these pollutants deserve.

This was done by attributing a portion of the observed cancers to known
causes such as smoking, radon and asbestos, and then deducing information about
the residual using maximum unspecificity. The critical aspects of this procedure
are:

1. Uncertainty in the known causes is explicitly stated, using statements on
upper and lower bounds.

2. Synergistic effects in the known causes are part of the framework.

3. Consistency between known causes and poorly understood agents is re-
quired. (As Figure 2 illustrates, it is the lower bound on smoking that mostly
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constrains the upper bound on the residual.)

This paper presents the methodology. The results revealed by future expert
elicitation will be the subject of another paper.
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