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Abstract

Walley’s Imprecise Dirichlet Model (IDM) for categorical data overcomes
several fundamental problems which other approaches to uncertainty suffer
from. Yet, to be useful in practice, one needs efficient ways for computing
the imprecise=robust sets or intervals. The main objective of this work is
to derive exact, conservative, and approximate, robust and credible interval
estimates under the IDM for a large class of statistical estimators, including
the entropy and mutual information.

1 Introduction
This work derives interval estimates under the Imprecise Dirichlet Model (IDM)
[Wal96] for a large class of statistical estimators. In the IDM one considers an
i.i.d. process with unknown chances1 πi for outcome i. The prior uncertainty
about πππ 2 is modeled by a set of Dirichlet priors3 {p(πππ) ∝ ∏i πsti−1

i : ttt ∈ ∆},
where4 ∆ := {ttt : ti ≥ 0, ∑i ti = 1}, and s is a hyper-parameter, typically cho-
sen between 1 and 2. Sets of probability distributions are often called Imprecise
probabilities, hence the name IDM for this model. We avoid the term imprecise
and use robust instead, or capitalize Imprecise. IDM overcomes several funda-
mental problems which other approaches to uncertainty suffer from [Wal96]. For
instance, IDM satisfies the representation invariance principle and the symmetry
principle, which are mutually exclusive in a pure Bayesian treatment with proper
prior [Wal96]. The counts ni for i form a minimal sufficient statistic of the data
of size n = ∑i ni. Statistical estimators F(nnn) usually also depend on the chosen

1Also called objective or aleatory probabilities.
2We denote vectors by xxx := (x1, ...,xd ) for xxx ∈ {nnn,ttt ,uuu,πππ, ...}.
3Also called second order or subjective or belief or epistemic probabilities.
4Strictly speaking, ∆ should be the open simplex [Wal96], since p(πππ) is improper for ttt on the

boundary of ∆. For simplicity we assume that, if necessary, considered functions of ttt can and are
continuously extended to the boundary of ∆, so that, for instance, minima and maxima exist. All con-
siderations can straightforwardly, but cumbersomely, be rewritten in terms of an open simplex. Note
that open/closed ∆ result in open/closed robust intervals, the difference being numerically/practically
irrelevant.
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prior: so a set of priors leads to a set of estimators {Fttt(nnn) : ttt ∈ ∆}. For instance,
the expected chances Ettt [πi] = ni+sti

n+s =: ui(ttt) lead to a robust interval estimate
[ ni

n+s ,
ni+s
n+s ] 3 Ettt [πi]. Robust intervals for the variance Var[πi] [Wal96] and for the

mean and variance of linear-combinations ∑i αiπi have also been derived [Ber01].
Bayesian estimators (like expectations) depend on ttt and nnn only through uuu (and
n+ s which we suppress), i.e. Fttt(nnn) = F(uuu). The main objective of this work is to
derive approximate, conservative, and exact intervals [minttt∈∆ F(uuu),maxttt∈∆ F(uuu)]
for general F(uuu), and for the expected (also called predictive) entropy and the
expected mutual information in particular. These results are key building blocks
for applying IDM. Walley suggests, for instance, to use minttt Pttt [F ≥ c] ≥ α for
inference problems and minttt Ettt [F ] ≥ c for decision problems [Wal96], where F
is some function of πππ. One application is the inference of robust tree-dependency
structures [Zaf01, ZH03], in which edges are partially ordered based on Imprecise
mutual information.

Section 2 gives a brief introduction to IDM and describes our problem setup.
In Section 3 we derive exact robust intervals for concave functions F , such as the
entropy. Section 4 derives approximate robust intervals for arbitrary F. In Section
5 we show how bounds of elementary functions can be used to get bounds for
composite function, especially for sums and products of functions. The results
are used in Section 6 for deriving robust intervals for the mutual information. The
issue of how to set up IDM models on product spaces is discussed in Section 7.
Section 8 addresses the problem of how to combine Bayesian credible intervals
with the robust intervals of the IDM. Conclusions are given in Section 9.

2 The Imprecise Dirichlet Model

Random i.i.d. processes. We consider discrete random variables ı∈{1, ...,d} and
an i.i.d. random process with outcome i ∈ {1, ...,d} having probability πi. The
chances πππ form a probability distribution, i.e. πππ ∈ ∆ := {xxx ∈ IRd : xi ≥ 0∀i, x+ =
1}, where we have used the abbreviation xxx = (x1, ...,xd) and x+ := ∑d

i=1 xi. The
likelihood of a specific data set DDD with ni observations i and total sample size
n = n+ = ∑i ni is p(DDD|πππ) = ∏i πni

i . The chances πi are usually unknown and have
to be estimated from the sample frequencies ni. The frequency estimate ni

n for πi
is one possible point estimate.

Second order p(oste)rior. In the Bayesian approach one models the initial un-
certainty in πππ by a (second order) prior “belief” distribution p(πππ) with domain

πππ ∈ ∆. The Dirichlet priors p(πππ) ∝ ∏i πn′i−1
i , where n′i comprises prior informa-

tion, represent a large class of priors. n′i may be interpreted as (possibly frac-
tional) virtual number of “observation”. High prior belief in i can be modeled by
large n′i. It is convenient to write n′i = s · ti with s := n′+, hence ttt ∈ ∆. Having
no initial bias one should choose a prior in which all ti are equal, i.e. ti = 1

d ∀i.
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Examples for s are 0 for Haldane’s prior [Hal48], 1 for Perks’ prior [Per47], d
2

for Jeffreys’ prior [Jef46], and d for Bayes-Laplace’s uniform prior [GCSR95].
From the prior and the data likelihood one can determine the posterior p(πππ|DDD) =

p(πππ|nnn) ∝ ∏i πni+sti−1
i .

The posterior p(πππ|DDD) summarizes all statistical information available in the
data. In general, the posterior is a very complex object, so we are interested in
summaries of this plethora of information. A possible summary is the expected
value or mean Ettt [πi] = ni+sti

n+s which is often used for estimating πi. The accuracy
may be obtained from the covariance of πππ.

Usually one is not only interested in an estimation of the whole vector πππ, but
also in an estimation of scalar functions F : ∆ → IR of πππ, such as the entropy
H (πππ) = −∑i πi logπi, where log denotes the natural logarithm. Since F is it-
self a random variable we could determine the posterior distribution p(F0|nnn) =
R

∆ δ(F (πππ)−F0)p(πππ|nnn)dπππ of F , which may further be summarized by the poste-
rior mean Ettt [F ] =

R

∆ F (πππ)p(πππ|nnn)dπππ and possibly the posterior variance Varttt [F ].
A simple, but crude approximation for the mean can be obtained by exchanging
E with F (exact only for linear functions): Ettt [F (πππ)] ≈ F (Ettt [πππ]). The approxi-
mation error is typically of the order 1

n .

The Imprecise Dirichlet Model. The classical approach, which consists of se-
lecting a single prior, suffers from a number of problems. Firstly, choosing for
example a uniform prior ti = 1

d , the prior depends on the particular choice of the
sampling space. Secondly, it assumes exact prior knowledge of p(πππ). The solu-
tion to the second problem is to model our ignorance by considering sets of priors
p(πππ), often called Imprecise probabilities. The specific Imprecise Dirichlet Model
(IDM) [Wal96] considers the set of all ttt ∈ ∆, i.e. {p(πππ|nnn) : ttt ∈ ∆} which solves
also the first problem. Walley suggests to fix the hyperparameter s somewhere
in the interval [1,2]. A set of priors results in a set of posteriors, set of expected
values, etc. For real-valued quantities like the expected entropy Ettt [H ] the sets are
typically intervals, which we call robust intervals

Ettt [F ] ∈ [min
ttt∈∆

Ettt [F ] , max
ttt∈∆

Ettt [F ]].

Problem setup and notation. Consider any statistical estimator F . F is a function
of the data DDD and the hyperparameters ttt. We define the general correspondence

u···i =
ni + st ···i

n+ s
, where ... can be various superscripts. (1)

F can, hence, be rewritten as a function of uuu and DDD. Since we regard DDD as fixed, we
suppress this dependence and simply write F = F(uuu). This is further motivated
by the fact that all Bayesian estimators of functions F of πππ only depend on uuu and
the sample size n + s. It is easy to see that this holds for the mean, i.e. Ettt [F ] =
F(uuu ; n+ s), and similarly for the variance and all higher (central) moments. The
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main focus of this work is to derive exact and approximate expressions for upper
and lower F values

F := max
ttt∈∆

F(uuu) and F := min
ttt∈∆

F(uuu), F := [F ,F ]

ttt ∈ ∆ ⇔ uuu ∈ ∆′, where ∆′ := {uuu : ui ≥ ni
n+s , u+ = 1}. We define uuuF as the uuu ∈ ∆′

which maximizes F , i.e. F = F(uuuF), and similarly tttF through relation (1). If the
maximum of F is assumed in a corner of ∆′ we denote the index of the corner by
iF , i.e. tF

i = δiiF , where δi j is Kronecker’s delta function. Similarly uuuF , tttF , iF .

3 Exact Robust Intervals for Concave Estimators
In this section we derive exact expressions for F if F : ∆ → IR is of the form

F(uuu) =
d

∑
i=1

f (ui) and concave f : [0,1]→ IR. (2)

The expected entropy is such an example (discussed later). Convex f are treated
similarly (or simply take − f ).

The nature of the solution. The approach to a solution of this problem is moti-
vated as follows: Due to symmetry and concavity of F , the global maximum is
attained at the center ui = 1

d of the probability simplex ∆, i.e. the more uniform uuu
is, the larger F(uuu). The nearer uuu is to a vertex of ∆, i.e. the more unbalanced uuu is,
the smaller is F(uuu). The constraints ti ≥ 0 restrict uuu to the smaller simplex

∆′ = {uuu : ui ≥ u0
i , u+ = 1} with u0

i :=
ni

n+ s
,

which prevents setting uF
i = 1

d and uF
i = δi1. Nevertheless, the basic idea of choos-

ing uuu as uniform / as unbalanced as possible still works, as we will see.

Greedy F(uuu) minimization. Consider the following procedure for obtaining uuuF .
We start with ttt ≡ 000 (outside the usual domain ∆ of F, which can be extended to
[0,1]d via (2)) and then gradually increase ttt in an axis-parallel way until t+ = 1.
With axis-parallel we mean that only one component of ttt is increased, which
one possibly changes during the process. The total zigzag curve from tttstart = 000
to tttend has length tend

+ = 1. Since all possible curves have the same (Manhattan)
length 1, F(uuuend) is minimized for the curve which has (on average) smallest F-
gradient along its path. A greedy strategy is to follow the direction i of currently
smallest F-gradient ∂F

∂ti
= f ′(ui)

s
n+s . Since f ′ is monotone decreasing ( f ′′ < 0), ∂F

∂ti
is smallest for largest ui. At tttstart =000, ui =

ni
n+s is largest for i = imin := argmaxi ni.

Once we start in direction imin, uimin increases even further whereas all other ui
(i 6= imin) remain constant. So the moving direction is never changed and finally



278 ISIPTA ’03

we reach a local minimum at tend
i = δiimin . In [Hut03] we show that this is a global

minimum, i.e.
tF
i = δiiF with iF := argmax

i
ni. (3)

Greedy F(uuu) maximization. Similarly we maximize F(uuu). Now we increase ttt in
direction i = i1 of maximal ∂F

∂ti
, which is the direction of smallest ui ∝ ni + sti.

Again, (only) ui1 increases, but possibly reaches a value where it is no longer the
smallest one. We stop if it becomes equal to the second smallest ui, say i = i2.
We now have to increase ui1 and ui2 with same speed (or in an ε-zigzag fashion)
until they become equal to ui3 , etc or until u+ = 1 = t+ is reached. Assume the
process stops with direction im and minimal u being ũ, i.e. finally uik = ũ for
k ≤ m and tik = 0 for k > m. From the constraint 1 = u+ = ∑k≤m uik +∑k>m uik =

mũ + ∑k>m
nik
n+s we obtain ũ(m) = 1

m [1−∑k>m
nik
n+s ] = [s + ∑k≤m nik ]/[m(n + s)].

One can show that ũ(m) has one global minimum (no local ones) and that the
final m is the one which minimizes ũ, i.e.

ũ = min
m∈{1...d}

s+ ∑k≤m nik
m(n+ s)

, where ni1 ≤ ni2 ≤ ... ≤ nid , uF
i = max{u0

i , ũ}. (4)

If there is a unique minimal ni1 with gap ≥ s to the second smallest ni2 (which
is quite likely for not too small n), then m = 1 and the maximum is attained at a
corner of ∆ (∆′).

Theorem 1 (Exact extrema for concave functions on simplices) Assume F :
∆′ → IR is a concave function of the form F(uuu) = ∑d

i=1 f (ui). Then F attains the
global maximum F at uuuF defined in (4) and the global minimum F at uuuF defined
in (3).

Proof. What remains to be shown is that the solutions obtained in the last para-
graphs by greedy minimization/maximization of F(uuu) are actually global min-
ima/maxima. For this assume that ttt is a local minimum of F(uuu). Let j := argmaxi ui
(ties broken arbitrarily). Assume that there is a k 6= j with non-zero tk. Define ttt ′ as
t ′i = ti for all i 6= j,k, and t ′j = t j +ε, t ′k = tk −ε, for some 0 < ε ≤ tk. From uk ≤ u j

and the concavity of f we get5

F(ttt′)−F(ttt) = [ f (u′j)+ f (u′k)]− [ f (u j)+ f (uk)]

= [ f (u j+σε)− f (u j)]− [ f (uk)− f (uk−σε)] < 0

where σ := s
n+s . This contradicts the minimality assumption of ttt. Hence, ti = 0 for

all i except one (namely j, where it must be 1). (Local) minima are attained in the
vertices of ∆. Obviously the global minimum is for tF

i = δiiF with iF := argmaxi ni.
This solution coincides with the greedy solution. Note that the global minimum

5Slope f (u+ε)− f (u)
ε is a decreasing function in u for any ε > 0, since f is concave.
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may not be unique, but since we are only interest in the value of F(uuuF) and not its
argument this degeneracy is of no further significance.

Similarly for the maximum, assume that ttt is a (local) maximum of F(uuu). Let
j := argmini ui (ties broken arbitrarily). Assume that there is a k 6= j with non-
zero tk and uk > u j. Define ttt′ as above with 0 < ε < min{tk , tk − t j}. Concavity of
f implies

F(ttt ′)−F(ttt) = [ f (u j+σε)− f (u j)]− [ f (uk)− f (uk−σε)] > 0,

which contradicts the maximality assumption of ttt. Hence ti = 0 if ui is not minimal
(ũ). The previous paragraph constructed the unique solution uuuF satisfying this
condition. Since this is the only local maximum it must be the unique global
maximum (contrast this to the minimum case). 2

Theorem 2 (Exact extrema of expected entropy) Let H (πππ) = −∑i πi logπi be
the entropy of πππ and the uncertainty of πππ be modeled by the Imprecise Dirich-
let Model. The expected entropy H(uuu) := Ettt [H ] for given hyperparameter ttt and
sample nnn is given by

H(uuu) = ∑
i

h(ui) with h(u) = u·[ψ(n+s+1)−ψ((n+s)u+1)] = u·
n+s

∑
k=(n+s)u+1

k−1 (5)

where ψ(x) = d logΓ(x)/dx is the logarithmic derivative of the Gamma function
and the last expression is valid for integral s and (n+ s)u. The lower H and upper
H expected entropies are assumed at uuuH and uuuH given in (3) and (4) (with F ; H,
see also (1)).

A derivation of the exact expression (5) for the expected entropy can be found
in [WW95, Hut02]. The only thing to be shown is that h is concave. This may be
done by exploiting special properties of the digamma function ψ (see [AS74]).

There are fast implementations of ψ and its derivatives and exact expressions
for integer and half-integer arguments

Example. For d = 2, n1 = 3, n2 = 6, s = 1 we have n = 9, u1 = 3+t1
10 , u2 = 6+t2

10 ,
ttt0 = 0, uuu0 =

(.3
.6

)
, see (1). From (3), iH = 2, tttH =

(0
1

)
, uuuH =

(.3
.7

)
. From (4), i1 = 1,

i2 = 2, ũ = min{ 1+3
9+1 , 1+3+6

2·(9+1)} = 4
10 , uuuH = max{uuu0, ũ} =

(.4
.6

)
⇒ tttH =

(1
0

)
is in

corner. From (5), h( 3
10) = 2761

8400 , h( 4
10) = 2131

6300 , h( 6
10) = 1207

4200 , h( 7
10) = 847

3600 , hence
H = [H(uuuH),H(uuuH)] = [h( 3

10)+h( 7
10) , h( 4

10)+h( 6
10)] = [0.5639...,0.6256...], so

H −H = O( 1
10 ).

4 Approximate Robust Intervals
In this section we derive approximations for F suitable for arbitrary, twice dif-
ferentiable functions F(uuu). The derived approximations for F will be robust in
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the sense of covering set F (for any n), and the approximations will be “good”
if n is not too small. In the following, we treat σ := s

n+s as a (small) expansion
parameter. For uuu,uuu∗ ∈ ∆′ we have

ui −u∗i = σ·(ti − t∗i ) and |ui −u∗i | = σ|ti − t∗i | ≤ σ with σ := s
n+s . (6)

Hence we may Taylor-expand F(uuu) around uuu∗, which leads to a Taylor series
in σ. This shows that F is approximately linear in uuu and hence in ttt. A linear
function on a simplex assumes its extreme values at the vertices of the simplex.
This has already been encountered in Section 3. The consideration above is a
simple explanation for this fact. This also shows that the robust interval F is of
size F −F = O(σ).6 Any approximation to F should hence be at least O(σ2). The
expansion of F to O(σ) is

F(uuu) =

F0=O(1)︷ ︸︸ ︷
F(uuu∗) +

FR=O(σ)︷ ︸︸ ︷
∑

i
[∂iF(ǔ̌ǔu)](ui −u∗i ) (7)

where ∂iF(ǔ̌ǔu) is the partial derivative ∂iF(ǔ̌ǔu)
∂ǔi

of F(ǔ̌ǔu) w.r.t. ǔi. For suitable ǔ̌ǔu =

ǔ̌ǔu(uuu,uuu∗)∈ ∆′ this expansion is exact (FR is the exact remainder). Natural points for
expansion are t∗i = 1

d in the center of ∆, or possibly also t∗i = ni
n = u∗i . See [Hut03]

for such a general expansion. Here, we expand around the improper point t∗i :=
t0
i ≡ 0, which is outside(!) ∆, since this makes expressions particularly simple.7

(6) is still valid in this case, and FR is exact for some ǔ̌ǔu in

∆′
e := {uuu : ui ≥ u0

i ∀i, u+ ≤ 1}, where u0
i =

ni

n+ s
.

Note that we keep the exact condition uuu ∈ ∆′. F is usually already defined on ∆′
e

or extends from ∆′ to ∆′
e without effort in a natural way (analytical continuation).

We introduce the notation

F v G :⇔ F ≤ G and F = G+O(σ2) (8)

stating that G is a “good” upper bound on F . The following bounds hold for
arbitrary differentiable functions. In order for the bounds to be “good,” F has to
be Lipschitz differentiable in the sense that there exists a constant c such that

|∂iF(uuu)| ≤ c and |∂iF(uuu)−∂iF(uuu′)| ≤ c|uuu−uuu′|

∀uuu,uuu′ ∈ ∆′
e and ∀1 ≤ i ≤ d. (9)

6 f (nnn,ttt ,s) = O(σk) :⇔ ∃c∀nnn ∈ INd
0 , ttt ∈ ∆, s > 0 : | f (nnn,ttt ,s)| ≤ cσk , where σ = s

n+s .
7The order of accuracy O(σ2) we will encounter is for all choices of uuu∗ the same. The concrete

numerical errors differ of course. The choice ttt∗ = 000 can lead to O(d) smaller FR than the natural
center point ttt∗ = 1

d , but is more likely a factor O(1) larger. The exact numerical values depend on the
structure of F.
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If F depends also on nnn, e.g. via σ or uuu0, then c shall be independent of them.

The Lipschitz condition is satisfied, for instance, if the curvature ∂2F is uniformly
bounded. This is satisfied for the expected entropy H (see (5)), but violated for
the approximation Ettt [H ] ≈ H (uuu) if ni = 0 for some i.

Theorem 3 (Approximate robust intervals) Assume F : ∆′
e → IR is a Lipschitz

differentiable function (9). Let [F ,F ] be the global [minimum,maximum] of F
restricted to ∆′. Then

F(uuu1) v F v F0 +Fub
R where Fub

R = max
i

Fub
iR and Fub

iR = σmax
uuu∈∆′

e

[∂iF(uuu)]

F0 +F lb
R v F v F(uuu2) where F lb

R = min
i

F lb
iR and F lb

iR = σ min
uuu∈∆′

e
[∂iF(uuu)]

F0 = F(uuu0), and u1
i = δii1 with i1 = argmaxi Fub

iR , and u2
i = δii2 with i2 = argmini F lb

iR ,
and v defined in (8) means ≤ and = +O(σ2), where σ = 1−u0

+.

For conservative estimates, the lower bound on F and the upper bound on F are
the interesting ones.

Proof. We start by giving an O(σ2) bound on FR = maxuuu∈∆′ FR(uuu). We first insert
(6) with ttt∗ = ttt0 ≡ 000 into (7) and treat ǔ̌ǔu and ttt as separate variables:

FR(ǔ̌ǔu,ttt) = σ∑
i
[∂iF(ǔ̌ǔu)] · ti v max

ǔ̌ǔu∈∆′
e

{
σ∑

i
[∂iF(ǔ̌ǔu)] · ti

}
v ∑

i
Fub

iR · ti

with Fub
iR := σmax

ǔ̌ǔu∈∆′
e

[∂iF(ǔ̌ǔu)] (10)

The first inequality is obvious, the second follows from the convexity of max.
From assumption (9) we get ∂iF(uuu)−∂iF(uuu′) = O(σ) for all uuu,uuu′ ∈ ∆′

e, since ∆′
e

has diameter O(σ). Due to one additional σ in (10) the expressions in (10) change
only by O(σ2) when introducing or dropping maxǔ̌ǔu anywhere. This shows that the
inequalities are tight within O(σ2) and justifies v. We now upper bound FR(uuu):

FR = max
uuu∈∆′

FR(uuu) v max
ttt∈∆

max
ǔ̌ǔu∈∆′

e

FR(ǔ̌ǔu,ttt) v max
ttt∈∆ ∑

i
Fub

iR · ti = max
i

Fub
iR =: Fub

R (11)

A linear function on ∆ is maximized by setting the ti component with largest
coefficient to 1. This shows the last equality. The maximization over ǔ̌ǔu in (10) can
often be performed analytically, leaving an easy O(d) time task for maximizing
over i.

We have derived an upper bound Fub
R on FR. Let us define the corner ti = δii1

of ∆ with i1 := argmaxi Fub
iR . Since FR ≥ FR(uuu) for all uuu, FR(uuu1) in particular

is a lower bound on FR. A similar line of reasoning as above shows that that
FR(uuu1) = FR + O(σ2). Using F + const. = F + const. we get O(σ2) lower and
upper bounds on F , i.e. F(uuu1)vF vF0 +Fub

R . F is bound similarly with all max’s
replaced by min’s and inequalities reversed. Together this proves the Theorem 3.

2
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5 Error Propagation

Approximation of F (special cases). For the special case F(uuu) = ∑i f (ui) we
have ∂iF(uuu) = f ′(ui). For concave f like in case of the entropy we get particularly
simple bounds

Fub
iR = σmax

uuu∈∆′
e

f ′(ui) = σ f ′(u0
i ), Fub

R = σmax
i

f ′(u0
i ) = σ f ′(mini ni

n+s ),

F lb
iR = σ min

uuu∈∆′
e

f ′(ui) = σ f ′(u0
i +σ), F lb

R = σmin
i

f ′(u0
i +σ) = σ f ′(maxi ni+s

n+s ),

where we have used maxuuu∈∆′
e

f ′(ui) = maxui∈[u0
i ,u0

i +σ] f ′(ui) = f ′(u0
i ), and simi-

larly for min. Analogous results hold for convex functions. In case the maximum
cannot be found exactly one is allowed to further increase ∆′

e as long as its diam-
eter remains O(σ). Often an increase to 2

′ := {uuu : u0
i ≤ ui ≤ u0

i + σ} ⊃ ∆′
e ⊃ ∆′

makes the problem easy. Note that if we were to perform these kind of crude
enlargements on maxuuu F(uuu) directly we would loose the bounds by O(σ).

Example (continued). σ = 1
10 , h′( 3

10 ) = 13051
2520 − 1

2 Π2, h′( 7
10 ) = 91717

8400 − 7
6 Π2, H0 =

H(uuu0) = h( 3
10) + h( 6

10), Hub
R = 1

10 h′( 3
10 ), H lb

R = 1
10 h′( 7

10 ) ⇒ [H0 + H lb
R , H0 +

Hub
R ] = [0.5564...,0.6404...], hence H0 +Hub

R −H = 0.0148 = O( 1
102 ), H −H0−

H lb
R = 0.0074... = O( 1

102 ).

Error propagation. Assume we found bounds for estimators G(uuu) and H(uuu) and
we want now to bound the sum F(uuu) := G(uuu) + H(uuu). In the direct approach
F ≤ G + H we may lose O(σ). A simple example is G(uuu) = ui and H(uuu) = −ui
for which F(uuu) = 0, hence 0 = F ≤ G+H = u0

i +σ−u0
i = σ, i.e. F 6v G+H. We

can exploit the techniques of the previous section to obtain O(σ2) approximations.

Fub
iR = σmax

uuu∈∆′
e

∂iF(uuu) v σmax
uuu∈∆′

e

∂iG(uuu)+σmax
uuu∈∆′

e

∂iH(uuu) = Gub
iR +Hub

iR

Theorem 4 (Error propagation: Sum) Let G(uuu) and H(uuu) be Lipschitz differ-
entiable and F(uuu) = αG(uuu)+βH(uuu), α,β ≥ 0, then F v F0 +Fub

R and F w F0 +
F lb

R , where F0 = αG0 +βH0, and Fub
iR v αGub

iR +βHub
iR , and F lb

iR w αGlb
iR +βH lb

iR.

It is important to notice that Fub
R 6v Gub

R + Hub
R (use previous example), i.e.

maxi[Gub
iR + Hub

iR ] 6v maxi Gub
iR + maxi Hub

iR . maxi can not be pulled in and it is im-
portant to propagate Fub

iR , rather than Fub
R .

Every function F with bounded curvature can be written as a sum of a concave
function G and a convex function H. For convex and concave functions, determin-
ing bounds is particularly easy, as we have seen. Often F decomposes naturally
into convex and concave parts as is the case for the mutual information, addressed
later. Bounds can also be derived for products.
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Theorem 5 (Error propagation: Product) Let G,H : ∆′
e → [0,∞) be non-nega-

tive Lipschitz differentiable functions (9) with non-negative derivatives ∂iG,∂iH ≥
0 ∀i and F(uuu) = G(uuu) ·H(uuu), then F v F0 +Fub

R , where F0 = G0 ·H0, and Fub
iR v

Gub
iR (H0 +Hub

R )+(G0 +Gub
R )Hub

iR , and similarly for F.

Proof. We have

Fub
iR = σmax∂iF = σmax∂i(G·H) = σmax[(∂iG)H +G(∂iH)] v

σ(max∂iG)(maxH)+σ(maxG)(max∂iH) v Gub
iR (H0+Hub

R )+(G0+Gub
R )Hub

iR

where all functions depend on uuu and all max are over uuu∈ ∆′
e. There is one subtlety

in the last inequality: maxG 6= G v G0 +Gub
R . The reason for the 6= being that the

maximization is taken over ∆′
e, not over ∆′ as in the definition of G. The correct

line of reasoning is as follows:

max
uuu∈∆′

e

GR(uuu) v max
ttt∈∆e

∑
i

Gub
iR · ti = max{0,max

i
Gub

iR} = Gub
R ⇒ maxG v G0 +Gub

R

The first inequality can be proven in the same way as (11). In the first equality
we set the ti = 1 with maximal Gub

iR if it is positive. If all Gub
iR are negative we set

ttt ≡ 000. We assumed G ≥ 0 and ∂iG ≥ 0, which implies GR ≥ 0. So, since GR ≥ 0
anyway, this subtlety is ineffective. Similarly for maxHR. 2

It is possible to remove the rather strong non-negativity assumptions. Propa-
gation of errors for other combinations like ratios F = G/H may also be obtained.

6 Robust Intervals for Mutual Information

Mutual Information. We illustrate the application of the previous results on
the Mutual Information between two random variables ı ∈ {1, ...,d1} and j ∈
{1, ...,d2}. Consider an i.i.d. random process with outcome (i, j) ∈ {1, ...,d1}×
{1, ...,d2} having joint probability πi j, where πππ ∈ ∆ := {xxx ∈ IRd1×d2 : xi j ≥
0∀i j, x++ = 1}. An important measure of the stochastic dependence of ı and j
is the mutual information

I (πππ) =
d1

∑
i=1

d2

∑
j=1

πi j log
πi j

πi+π+ j
= ∑

i j
πi j logπi j −∑

i
πi+ logπi+−∑

j
π+ j logπ+ j (12)

= H (πππı+)+H (πππ+ j)−H (πππı j)

πi+ = ∑ j πi j and π+ j = ∑i πi j are row and column marginal chances. Again, we
assume a Dirichlet prior over πππı j, which leads to a Dirichlet posterior p(πππı j|nnn) ∝
∏i j πni j+sti j−1

i j with ttt ∈ ∆. The expected value of πi j is

Ettt [πi j] =
ni j + sti j

n+ s
=: ui j
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The marginals πππi+ and πππ+ j are also Dirichlet with expectation ui+ and u+ j. The
expected mutual information I(uuu) := Ettt [I ] can, hence, be expressed in terms of
the expectations of three entropies H(uuu) := Ettt [H ] (see (5))

I(uuu) = H(uuuı+)+H(uuu+ j)−H(uuuı j) = Hrow +Hcol −H joint

= ∑
i

h(ui+)+∑
j

h(u+ j)−∑
i j

h(ui j)

where here and in the following we index quantities with joint, row, and col to
denote to which distribution the quantity refers.

Crude bounds for I(uuu). Estimates for the robust IDM interval [minttt∈∆ Ettt [I ] ,
maxttt∈∆ Ettt [I ]] can be obtained by [minimizing,maximizing] I(uuu). A crude upper
bound can be obtained as

I := max
ttt∈∆

I(uuu) = max[Hrow +Hcol −H joint ] ≤

maxHrow +maxHcol −minH joint = Hrow +Hcol −H joint ,

where exact solutions to Hrow, Hrow and H joint are available from Section 3. Sim-
ilarly I ≥ Hrow + Hcol −H joint . The problem with these bounds is that, although
good in some cases, they can become arbitrarily crude. The following O(σ2)
bound can be derived by exploiting the error sum propagation Theorem 4.

Theorem 6 (Bound on lower and upper Mutual Information) The following
bounds on the expected mutual information I(uuu) = Ettt [I ] are valid:

I(uuu1) v I v I0 + Iub
R and I0 + Ilb

R v I v I(uuu2), where

I0 = I(uuu0) = H0row +H0col −H0 joint = h(u0
i+)+h(u0

+ j)−h(u0
i j),

Iub
i jR v Hub

iRrow +Hub
jRcol −H lb

i jR joint = h′(u0
i+)+h′(u0

+ j)−h′(u0
i j+σ),

Ilb
i jR w H lb

iRrow +H lb
jRcol −Hub

i jR joint = h′(u0
i++σ)+h′(u0

+ j+σ)−h′(u0
i j),

with h defined in (5), and t0
i j = 0, and t1

i j = δ(i j)(i j)1 with (i j)1 = argmaxi j Iub
i jR, and

t2
i j = δ(i j)(i j)2 with (i j)2 = argmini j Ilb

i jR.

7 IDM for Product Spaces
Product spaces Ω = Ω1× ...×Ωm with Ωk = {1, ...dk} occur frequently in practi-
cal problems, e.g. in the mutual information (m = 2), in robust trees (m = 3), or in
Bayesian nets in general (m large). Without loss of generality we only discuss the
m = 2 case in the following. Ignoring the underlying structure in Ω, a Dirichlet
prior in case of unknown chances πı j and an IDM as used in Section 6 with

ttt ∈ ∆ := {ttt ∈ IRd1×d2 ≡ IRd1 ⊗ IRd2 : ti j ≥ 0∀i j, t++ = 1} (13)
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seems natural. On the other hand, if we take into account the structure of Ω and
go back to the original motivation of IDM this choice is far less obvious. Recall
that one of the major motivations of IDM was its reparametrization invariance
in the sense that inferences are not affected when grouping or splitting events
in Ω. For unstructured spaces like Ωk this is a reasonable principle. For illus-
tration, let us consider objects of various shape and color, i.e. Ω = Ω1 ×Ω2,
Ω1 = {ball, pen,die, ...}, Ω2 = {yellow,red,green, ...} in generalization to Wal-
leys bag of marbles example. Assume we want to detect a potential dependency
between shape and color by means of their mutual information I. If we have no
prior idea on the possible kind of colors, a model which is independent of the
choice of Ω2 is welcome. Grouping red and green, for instance, corresponds to
(xi1, xi2, xi3, xi4, ...) ; (xi1, xi2 +xi3, xi4, ...) for all shapes i, where xxx ∈ {nnn,πππ,ttt,uuu}.
Similarly for the different shapes, for instance we could group all round or all an-
gular objects. The “smallest IDM” which respects this invariance is the one which
considers all

ttt ∈ ∆⊗ := ∆d1 ⊗∆d2 ( ∆. (14)

The tensor or outer product⊗ is defined as (vvv⊗www)i j := viw j and V ⊗W := {vvv⊗www :
vvv ∈ V, www ∈ W}. It is a bilinear (not linear!) mapping. This “small tensor” IDM
is invariant under arbitrary grouping of columns and rows of the chance matrix
(πππi j)1≤i≤d1,1≤ j≤d2 . In contrast to the larger ∆ IDM model it is not invariant under
arbitrary grouping of matrix cells, but there is anyway little motivation for the
necessity of such a general invariance. General non-column/row cross groupings
would destroy the product structure of Ω and with that the mere concepts of shape
and color, and their correlation. For m > 2 as in Bayes-nets cross groupings look
even less natural. Whether the ∆⊗ or the larger simplex ∆ is the more appropriate
IDM model depends on whether one regards the structure Ω1 ×Ω2 of Ω as a
natural prior knowledge or as an arbitrary a posteriori choice. The smaller IDM
has the potential advantage of leading to more precise predictions (smaller robust
sets).

Let us consider an estimator F : ∆ → IR and its restriction F⊗ : ∆⊗ → IR. Robust
intervals [F ,F ] for ∆ are generally wider than robust intervals [F⊗,F⊗] for ∆⊗ . For-
tunately not much. Although ∆⊗ is a lower-dimensional subspace of ∆, it contains
all vertices of ∆. This is possible since ∆⊗ is a nonlinear subspace. The set of “ver-
tices” in both cases is {ttt : ti j = δii0 δ j j0 , i0 ∈ Ω1, j0 ∈ Ω2}. Hence, if the robust
interval boundaries F are assumed in the vertices of ∆ then the interval for the ∆⊗
IDM model is the same (F = F⊗). Since the condition is “approximately” true,
the conclusion is “approximately” true. More precisely:

Theorem 7 (IDM bounds for product spaces) The O(σ2) bounds of Theorem 3
on the robust interval F in the full IDM model ∆ (13), remain valid for F⊗ in the
product IDM model ∆⊗ (14).

Proof.
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F(uuu1) ≤ F⊗ ≤ F ≤ F0 +Fub
R = F(uuu1)+O(σ2),

where F⊗ := maxttt∈∆⊗ F(uuu) and uuu1 was the “FR maximizing” vertex as defined
in Theorem 6 (F(uuu1) v F). The first inequality follows from the fact that all
∆ vertices also belong to ∆⊗ , i.e. ttt1 ∈ ∆⊗ . The second inequality follows from
∆⊗ ⊂ ∆. The remaining (in)equalities follow from Theorem 3. This shows that
|F⊗−F| = O(σ2), hence F0 +Fub

R is also an O(σ2) upper bound to F⊗. This im-
plies that to the approximation accuracy we can achieve, the choice between ∆
and ∆⊗ is irrelevant. 2

8 Robust Credible Intervals

Bayesian credible sets/intervals. For a probability distribution p : IRd → [0,1], an
α-credible region is a measurable set A for which p(A) :=

R

p(x)χ A(x)ddx ≥ α,
where χA(x) = 1 if x ∈ A and 0 otherwise, i.e. x ∈ A with probability at least α.
For given α, there are many choices for A. Often one is interested in “small” sets,
where the size of A may be measured by its volume Vol(A) :=

R

χA(x)ddx. Let us
define a/the smallest α-credible set

Amin := argmin
A:p(A)≥α

Vol(A)

with ties broken arbitrarily. For unimodal p, Amin can be chosen as a connected set.
For d = 1 this means that Amin = [a,b] with

R b
a p(x)dx = α is a minimal length α-

credible interval. If, additionally p is symmetric around E[x], then Amin = [E[x]−
a,E[x]+a] is also symmetric around E[x].

Robust credible sets. If we have a set of probability distributions {pt(x), t ∈ T},
we can choose for each t an α-credible set At with pt(At)≥α, a minimal one being
Amin

t := argminA:pt(A)≥α Vol(A). A robust α-credible set is a set A which contains
x with pt -probability at least α for all t. A minimal size robust α-credible set is

Amin := argmin
A=∪t At :pt(At)≥α∀t∈T

Vol(A) (15)

It is not easy to deal with this expression, since Amin is not a function of {Amin
t :

t ∈ T}, and especially does not coincide with
S

t Amin
t as one might expect.

Robust credible intervals. This can most easily be seen for univariate symmetric
unimodal distributions, where t is a translation, e.g. pt(x) = Normal(Et [x] = t,σ =
1) with 95% credible intervals Amin

t = [t − 2, t + 2]. For, e.g. T = [−1,1] we get
S

t Amin
t = [−3,3]. The credible intervals move with t. One can get a smaller union

if we take the intervals Asym
t = [−at ,at ] symmetric around 0. Since Asym

t is a non-
central interval w.r.t. pt for t 6= 0, we have at > 2, i.e. Asym

t is larger than Amin
t , but

one can show that the increase of at is smaller than the shift of Amin
t by t, hence
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we save something in the union. The optimal choice is neither Asym
t nor Amin

t ,
but something in-between. In the extended version [Hut03] this is illustrated for
the triangular distribution pt(x) = max{0 , 1−|x−t|} with t ∈ T := [−γ,γ], where
closed form solutions can be given.

An interesting open question is under which general conditions we can expect
Amin ⊆ S

t Amin
t . In any case,

S

t At can be used as a conservative estimate for a
robust credible set, since pt(

S

t′ At′) ≥ pt(At) ≥ α for all t.
A special (but important) case which falls outside the above framework are

one-sided credible intervals, where only At of the form [a,∞) are considered. In
this case Amin =

S

t Amin
t , i.e. Amin = [amin,∞) with amin = max{a : pt([a,∞]) ≥

α∀t}.

Approximations. For complex distributions like for the mutual information we
have to approximate (15) somehow. We use the following notation for shortest
α-credible intervals w.r.t. a univariate distribution pt(x):

x̃
∼t ≡ [x

∼t , x̃t ] ≡ [Et [x]−∆x
∼t , Et [x]+∆x̃t ] := argmin

[a,b]:pt([a,b])≥α
(b−a),

where ∆x̃t := x̃t −Et [x] (∆x
∼t := Et [x]− x

∼t) is the distance from the right boundary

x̃t (left boundary x
∼t ) of the shortest α-credible interval x̃

∼t to the mean Et [x] of

distribution pt . We can use x̃
'
≡ [x

'
, x̃] :=

S

t x̃
∼t as a (conservative, but not shortest)

robust credible interval, since pt(x̃
'
) ≥ pt(x̃

∼t) ≥ α for all t. We can upper bound x̃

(and similarly lower bound x
'

) by

x̃ = max
t

(Et [x]+∆x̃t) ≤ max
t

Et [x]+max
t

∆x̃t = E[x]+∆x̃. (16)

We have already intensively discussed how to compute upper and lower quanti-
ties, particularly for the upper mean E[x] for x ∈ {F ,H ,I , ...}, but the lineariza-
tion technique introduced in Section 4 is general enough to deal with all in t
differentiable quantities, including ∆x̃t . For example for Gaussian pt with vari-
ances σt we have ∆x̃t = κσt with κ given by α = erf(κ/

√
2), where erf is the error

function (e.g. κ = 2 for α ≈ 95%). We only need to estimate maxt σt .
For non-Gaussian distributions, exact expression for ∆x̃t are often hard or im-

possible to obtain and to deal with. Non-Gaussian distributions depending on
some sample size n are usually close to Gaussian for large n due to the central
limit theorem. One may simply use κσt in place of ∆x̃t also in this case, keeping
in mind that this could be a non-conservative approximation. More systemati-
cally, simple (and for large n good) upper bounds on ∆x̃t can often be obtained
and should preferably be used.

Further, we have seen that the variation of sample depending differentiable
functions (like Et [x] = Et [x|nnn]) w.r.t. t ∈ ∆ are of order s

n+s . Since in such cases
the standard deviation σt ∼ n−1/2 ∼ ∆x̃t is itself suppressed, the variation of ∆x̃t
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with t is of order n−3/2. If we regard this as negligibly small, we may simply fix
some t∗ ∈ ∆:

max
t

∆x̃t = κσt∗ +O(n−3/2)

Since ∆x̃t is “nearly” constant, this also shows that we lose at most O(n−3/2)
precision in the bound (16) (equality holds for ∆x̃t independent of t). Expressions
for the variance of I , for instance, have been derived in [WW95, Hut02].

9 Conclusions
This is the first work, providing a systematic approach for deriving closed form
expressions for interval estimates in the Imprecise Dirichlet Model (IDM). We
concentrated on exact and conservative robust interval ([lower,upper]) estimates
for concave functions F = ∑i fi on simplices, like the entropy. The conservative
estimates widened the intervals by O(n−2), where n is the sample size. Here is a
dilemma, of course: For large n the approximations are good, whereas for small
n the bounds are more interesting, so the approximations will be most useful
for intermediate n. More precise expressions for small n would be highly in-
teresting. We have also indicated how to propagate robust estimates from sim-
ple functions to composite functions, like the mutual information. We argued
that a reduced IDM on product spaces, like Bayesian nets, is more natural and
should be preferred in order to improve predictions. Although improvement is
formally only O(n−2), the difference may be significant in Bayes nets or for very
small n. Finally, the basics of how to combine robust with credible intervals have
been laid out. Under certain conditions O(n−3/2) approximations can be derived,
but the presented approximations are not conservative. All in all this work has
shown that IDM has not only interesting theoretical properties, but that explicit
(exact/conservative/approximate) expressions for robust (credible) intervals for
various quantities can be derived. The computational complexity of the derived
bounds on F = ∑i fi is very small, typically one or two evaluations of F or related
functions, like its derivative. First applications of these (or more precisely, very
similar) results, especially the mutual information, to robust inference of trees
look promising [ZH03].
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