
On Approximating Multidimensional
Probability Distributions by

Compositional Models∗

R. JIROUŠEK
Academy of Science, Czech Republic

Abstract

Because of computational problems, multidimensional probability distribu-
tions must be approximated by distributions which can be defined by a rea-
sonable number of parameters. As a rule, distributions with a special depen-
dence structure (i.e., complying with a system of conditional independence
relations) are considered; graphical Markov models and especially Bayesian
networks are often used. This paper proposes application of compositional
models for this puropose. In addition to a theoretical background, a heuris-
tic algorithm solving one part of a model learning process is presented. Its
basic idea, construction of an approximation exploiting informational con-
tent of given low-dimensional distributions in a maximal possible way, was
proposed by Albert Perez as early as in 1977.
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1 Introduction
Data-driven methods for probability model construction usually suffer from a lack
of data. This is why one must always keep in mind that any probability estimate is
imprecise and the more probabilities, the less precise their estimates. Moreover,
it would be absurd to try to get estimates of (let us say) 250 probabilities defining
a 50-dimensional distribution (of binary variables) from a file whose size is only
several Mbytes. Such an effort would also be in contradiction with the Minimum
Description Length principle often employed in the field of AI. Therefore, appli-
cation of probabilistic models to problems of practice, when the dimensionality
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of considered multidimensional probability distributions is expressed in hundreds
rather than tens, quite naturally leads to the necessity of approximations.

The present paper proposes to look for an approximation of a probability dis-
tribution in a class of so-called compositional models (CM), which is an alterna-
tive apparatus to that usually called Graphical Markov Modeling (GMM). GMM
is used as a general term describing any of the approaches representing multidi-
mensional probability distributions by means of graphs and systems of quantita-
tive parameters like Bayesian networks (BN), decomposable and graphical mod-
els, influence diagrams and chain graph models.

The main idea of CM is the same as that of GMM: not to strive for esti-
mating multidimensional distribution but only its oligo-dimensional marginals,
from which the multidimensional model is subsequently composed. In a way this
model resembles a jigsaw puzzle that has a great number of parts, each bear-
ing a local piece of a picture, and the goal is to find how to assemble them in a
way that the global picture makes sense, reflecting all the individual small parts.
Naturally, the whole task can be split into two subproblems: how to find which
oligo-dimensional distributions are to be estimated and how to compose them into
a multidimensional model. Though the present paper concentrates exclusively on
the latter one, let us mention that, to be consistent with the apparatus employed
in this paper, the problem of selection of oligodimensional distributions should
be solved with the help of information theoretic quantities; distributions with the
highest informational content (see section 5) should be selected.

Before introducing the apparatus of CM let us mention that both GMM and
CM are based on the very idea published by Albert Perez as early as 1977 in
his unfortunately neglected paper [10]. In this paper Perez calls these probability
distributions dependence structure simplification approximations and studies in-
crease of risk connected with statistical decision problem when, instead of Bayes
optimal solution, ε-Bayes optimal solution (ie., Bayes optimal with respect to
ε-approximation) is accepted.

2 Notation
In this text, we will deal with a finite system of finite-valued random variables. Let
N be an arbitrary finite index set, N 6= /0. Each variable from {Xi}i∈N is assumed
to have a finite (non-empty) set of values Xi. Distributions of these variables will
be denoted by Greek letters (π,κ); thus for K ⊆ N, we can consider a distribution
π((Xi)i∈K). To make the formulae more lucid, the following simplified notation
will be used. Symbol π(xK) will denote both a |K|-dimensional distribution and a
value of a probability distribution π (when several distributions are considered, we
shall distinguish between them by indices), which is defined for variables (Xi)i∈K
at a combination of values xK ; xK thus represents a |K|-dimensional vector of
values of variables {Xi}i∈K . Analogously, we shall also denote the set of all these
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vectors XK :
XK =×i∈KXi.

For a probabilistic distribution π(xK) and J ⊂ K we will often consider a
marginal distribution π(xJ) of distribution π(xK), which can be computed by

π(xJ) = ∑
xK\J∈XK\J

π(xK) = ∑
xK\J∈XK\J

π(xK\J ,xJ).

In this simple formula we have introduced a notation used throughout this article:
a vector xK is composed of two subvectors xK\J and xJ , where xJ is a projection
of xK into XJ , and, analogously xK\J is a projection of xK into XK\J . For com-
putation of marginal distributions we need not exclude situations when J = /0. In
accordance with the above-introduced formula we get π(x /0) = 1.

In some situations we will want to stress that we are dealing with a marginal
distribution of a distribution π; we will use symbol π(J) to denote the marginal
distribution of π for variables (Xi)i∈J . That is, for J ⊆ K and a distribution π(xK),

π(J) = π(xJ).

For a distribution π(xK) and two disjoint subsets J,L ⊆ K we will also speak
about a conditional distribution π(xJ |xL), which is, for each fixed xL ∈ XL, a |J|-
dimensional probability distribution, for which π(xJ |xL)π(xL) = π(xJ∪L). (Notice
that this definition is ambiguous if π(xL) = 0 for some combination(s) of values
xL ∈ XL.) The reader can immediately see that if J = /0 then π(xJ |xL) = 1, and if
L = /0 then π(xJ |xL) = π(xJ).

Consider K ⊆ L⊆ N and a probability distribution π(xK). With Π(L) we shall
denote the set of all probability distributions defined for variables XL. Similarly,
Π(L)(π) will denote the system of all extensions of the distribution π to L-di-
mensional distributions:

Π(L)(π) =
{

κ ∈Π(L) : κ(xK) = π(xK)
}

,

(where κ(xK) naturally denotes the marginal distribution of κ for variables XK).
Having a system

Ξ = {π1(xK1),π2(xK2), . . . ,πn(xKn)} ,
of oligo-dimensional distributions (K1∪ . . .∪Kn⊆ L), the symbol Π(L)(Ξ) denotes
the system of distributions that are extensions of all the distributions from Ξ:

Π(L)(Ξ) =
{

κ ∈Π(L) : κ(Ki) = πi ∀i = 1, . . . ,n
}

=
n

\

i=1

Π(L)(πi).
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3 Operator of composition
To be able to compose low-dimensional distributions to get a distribution of a
higher dimension we will introduce an operator of composition.

To make this construction clear from the very beginning, let us stress that it is
just a generalization of the idea of computing the three-dimensional distribution
from two two-dimensional ones introducing the conditional independence:

π(x1,x2).κ(x2,x3) =
π(x1,x2)κ(x2,x3)

κ(x2)
= π(x1,x2)κ(x3|x2).

Consider two probability distributions π(xK) and κ(xL), such that κ(xL∩K)
dominates1 π(xL∩K); in symbol: π(xL∩K)� κ(xL∩K). The composition of these
two distributions is defined by the formula

π(xK).κ(xL) =
π(xK)κ(xL)

κ(L∩K)
.

Since we assume π(L∩K)� κ(L∩K), if for any x ∈X(L∩K) κ(L∩K)(x) = 0 then there
is a product of two zeros in the nominator and we take 0.0/0 = 0. If L∩K = /0
then κ(L∩K) = 1 and the formula degenerates to a simple product of π and κ.

Let us stress that in the case π(L∩K) 6� κ(L∩K), the expression π . κ remains
undefined.

Thus, the formal definition of the operator . is as follows.

Definition 1 For two arbitrary distributions π ∈Π(K) and κ ∈Π(L) their compo-
sition is given by the following formula

π(xK).κ(xL) =





π(xK)κ(xL)

κ(xK∩L)
if π(xK∩L)� κ(xK∩L),

undefined otherwise.

The following simple assertion proven in [5] answers the question: what is the
result of the composition of two distributions?

Theorem 1 If π(xL∩K) � κ(xL∩K) (i.e., if π(xK) . κ(xL) is defined) then
π(xK) . κ(xL) is a probability distribution from Π(L∪K)(π), i.e., it is a probabil-
ity distribution of XK∪L and its marginal distribution for variables XK equals π:
(π.κ)(xK) = π(xK).

An importance of this operator arises from the fact that, when applied itera-
tively, it defines a multidimensional distribution from a system of low-dimensional
ones.

1The concept of dominance (or absolute continuity) π� κ in finite case simplifies to

∀x ∈ X (κ(x) = 0 =⇒ π(x) = 0) .
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4 Generating sequences
Let us now consider a system of n low-dimensional distributions π1(xK1), π2(xK2),
. . . ,πn(xKn), and start studying a distribution π1 . π2 . . . . . πn, which (if defined)
is a distribution of variables XK1∪K2∪...∪Kn . Regarding the fact that the operator is
neither commutative nor associative, let us stress that we always apply the opera-
tors from left to right:

π1 .π2 . . . . .πn = (. . . ((π1 .π2).π3). . . . .πn).

Therefore, in order to construct a multidimensional distribution it is sufficient
to determine a sequence – we call it a generating sequence – of low-dimensional
distributions.

Example 1 In agreement with what has just been said, the generating sequence

π1(x1,x3),π2(x3,x5),π3(x1,x4,x5,x6),π4(x2,x5,x6)

defines distribution

(π1 .π2 .π3 .π4)(x1,x2,x3,x4,x5,x6)

=
(
(π1(x1,x3).π2(x3,x5)) .π3(x1,x4,x5,x6)

)
.π4(x2,x5,x6)

= π1(x1,x3)π2(x5|x3)π3(x4,x6|x1,x5)π4(x2|x5,x6). 3

Not all generating sequences are equally efficient in their representations of
multidimensional distributions. Among them, the so-called perfect sequences hold
an important position.

Definition 2 A generating sequence of probability distributions π1,π2, . . . ,πn is
called perfect if for all k = 2, . . . ,n distributions π1 . . . . .πk are defined and

π1 . . . . .πk = πk . (π1 . . . . .πk−1).

This definition enables us to check whether a generating sequence is perfect2

but one can hardly see from it the importance of perfect sequences. This impor-
tance becomes clearer from the following characterization theorem (Theorem 2
in [7]).

Theorem 2 A sequence of distributions π1,π2,. . . ,πn is perfect iff all the distri-
butions from this sequence are marginals of the distribution (π1 .π2 . . . . .πn).

What is the main message conveyed by this characterization theorem? Consid-
ering that low-dimensional distributions πk are carriers of local information, the
constructed multidimensional distribution represents global information, faith-
fully reflecting all of the local input.

Let us briefly summarize the main properties of distributions represented by
perfect sequences and their relation to the well-known concepts of GMM.

2A sequence is perfect iff for all k = 2, . . . ,n, (π1 .. . . .πk−1)
(Kn∩(K1∪...∪Ki−1)) = π(Kn∩(K1∪...∪Ki−1))

k .



310 ISIPTA ’03

(i) It was shown that perfect sequences are equivalent to BNs in the sense that
any distribution representable by a perfect sequence can be represented by
BN (and vice versa) and both of these strucures are defined with the same
number of parameters – probabilities (for details see [7]) .

(ii) In analogy to BN, for each distribution represented by a perfect sequence a
list of conditional independence relations holds true. For a BN, one can read
all these relations from its graph by the famous d-separation criterion. How
to determine them for CM was shown in [8].

(iii) Let us stress that whether a generating sequence is perfect does not depend
only on structural properties (those corresponding to sets K1, . . . ,Kn and
their ordering), but also on probabilities. To make this remark clearer notice
the two extreme sufficient conditions, guaranteeing perfecness of a gener-
ating sequence:

(a) if distributions π1(xK1), . . . ,πn(xKn) are pairwise consistent (π(Ki∩K j)
i =

π(K1∩K j)
j ) and the sequence K1, . . . ,Kn meets the running intersection

property3 then π1(xK1), . . . ,πn(xKn) is perfect;

(b) if all the distributions πk(xKk) are uniform then π1(xK1), . . . ,πn(xKn) is
always perfect.

(iv) Distributions represented by perfect sequences are unique in the following
sense: if two permutations πi1 , . . . ,πin and π j1 , . . . ,π jn of a system of oligodi-
mensional distributions are perfect then πi1 . . . . .πin = π j1 . . . . .π jn . This
property, somehow resembling decomposable distributions, is especially
important for designing computational procedures.

(v) Notice that we have not imposed any conditions on sets Kk. For example,
considering a generating sequence where one distribution is defined for a
subset of variables of another distribution (ie., K j ⊂ Kk) is fully sensible
and may enrich a system of considered multidimensional distributions (cf.
Algorithm in Section 6.3).

5 Information-theoretic notions
In Section 6 several notions characterizing probability distributions and their re-
lationship will be used. The first is the well-known Shannon entropy defined (for
π ∈Π(N))

H(π) =− ∑
x∈XN

π(x) logπ(x).

3∀k = 2, . . . ,n ∃ j(1≤ j < k) Kk ∩ (K1 ∪ . . .∪Kk−1)⊂ K j .
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Recall that for two disjoint index sets K,L ⊂ N one can also define a conditional
entropy H(π(xK |xL) using the expression:

H(π(xK |xL)) = − ∑
x∈XK∪L

π(x) logπ(xK |xL).

To compare two distributions defined for the same system of variables (i.e.
π,κ∈ΠN) we will use Kullback-Leibler divergence (in literature sometimes called
I-divergence, or cross-entropy). It is in fact a relative entropy of the first distribu-
tion with respect to the other:

Div(π‖κ) =





∑
x∈XN

π(x) log π(x)
κ(x) if π� κ,

+∞ otherwise.

The reader can immediately see that if π = κ then Div(π‖κ)= 0. It is a well-known
property of Kullback-Leibler divergence (and not too difficult to be proven) that
its value is always non-negative and equals 0 if and only if π = κ. (Recall also that
this divergence is not symmetric, i.e., generally Div(π‖κ) 6= Div(κ‖π).)

One of the fundamental notions of information theory is a mutual information.
Having a distribution π(xN) and two disjoint subsets K,L ⊂ N, it expresses how
much one group of variables XK influences the other one – XL. It is defined

MIπ(XK ;XL) = ∑
xK∪L∈XK∪L

π(xK∪L) log
π(xK∪L)

π(xK)π(xL)
,

and equals 0 if and only if the groups of variables XK and XL are independent
under the distribution π. Otherwise, it is always positive.

The last notion, which will be of great importance, but which is not as fa-
mous as Shannon entropy or mutual information, is an informational content of a
distribution defined by the formula:

I(π) = ∑
x∈XN

π(x) log
π(x)

∏
j∈N

π(x j)
.

Notice that this formula is nothing but a Kullback-Leibler divergence of two
distributions: π(xN) and ∏ j∈N π(x j). Therefore, it is always non-negative and
equals 0 if and only if π(xN) = ∏ j∈N π(x j). In fact, this value expresses how
much individual variables are dependent under the distribution π. Therefore the
higher this value, the more dependent the variables, and consequently, the greater
amount of information carried by the distribution.

One can also immediately see that for a 2-dimensional distribution π(x1,x2)

I(π) = MIπ(X1;X2).
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6 Approximations

Let us consider an arbitrary multidimensional distribution κ ∈ Π(N) and assume
that for one reason or another we are looking for its approximation in the form of
a compositional model. Such situations appear quite often in practical problems;
κ can be, for example, a sample distribution of a large database, or it can be an
unknown theoretical distribution, from which some data file has been generated.
In any case, we need its approximation.

6.1 Criterion function
For a candidate compositional distribution π = π1 .π2 . . . . .πn ∈Π(N), the Kull-
back-Leibler divergence Div(κ‖π) will be used as a criterion function. Naturally,
the smaller the value of the Kullback-Leibler divergence, the better approximation
π.

For compositional models this divergence can be expressed in a special form,
which enables us to analyze individual factors of the divergence. To make the
formulae more transparent we will use the following notation: for each i = 1, . . . ,n
set Ki is split into two disjoint parts

Ri = Ki \ (K1∪ . . .∪Ki−1), Si = Ki∩ (K1∪ . . .∪Ki−1).

(Naturally, R1 = K1 and S1 = /0.) In the following computations we shall use a
standard trick, according to which

∑
x∈XN

κ(x) logκ(xK) = ∑
xK∈XK

κ(xK) logκ(xK) ∑
xN\K∈XN\K

κ(xN\K |xK)

= ∑
xK∈XK

κ(xK) logκ(xK)

because ∑xN\K∈XN\K κ(xN\K |xK) = 1. Thus, assuming Div(κ‖π) is finite, we can
compute

Div(κ‖π) = ∑
x∈XN

κ(x) log
κ(x)

π1(xK1). . . . .πn(xKn)

= ∑
x∈XN

κ(x) logκ(x)− ∑
x∈XN

κ(x) log
n

∏
i=1

πi(xRi |xSi)

=−H(κ)−
n

∑
i=1

∑
x∈XN

κ(x) logπi(xRi |xSi)

=−H(κ)−
n

∑
i=1

∑
xKi∈XKi

κ(xKi) logπi(xRi |xSi)
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=−H(κ)+
n

∑
i=1

∑
xKi∈XKi

κ(xKi) log
κ(xRi |xSi)

πi(xRi |xSi)
−

n

∑
i=1

∑
xKi∈XKi

κ(xKi) logκ(xRi |xSi)

=−H(κ)+
n

∑
i=1

Div(κ(xRi |xSi)‖πi(xRi |xSi))+
n

∑
i=1

H(κ(xRi |xSi)).

Now, let us have a look at the meaning of the expression

n

∑
i=1

H(κi(xRi |xSi))−H(κ).

First, for each i = 1, . . . ,n we get

H(κi(xRi |xSi)) = − ∑
xKi∈XKi

κ(xKi) logκ(xRi |xSi)

= − ∑
xKi∈XKi

κ(xKi) log
κ(xKi)

κ(xSi)

∏
j∈Ki

κ(x j)

∏
j∈Ki

κ(x j)

= −I(κ(xKi))+ I(κ(xSi))+ ∑
j∈Ri

H(κ(x j)).

Since all sets Ri are mutually disjoint and their union is the whole set N we are
getting

n

∑
i=1

H(κi(xRi |xSi))−H(κ) =
n

∑
i=1

(I(κ(xSi))− I(κ(xKi)))+ ∑
j∈N

H(κ(x j))−H(κ)

=
n

∑
i=1

(I(κ(xSi))− I(κ(xKi)))+ I(κ).

In this way we have deduced that

Div(κ‖π)

=
n

∑
i=1

Div(κ(xRi |xSi)‖πi(xRi |xSi))+
n

∑
i=1

(I(κ(xSi))− I(κ(xKi)))+ I(κ), (1)

which is a result that is worth being formulated as a theorem.

Theorem 3 Let a distribution κ ∈ Π(N) and a sequence of distributions π1(xK1),

π2(xK2), . . . ,πn(xKn), for which
n
S

i=1
Ki = N, be such that Div(κ‖π1 . . . . . πn) is

finite. Then, denoting π = π1 . π2 . . . . . πn, for the Kullback-Leibler divergence
Div(κ‖π) the equation (1) holds true.
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So, the divergence of distributions κ and π consists of two parts. The first one

n

∑
i=1

Div(κ(xRi |xSi)‖πi(xRi |xSi))

describes the “local” difference between κ and π (more precisely it renders the
difference between conditional distributions κ(xRi |xSi) and πi(xRi |xSi)), and the
second part

I(κ)−
n

∑
i=1

(I(κ(xKi))− I(κ(xSi)))

describes the difference resulting from the application of a compositional model.
As it will be shown below, in the case that κ(xK1),κ(xK2), . . . ,κ(xKn) is a per-
fect sequence, it is exactly a difference between the informational content of the
distributions κ and κ(xK1). . . . .κ(xKn).

Corollary 1 If for a distribution κ a generating sequence of its marginals κ(xK1),
κ(xK2), . . . ,κ(xKn) is perfect then

I(κ(xK1).κ(xK2). . . ..κ(xKn)) =
n

∑
i=1

(I(κ(xKi))− I(κ(xSi))) ,

and therefore also

Div(κ‖κ(xK1). . . . .κ(xKn)) = I(κ)− I(κ(xK1). . . ..κ(xKn)).

Proof. The first equation can immediately be obtained by substituting κ(xK1) .
κ(xK2). . . . .κ(xKn) for both κ and π in equation (1), because then the Kullback-
Leibler divergence must equal 0. The second one is a direct consequence of the
first equality following from (1). 2

6.2 Perfect sequence approximations
Problem of model learning in context of CM means that one wants to find a prop-
erly ordered system of oligodimensional distributions. It is evident from the ex-
pression (1) that the best approximations are defined by generating sequences
consisting of distributions which are marginals4 of the approximated distribution
κ. In this case, namely, for all i = 1, . . .n, Div(κ(xRi |xSi)‖πi(xRi |xSi)) equal 0 and
the formula (1) simplifies to

Div(κ‖π) = I(κ)−
n

∑
i=1

(I(κ(xKi))− I(κ(xSi))) , (2)

4In fact, it is enough when all πi(xRi |xSi ) = κ(xRi |xSi ).
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which does not depend on values of distributions πi (quite naturally, because
they are marginals of κ) but only on the system, or more precisely sequence,
K1,K2, . . . ,Kn. In the following example we shall show that different orderings
of the distributions in generating sequences can result in different values of the
Kullback-Leibler divergence.

Example 2 Consider a 4-dimensional distribution κ(x1,x2,x3,x4) and its three
marginal distributions denoted π1,π2,π3:

π1(x1,x2) = κ(x1,x2), π2(x2,x3) = κ(x2,x3), π3(x3,x4) = κ(x3,x4).

Compute Div(κ‖π) and Div(κ‖π̂) for π = π1 .π2 .π3 and π̂ = π1 .π3 .π2. For the
first distribution it is

Div(κ‖π) = I(κ)−
(
I(κ(x{1,2}))+ I(κ(x{2,3}))+ I(κ(x{3,4}))

)

+
(
I(κ(x /0))+ I(κ(x{2}))+ I(κ(x{3}))

)

= I(κ)− I(κ(x{1,2}))− I(κ(x{2,3}))− I(κ(x{3,4})),

whereas for π̂ we get

Div(κ‖π̂) = I(κ)−
(
I(κ(x{1,2}))+ I(κ(x{3,4}))+ I(κ(x{2,3}))

)

+
(
I(κ(x /0))+ I(κ(x /0))+ I(κ(x{2,3}))

)

= I(κ)− I(κ(x{1,2}))− I(κ(x{3,4}))− I(κ(x{2,3}))+ I(κ(x{2,3}))

= Div(κ‖π)+ I(κ(x{2,3})).

The reader probably noticed that, for the sake of simplicity, we introduced a situa-
tion corresponding to a decomposable model. It is perhaps worth mentioning that
even in this case it may happen that both of the sequences defining distributions
π and π̂ are perfect. In correspondence with the assertion mentioned in Section 4
(item (iv)), it happens only when π = π̂ and therefore also Div(κ‖π) = Div(κ‖π̂),
from which we get that I(κ(x{2,3})) = 0. This means that variables X2 and X3 are
independent. 3

In the example we have shown that a quality of a compositional approximation
depends not only on the selected system of low-dimensional distributions (possi-
bly marginals of the approximated distribution) but also on their ordering. We
could see that κ was better approximated by perfect sequence π1,π2,π3 than by
π1,π3,π2, in case that the latter one was not perfect. From the following assertion
we will see that perfect sequences are always, in a sense, the best approximations.

Theorem 4 If π1,π2, . . . ,πn is a perfect sequence of marginal distributions of κ
(κ ∈Π(K1∪...∪Kn)) then

Div(κ‖π1 .π2 . . . . .πn)≤ Div(κ‖πi1 .πi2 . . . . .πin)

for any permutation i1, i2, . . . , in of indices 1,2, . . . ,n.
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Proof. Since π1,π2, . . . ,πn is a perfect sequence of marginals of κ, we get from
Corollary 1

Div(κ‖π1 .π2 . . . . .πn)) = I(κ)− I(π1 .π2 . . . . .πn),

and, because the Kullback-Leibler divergence is always nonnegative,

I(κ)≥ I(π1 .π2 . . . . .πn).

We assume that π1,π2, . . . ,πn are marginals of κ, and since they form a perfect
sequence (due to Theorem 2) they are also marginals of π1 . π2 . . . . . πn. There-
fore, equation (2) can be applied to both Div(κ‖πi1 . . . . . πin)) and
Div(π1 . . . . .πn‖πi1 . . . . .πin)):

Div(κ‖πi1 . . . . .πin)) = I(κ)−
n

∑̀
=1

(
I(κ(xKi`

))− I(κ(xSi`
))
)

, (3)

Div(π1 . . . . .πn‖πi1 . . . . .πin)) = I(π1 . . . . .πn)−
n

∑̀
=1

(
I(κ(xKi`

))− I(κ(xSi`
))
)

.

The latter equality gives (respecting again the fact that the Kullback-Leibler di-
vergence value must be nonnegative)

I(π1 . . . . .πn)≥
n

∑̀
=1

(
I(κ(xKi`

))− I(κ(xSi`
))
)

.

Combining this with equality (3) we get

Div(κ‖πi1 . . . . .πin))≥ I(κ)− I(π1 . . . . .πn),

where the right-hand side part of the inequality equals, as mentioned at the very
beginning of the proof, Div(κ‖π1 . . . . .πn). 2

6.3 Heuristic algorithm
Regarding the above-mentioned fact that perfect sequence models are equivalent
to Bayesian networks, it is obvious that all the methods for Bayesian network
learning can be adapted to CM construction (see eg. [1]). Another very simple
and effective possibility, though far from being optimal, is the process discussed
in the rest of the paper.

We split the model construction process into two steps. The first one, which
is not discussed in this paper, is selection of oligodimensional distributions, from
which the model will be constructed. In some situations one can be quite natu-
rally relieved of necessity to perform this step. For example, when the data file
is too small and only 2-dimensional distributions can be estimated, then all these
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2-dimensional distributions can be considered. In other situations, an expert can
select the distributions from which the model should be constructed. Otherwise,
informational content of low-dimensional distributions should be taken as a crite-
rion for selection of a system of oligodimensional distributions.

The second step of the model construction process is to find a proper ordering
of the selected oligodimensional distributions. The properties presented in the
above sections theoretically support a heuristic algorithm, which arranges low-
dimensional distributions into a generating sequence in a manner that utilizes its
informational content as much as possible. In this section its simplest version is
presented that enables the reader to understand the basic principle of exploiting
the informational content of individual input low-dimensional distributions.

The reader will see that the procedure considers not only the given system of
distributions but also their marginals; this can, in some situations, improve ex-
ploitation of the informational content of distributions, since it considers a greater
variety of conditional independence structures.

Algorithm

Input: System of low-dimensional distributions π1(xK1), . . .πn(xKn).

Initialization: Select a variable Xm and a distribution π j such that m ∈ K j.
Set κ1 := π j(xm), L := {m} and k := 1.

Computational Cycle: While K1 ∪ . . .∪Kn \ L 6= /0 perform the following
3 steps:

1. for all j = 1, . . . ,n and all m ∈ K j \ L compute the mutual
information

MIπ j (Xm;XK j∩L).

2. Fix j and m for which MIπ j(Xm;XK j∩L) achieved its maximal
value.

3. Increase k by 1. Set κk := π j(X(K j∩L)∪{m}) and L := L∪{m}.

Output: Generating sequence κ1,κ2, . . . ,κk.

What can be said about the resulting generating sequence κ1,κ2, . . . ,κk? Dis-
tribution κ∗ = κ1 . κ2 . . . . . κk is a probability distribution of XK1∪K2∪...∪Kn . The
goal of the algorithm is to get a distribution with the highest possible informa-
tional content I(κ∗) (we know that the higher informational content, the lower the
criterion function – Kullback-Leibler divergence). Important questions concern
the facts whether the resulting sequence κ1,κ2, . . . ,κk is perfect and contains all
the distributions from π1,π2, . . . ,πn. Unfortunately, answers to both these ques-
tions are negative.
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Though the heuristics employed in the algorithm do not guarantee that a per-
fect sequence will always be found when it does exist, the advantage is in its
efficiency and in the fact that it always suggests a subset of distributions that
may form a perfect sequence, exploiting the available information in a subopti-
mal way5. One should realize, however, that a distribution from such a perfect
sequence, though defined for groups of variables for which some input distribu-
tion π j is defined, can differ from this input distribution π j. In such a case, we
employ a process of verification and refinement.

The detailed description of this process is beyond the scope (and extent) of
this paper. Briefly said, verification consists of computation of Kullback-Leibler
divergence of model distributions and the respective input distributions (or their
marginals). If we find that some of the distributions defining the perfect model
are too far from the required marginals (assuming that input distributions are
marginals of the approximated distribution), then refinement is applied. This is
realized by substituting a group of input marginal distributions by one distribu-
tion defined for all of the variables which are arguments of the deleted distribu-
tions. Naturally, this must be applied carefully, to avoid too much increase in the
dimension of input distributions. New, more-dimensional input distributions are
either estimated from data, or often computed from the original input distributions
by the well-known Iterative Proportional Fitting Procedure ([3]). Then, having a
new group of input distributions, the process starts from the very beginning by
application of Algorithm.

The same process of verification and refinement is also applied when some of
the input distributions are not included in the model.

Let us illustrate this process by a simple example.

Example 3 Let us consider the following 10 3-dimensional distributions (their
values were estimated from a data file):

π1(x1,x2,x4), π2(x1,x2,x6), π3(x1,x4,x6),
π4(x3,x6,x11), π5(x3,x10,x11), π6(x4,x6,x11),
π7(x5,x6,x8), π8(x6,x8,x11), π9(x7,x10,x11),

π10(x9,x10,x11).

The algorithm (starting with variable X1 and distribution π1) produced the
sequence

π1(x1),π1(x1,x4),π3(x1,x4,x6),π6(x4,x6,x11),π8(x6,x8,x11),π4(x3,x6,x11),

π7(x5,x6,x8),π5(x3,x10,x11),π10(x9,x10,x11),π9(x7,x10,x11),π1(x1,x2,x4).

5Any generating sequence can be converted into a perfect sequence according to the following
assertion ([5, 6]).
Theorem 5 Let π1 .. . . .πn be defined and let the sequence κ1, . . . ,κn be: κ1 = π1, κ2 = κ(K2∩K1)

1 .π2,
and generally κ j = (κ1 . . . . .κ j−1)

(K j∩(K1∪...∪K j−1)) .π j . Then κ1, . . . ,κn is perfect and π1 . . . . .πn =
κ1 . . . . .κn.
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There are two points that can be made about this sequence. First, since all the dis-
tributions were estimated from one data file (with no missing values), all the distri-
butions were pairwise consistent, and thus both π1(x1) = π3(x1) and π1(x1,x4) =
π3(x1,x4), and therefore also

π1(x1).π1(x1,x4).π3(x1,x4,x6) = π3(x1,x4,x6).

Therefore, the result of the algotihm was, in fact, a generating sequence

π3,π6,π8,π4,π7,π5,π10,π9,π1,

which was perfect (see assertion (iiia) in Section 4).
The negative property of this result was the fact that the algorithm finished

before exploiting distribution π2(x1,x2,x6). Since we are looking for an approx-
imation of a distribution from which the data file was generated, (following the
verification and refinement process) we have to assess how much omitting π2
influences the quality of the achieved result. This is done by considering the
Kullback-Leibler divergence Div(π2(x1,x2,x6)‖πappr(x1,x2,x6)), for

πappr = π3 .π6 .π8 .π4 .π7 .π5 .π10 .π9 .π1

(let us mention that in this case πappr(x1,x2,x6) = (π3 .π1)(x1,x2,x6)). If we are
not satisfied, refinement results in getting a distribution π11(x1,x2,x4,x6) and sub-
stituting it for π1,π2 and π3. Subsequent application of the algorithm to the set
of distributions π4,π5,π6,π7,π8,π9,π10,π11 resulted in obtaining the perfect se-
quence

π11,π6,π8,π4,π7,π5,π10,π9.
3

7 Conclusions
We have presented theoretical results showing that if an approximation of a prob-
ability distribution is looked for in a family of compositional distributions then
the Kullback-Leibler divergence representing a quality of the approximation can
be expressed as a sum of two contributions. The first one, which can easily be
suppressed by considering only marginals of the approximated distribution, de-
scribes “local” differences, while the other one corresponds to the loss of infor-
mation resulting from the compositional model (from introducing the respective
conditional independence relations). This knowledge was exploited for designing
a heuristic algorithm based on an effort to maximize informational content of the
constructed approximation.

Let us conclude the paper by a brief comment advocating CMs. Based on
de Cooman approach to conditionning [2], J. Vejnarová introduced the operator
of composition also in possibility theory [11], which made it possible to extend
the whole approach beyond probabilistic framework.
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