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Abstract

The purpose of this paper is to survey recent developments and trends in
the area of generalized information theory (GIT) and to discuss some of the
issues of current interest in GIT regarding the measurement of uncertainty-
based information for imprecise probabilities on finite crisp sets.
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1 Introduction
The term “Generalized Information Theory” (GIT) was introduced in the early
1990s to name a research program whose objective was to develop a broader
treatment of uncertainty-based information, not restricted to the classical notions
of uncertainty [6]. In GIT, the primary concept is uncertainty, and information is
defined in terms of uncertainty reduction.

The basic tenet of GIT is that uncertainty can be formalized in many different
ways, each based on some specific assumptions. To develop a fully operational
theory for some conceived type of uncertainty, we need to address issues at four
levels:

• LEVEL 1 – we need to find an appropriate mathematical representation of
the conceived type of uncertainty

• LEVEL 2 – we need to develop a calculus by which this type of uncertainty
can be properly manipulated

• LEVEL 3 – we need to find a meaningful way of measuring the amount of
relevant uncertainty in any situation formalizable in the theory

• LEVEL 4 – we need to develop methodological aspects of the theory
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GIT is an outgrowth of two classical uncertainty theories. The older one,
which is also simpler and more fundamental, is based on the notion of possibility.
The newer one, which has been considerably more visible, is based on the notion
of probability. Proper ways of measuring uncertainty in these classical theories
were established, respectively, by Hartley [5] and Shannon [12]. Basic features of
the theories are outlined in [8].

The various nonclassical uncertainty theories in GIT are obtained by expand-
ing the conceptual framework upon which the classical theories are based. At
this time, the expansion is two-dimensional. In one dimension, the formalized
language of the classical set theory is expanded to a more expressive language
of fuzzy set theory, where further distinctions are based on various special types
of fuzzy sets [10]. In the other dimension, the classical (additive) measures the-
ory [4] is expanded to a less restrictive fuzzy measure theory [14], within which
further distinctions are made by using fuzzy measures with various special prop-
erties. This expanded conceptual framework is a broad base for formulating and
developing various theories of imprecise probabilities.

The subject of this paper is to discuss some of the issues of current interest
regarding the measurement of uncertainty for imprecise probabilities on finite
crisp sets. The various issues of possible fuzzifications of imprecise probabilities
and of imprecise probablities on infinite sets are not addressed here. To facilitate
the discussion, some common characteristics of imprecise probabilities on finite
crisp sets are introduced in Section 2.

2 Imprecise Probabilities: Some Common Charac-
teristics

One of the common characteristics of imprecise probabilities on finite crisp sets is
that evidence within each theory is fully described by a lower probability function
(or measure), g, or, alternatively, by an upper probability function (or measure)
g. These functions are always regular fuzzy measures that are superadditive and
subadditive [14], respectively, and

∑
x∈X

g({x})≤ 1, ∑
x∈X

g({x})≥ 1. (1)

In the various special theories of uncertainty, they possess additional special prop-
erties.

When evidence is expressed (at the most general level) in terms of an arbitrary
closed and convex set D of probability distribution functions p on a finite set X ,
functions gD and gD associated with D are determined for each A ∈ P (X) by the
formulas

gD(A) = inf
p∈D ∑

x∈A
p(x) and gD (A) = sup

p∈D
∑
x∈A

p(x).
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Since
∑
x∈A

p(x)+ ∑
x6∈A

p(x) = 1,

for each p ∈D and each A ∈ P (X), it follows that

gD(A) = 1−gD(A). (2)

Due to this property, functions gD and gD are called dual (or conjugate). One of
them is sufficient for capturing given evidence; the other one is uniquely deter-
mined by (2). It is common to use the lower probability function gD to capture
the evidence.

As is well known [2, 3], any given lower probability function gD is uniquely
represented by a set-valued function mD for which mD( /0) = 0 and

∑
A∈P (X)

mD(A) = 1. (3)

Any set A ∈ P (X) for which mD(A) 6= 0 is often called a focal set, and the
family of all focal sets, F , with the values assigned to them by function mD is
called a body of evidence. Function mD is called a Möbius representation of gD
when it is obtained for all A ∈ P (X) via the Möbius transform

mD(A) = ∑
B|B⊆A

(−1)|A−B|gD(B), (4)

where |A−B| denotes the cardinality of the finite set A−B. The inverse transform
is defined for all A ∈ P (X) by the formula

gD(A) = ∑
B|B⊆A

mD(B). (5)

It follows directly from (2) that

gD(A) = ∑
B|B∩A6= /0

mD(B). (6)

for all A ∈ P (X).
Assume now that evidence is expressed in terms of a given lower probability

function g. Then, the set of probability distribution functions that are consistent
with g, D(g), which is always closed and convex, is defined as follows:

D(g) = {p(x)|x ∈ X , p(x) ∈ [0,1], ∑
x∈X

p(x) = 1, and

g(A)≤ ∑
x∈A

p(x) for all A ∈ P (X)}. (7)

That is, each given function g is associated with a unique set D and vice-versa.
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3 Measures of Uncertainty
A measure of uncertainty of some conceived type in a given theory of imprecise
probabilities is a functional, U , that assigns to each lower probability function in
the theory a nonnegative real number. This number is supposed to measure, in an
intuitively meaningful way, the amount of uncertainty of the considered type that
is embedded in the lower probability function. To be acceptable as a measure of
the amount of uncertainty, the functional U must satisfy several intuitively essen-
tial axiomatic requirements. Considering the most general level, when evidence
is represented in terms of an arbitrary closed and convex set D of probability dis-
tribution functions p on finite set X ×Y , function U must satisfy the following
requirements:

1. Subadditivity: U(D)≤U(DX )+U(DY ), where

DX = {pX |pX(x) = ∑
y∈Y

p(x,y) for some p ∈D},

DY = {pY |pY (y) = ∑
x∈X

p(x,y) for some p ∈D}.

2. Additivity: U(D) = U(DX) +U(DY ) if and only if DX and DY are not
interactive, which means that for all A ∈ P (X) and all B ∈ P (X), mD(A×
B) = mDX (A) ·mDY (B) and mD(R) = 0 for all R 6= A×B.

3. Monotonicity: if D ⊆ D ′, then U(D) ⊆U(D ′); and similarly for DX and
DY .

4. Range: if uncertainty is measured in bits, then U(D) ∈ [0, log2|X×Y |], and
similarly for DX and DY .

The requirement of subadditivity and additivity, as stated here, are general-
ized counterparts of the classical requirements of subadditivity and additivity for
probabilistic and possibilistic measures of uncertainty. The requirement of mono-
tonicity (not applicable to classical probabilistic uncertainty) means that reducing
the set of probability distributions consistent with a given lower (or upper) prob-
ability function cannot increase uncertainty. The requirement of range, which de-
pends on the choice of measurement units, is defined by the two extreme cases:
the full certainty and the total ignorance.

When distinct types of uncertainty coexist in a given uncertainty theory, it
is not necessary that these requirements be satisfied by each uncertainty type.
However, they must be satisfied by an overall uncertainty measure, which appro-
priately aggregates measures of the individual uncertainty types.

It is well established that two types of uncertainty coexist in all theories of
imprecise probabilities [8, 9]. They are generalized counterparts of the classical
possibilistic and probabilistic uncertainties. They are measured, respectively, by
appropriate generalizations of the Hartley and Shannon measures.
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4 Generalized Hartley Measures
An historical overview of efforts to generalize the classical Hartley measure of
uncertainty can be found in [9]. Its full generalization (to arbitrary closed and
convex sets of probability distributions) was completed fairly recently by Abellan
and Moral [1]. They showed that the functional

GH(mD) = ∑
A∈F

mD(A) log2 |A|, (8)

where mD is the Möbius representation of the lower probability associated with
a given closed and convex set D of probability distributions, satisfies all the es-
sential axiomatic requirements defined in Sec. 3 (subadditivity, additivity, etc.).
Moreover, this functional is also directly connected with the classical Hartley
measure: it is the weighted average of the Hartley measure for each given body of
evidence (F ,mD).

It is fairly obvious that the functional GH defined by (8) measures the lack
of specificity in evidence. Large focal elements result in less specific predictions,
diagnoses, etc., than their smaller counterparts. The type of uncertainty measured
by GH is thus well characterized by the term nonspecificity.

Observe that GH(mD) = 0 for precise probabilities, where D consists of a
single probability distribution function, which is expressed in (8) by function mD .
All focal sets are in this case singletons. Evidence expressed by precise probabil-
ities is thus fully specific.

Eq. (8) is clearly applicable only to functions mD defined on finite sets. It must
be properly modified when mD is defined on the n-dimensional Euclidean space
for some n≥ 1, as shown in [9]. However, this modification is not a subject of this
paper.

5 Generalized Shannon Measures
There have been many promising, but eventually unsuccessful efforts to general-
ize the classical Shannon measure (usually referred to as the Shannon entropy).
Virtually all these efforts were based on the recognition that the Shannon entropy
measures the mean (expected) value of the conflict among evidential claims ex-
pressed by a single probability distribution function on a finite set of mutually
exclusive alternatives [9]. An historical overview of most of these efforts is given
in [9].

All the proposed generalizations of the Shannon entropy were intuitively promis-
ing as measures of conflict among evidential claims in general bodies of evidence,
but each of them was eventually found to violate the essential requirement of sub-
additivity. In fact, no generalized Shannon entropy can be subadditive on its own,
as is shown in [13]. The subadditivity may be obtained only in terms of the total
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uncertainty — an aggregate of the two coexisting types of uncertainty (nonspeci-
fivity and conflict). However, when the total uncertainty is viewed as the sum of
the generalized Hartley measure with the various candidates for the generalized
Shannon entropy, none of these aggregated uncertainty measures is still subaddi-
tive, as demonstrated by relevant counterexamples in each case [13].

The latest promising candidate (not previously analyzed in terms of the re-
quirement of subadditivity) is based on the so-called Shapley index, which plays
an important role in game theory [11, 15]. For any given finite universal set X ,
this candidate for the generalized Shannon entropy, GS, is defined as the average
Shannon entropy of differences in a given lower probability (or, alternatively, an
upper probability) for all maximal chains in the lattice (P (X),⊆). Unfortunately,
the sum GH +GS does not satisfy in this case again the requirement of subaddi-
tivity. This can be demonstrated by the following counterexample.

Let X = {x1,x2} and Y = {y1,y2}, and let us consider a body of evidence on
X×Y whose Möbius representation is:

m({(x1,y1),(x2,y2),(x2,y1)}) = a,

m(X×Y ) = 1−a,

where a∈ [0,1]. Then, mX (X) = mY (Y ) = 1, and, hence, GSX(mX) = GSY (mY ) =
0 and GHX(mX )+GHY (mY ) = 2. Furthermore,

GS(m) = [−a log2 a− (1−a)log2(1−a)]/4,

GH(m) = alog23+2−2a

For subadditivity of GH +GS, the difference

∆ = (GHX +GHY +GSX +GSY )− (GH +GS)

= [a log2 a+(1−a)log2(1−a)]/4+2a−alog23

is required to be nonnegative for all values a ∈ [0,1]. However, ∆ is negative in
this case for any value a ∈ (0,0.58) and it reaches its minimum, ∆ = −0.1, at
a = 0.225.

6 Total Uncertainty Measures
Generalized Shannon measure, GS, was eventually defined indirectly, via an ag-
gregated uncertainty, AU , covering both nonspecificity and conflict, and the well
established generalized Hartley measure of nonspecificity, GH, defined by (8).
Since it must be that GH + GS = AU , the generalized Shannon measure can be
defined as

GS = AU−GH (9)
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Using this definition, the unsuccessful effort to find GS directly is replaced with
the effort to find AU and define GS indirectly via Eq. (9). The latter effort was
successful in the mid 1990s, when a functional AU satisfying all essential re-
quirements was established in evidence theory [9]. However, this functional is
applicable to all the other theories of imprecise probabilities as well, which fol-
lows from the common properties shared by these theories (Sec. 2). Given any
lower probability function gD associated with a closed convex set D of probabil-
ity distributions (or vice versa), AU(gD) is defined by the formula

AU(gD) = max
p∈D

[−∑
x∈X

p(x) log2 p(x)]. (10)

It is the maximum Shannon entropy within D. An efficient algorithm for com-
puting this maximum, which was proven correct for belief functions of evidence
theory [9], is applicable without any change when belief functions are replaced
with arbitrary lower probability functions of any other kind.

Given an arbitrary lower probability function g on P (X), the generalized ver-
sion of this algorithm consists of the following seven steps:

Step 1. Find a non-empty set A⊆ X , such that g(A)/|A| is maximal. If there are
more such sets than one, take the one with the largest cardinality.

Step 2. For all x ∈ A, put p(x) = g(A)/|A|.

Step 3. For each B⊆ X−A, put g(B) = g(B∪A)−g(A).

Step 4. Put X = X−A.

Step 5. If X 6= /0 and g(X) > 0, then go to Step 1.

Step 6. If g(X) = 0 and X 6= /0, then put p(x) = 0 for all x ∈ X .

Step 7. Calculate AU =−∑x∈X p(x) log2 p(x).

Although functional AU is a well-justified measure of total uncertainty in the
various theories of uncertainty, it is highly insensitive to changes in evidence due
to its aggregated nature. It is an aggregate of the two coexisting types of uncer-
tainty, nonspecificity and conflict. It is thus desirable to express the total uncer-
tainty, TU , in a disaggregated form

TU = (GH,GS), (11)

where GH is defined by (8) and GS is defined by (9) and (10). It is assumed
here that the axiomatic requirements are defined in terms of the sum of the two
functionals involved, which is always the well-justified aggregate measure AU .
In this sense the measure satisfies trivially all the requirements. Its advantage
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is that measures of both types of uncertainty that coexist in uncertainty theory
employed (nonspecificity and conflict) are expressed explicitly and, consequently,
the measure is sensitive to changes in evidence.

To appreciate the difference between AU and TU , let us consider three sim-
ple examples of given evidence within a finite universal set X and let |X |= n for
convenience: (i) in the case of total ignorance (when m(X) = 1), we obtain AU =
log2 n and TU = (log2 n,0); (ii) when evidence is expressed by the uniform prob-
ability distribution on X , then again we have AU = log2 n, but TU = (0, log2 n);
(iii) when evidence is expressed by m({x}) = a for all x ∈ X and m(X) = 1−na,
then again AU = log2 n for all values a≤ 1/n, while

TU = ((1−na) log2 n,na log2 n).

It is clear that TU defined by (11) possesses all the required properties in
terms of the sum of its components, since GH + GS = AU . Moreover, as was
proven by Smith [13], GS≥ 0 for all bodies of evidence. Additional properties of
GS defined by (9) can be determined by employing the algorithm for computing
AU , as shown for some properties in Section 7.

It is also reasonable to express the generalized Shannon entropy by the inter-
val [S,S], where S and S are, respectively, the minimum and maximum values of
the Shannon entropy within the set of all probability distributions that are consis-
tent with a given lower probability function. Clearly S = AU and S is defined by
replacing max with min in Eq. (10). Then, the total uncertainty, TU ′, has the form

TU ′ = (GH, [S,S]). (12)

Let us define a partial ordering of these total uncertainties as follows:

TU ′1 ≤ TU ′2 iff GH1 ≤ GH2 and [S1,S1]⊆ [S2,S2].

Then, due to subadditivity of S, subadditivity of TU ′ is guaranteed. Indeed,

[SX +SY ,SX +SY ] 6⊂ [S,S]

for any joint and associated marginal bodies of evidence. However, no algorithm
for computing S that has been proven correct is available as yet.

7 Some Properties of Generalized Shannon Entropy
The purpose of this section is to examine the generalized Shannon entropy defined
by (9). To facilitate this examination, let

F = {Ai|Ai ∈ P (X), i ∈ Nq}
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denote the family of all focal sets of a given body of evidence, where Nq =
{1,2, . . . ,q} for some integer q, and let mi = m(Ai) for convenience. Moreover,
let

E =
[

i∈Nq

Ai.

The algorithm for computing S(= AU) produces a partition,

E = {Ek|k ∈ Nr,r ≤ q}

of E. For convenience, assume that block Ek of this partition was produced in k-th
iteration of the algorithm and let ek = |Ek|. Then

S(m) =− ∑
k∈Nr

gk log2(gk/ek)

where g
k

denotes the lower probability of Ek in k-th iteration of the algorithm.
This equation can be rewritten as

S(m) =− ∑
k∈Nr

gk log2 gk + ∑
k∈Nr

gk log2 ek.

It follows from this equation and from Eq. (9) that

GS(m) = S(gk|k ∈ Nr)+GH(gk|k ∈ Nr)−GH(m), (13)

where S denotes the Shannon entropy.
Assume now that F consists of pair-wise disjoint focal sets. Then, the Möbius

representation, m, is a positive function since any negative value mi for some Ai ∈
F would clearly violate in this case the requirement that values of the associated
lower probability function must be in [0,1]. When applying the algorithm for
computing S to our case, it turns out that the values mi for all Ai ∈F are uniformly
distributed among elements of each focal set Ai. This only requires to prove that

∑
i∈I

mi/∑
i∈I

ai ≤ mk/ak

for each k ∈ I and all nonempty sets I ⊆ Nq, where ak = |Ak|. The proof of this
inequality, which is omitted here due to limited space, can be obtained by the
method of contradiction. The maximum entropy probability distribution function,
p, for the given body of evidence is thus defined for all xik ∈ Ai(k ∈ N|Ai|) and all



330 ISIPTA ’03

Ai ∈ F by the formula p(xik) = mi/ai where ai = |Ai|. Hence,

S(m) =−
q

∑
i=1

ai

∑
k=1

p(xik) log2 p(xik)

=−
q

∑
i=1

mi log2(mi/ai)

=−
q

∑
i=1

mi log2 mi +
q

∑
i=1

mi log2 ai

=−
q

∑
i=1

mi log2 mi +GH(m).

Consequently,

GS(m) =−
q

∑
i=1

mi log2 mi.

This is clearly a property that we would expect, on intuitive grounds, the general-
ized Shannon entropy to satisfy.

To examine some properties of the generalized Shannon entropy for nested
bodies of evidence, let X = {xi|i∈Nn} and assume that elements of X are ordered
in such a way that the family

A = {Ai = {x1,x2, . . . ,xi}|i ∈ Nn}

contains all focal sets. That is, F ⊆ A . For convenience, let mi = m(Ai) for all
i ∈ Nn.

To express GS(m), we need to express GH(m) and S(m). Clearly,

GH(m) =
n

∑
i=1

mi log2 i (14)

To express S(m), three cases must be distinguished in terms of values mi:

(a) mi ≥ mi+1 for all i ∈ Nn−1;

(b) mi ≤ mi+1 for all i ∈ Nn−1;

(c) neither (a) nor (b).

Following the algorithm for computing S, we obtain the formula

GSa(m) =−
n

∑
i=1

mi log2(mii) (15)
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for any function m that conforms to Case (a). By applying the method of Lagrange
multipliers, we can readily find out that the maximum, GS∗a(n), of this functional
for some n ∈ N is obtained for

mi = (1/i)2(−1/ ln2+α)(i ∈ Nn), (16)

where the value of α is determined by solving the equation

2−(1/ ln2+α)
n

∑
i=1

(1/i) = 1.

Let sn = ∑n
i=1(1/i). Then,

α =− log2(1/sn)− (1/ ln2)

and, hence,

mi = (1/i)2log2(1/sn)

= 1/(isn).

Substituting this expression for mi in (15), we obtain

GS∗a(n) =
n

∑
i=1

(1/i)(1/sn) log2 sn

= [(1/sn) log2 sn]
n

∑
i=1

(1/i).

Consequently,
GS∗a(n) = log2 sn. (17)

In Case (b), S = log2 n and GH is given by (8). Hence,

GSb(m) = log2 n−
n

∑
i=1

mi log2 i.

The maximum, GS∗b(n), of this functional for some n ∈ N subject to the inequali-
ties that are assumed in Case (b), is obtained for mi = 1/n. Hence,

GS∗b(n) = log2
n

n!1/n . (18)

Employing Stirling’s formula for approximating n!, it can be shown that

limn→∞ log2
n

n!1/n = log2 e

= 1.442695.
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GS∗b is thus bounded, contrary to GS∗a(n). Moreover, GS∗b(n) < GS∗a(n), for all
n ∈ N.

Case (c) is more complicated for a general analytic treatment since it covers a
greater variety of bodies of evidence with respect to the computation of GS. This
follows from the algorithm for computing S . For each given body of evidence,
the algorithm partitions the universal set in some way, and distributes the value of
the lower probability in each block of the partition uniformly. For nested bodies
of evidence, the partitions preserve the induced order of elements of X . There are
2n−1 order preserving partitions. The most refined partition and the least refined
one are represented by Cases (a) and (b), respectively. All the remaining 2n−1−2
partitions are represented by Case (c). A conjecture, based on a complete analysis
for n = 3 and extensive simulation experiments for n > 3, is that the maxima of GS
for all these partitions are for all n ∈ N smaller than the maximum GS∗a for Case
(a). According to this plausible conjecture, whose proof is an open problem, the
difference between the maximum nonspecificity, GH∗(n), and maximum conflict,
GS∗a(n), grows rapidly with n. For example, GH∗(2) = 1 and GS∗a(2) = 0.585,
while GH∗(104) = 13.29 and GS∗a(104) = 3.29. Similarly, the maximum value
of conflict is 36.9% of the maximum value of total uncertainty for n = 2, but it
reduces to 19.8% for n = 104. For nested (consonant) bodies of evidence, this
feature makes intuitively a good sense.

8 Conclusions
For the last two decades or so, research in GIT has been focusing on developing
justifiable ways of measuring uncertainty and the associated uncertainty-based
information in the various emerging uncertainty theories. This objective is now,
by and large, achieved. However, some research in this direction is still needed
to improve our understanding of the generalized Shannon entropy, defined either
by (9) or by the interval [S,S]. Results presented in this paper are intended to
contribute a little to this understanding.

In the years ahead, the focus of GIT will likely divide into two branches of
research. One of them will focus on developing methodological tools based on
our capability to measure uncertainty in the various established theories of uncer-
tainty. Methodological tools for making the principles of uncertainty maximiza-
tion, minimization, and invariance operational will in particular be sought due to
the broad utility of these principles [7, 9]. The other branch of research will pursue
the development of additional uncertainty theories. One direction in this research
area will undoubtedly include a comprehensive investigation of the various ways
of fuzzifying existing uncertainty theories.
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sures on finite spaces, k-additive measures: a survey.” Grabish, M. et al.,
eds., Fuzzy Measures and Integrals: Theory and Applications. Springer-
Verlag, New York, pp. 70–93.

[4] Halmos, P. R., Measure Theory. D. Van Nostrand, Princeton, NJ, 1950.

[5] Hartley, R. V. L., “Transmission of information.” The Bell System Technical
J., 7(3): 535–563, 1928.

[6] Klir, G. J., “Generalized information theory.” Fuzzy Sets and Systems, 40(1):
127–142, 1991.

[7] Klir, G. J., “Principles of uncertainty: What are they? Why do we need
them?” Fuzzy Sets and Systems, 74(1): 15–31, 1995.

[8] Klir, G. J., “Uncertainty-based information.” Teodorescu, H. and P. Melo,
eds, Systemic Organization of Information in Fuzzy Systems. IOS Press, Am-
sterdam, pp. 21–52, 2003.

[9] Klir, G. J. and Wierman M. J., Uncertainty-Based Information: Ele-
ments of Generalized Information Theory (Second Edition). Physica-
Verlag/Springer-Verlag, Heidelberg and New York, 1999.

[10] Klir, G. J. and Yuan, B., Fuzzy Sets and Fuzzy Logic: Theory and Applica-
tions. Prentice Hall, PTR, Upper Saddle River, NJ, 1995.

[11] Marichal, J. and Roubens, M., “Entropy of discrete fuzzy measures.” Intern.
J. of Uncertainty, Fuzziness, and Knowledge-Based Systems, 8(6): 625–640,
2000.

[12] Shannon, C. E., “The mathematical theory of communication.” The Bell Sys-
tem Technical J., 27(3&4): 379–423, 623–656, 1948.

[13] Smith, R. M., Generalized Information Theory: Resolving Some Old Ques-
tions and Opening Some New Ones. PhD. Dissertation, Binghamton Univer-
sity (SUNY), Binghamton, NY, 2000.



334 ISIPTA ’03

[14] Wang, Z. and Klir, G. J., Fuzzy Measure Theory. Plenum Press, New York,
1992.

[15] Yager, R. R., “On the entropy of fuzzy measures.” IEEE Trans. on Fuzzy
Systems, 8(4): 453–461, 2000.

George J. Klir is with the Center for Intelligent Systems, Binghamton University (SUNY),
Binghamton, New York, 13902 USA


