
Reducing Uncertainty by Imprecise
Judgements on Probability Distributions:

Application to System Reliability∗

I.KOZINE
Risø National Laboratory, Denmark

V.KRYMSKY
Ufa State Aviation Technical University, Russia

Abstract

In this paper the judgement consisting in choosing a function that is believed
to dominate the true probability distribution of a continuous random variable
is explored. This kind of judgement can significantly increase precision in
constructed imprecise previsions of interest, which of great importance for
applications. New formulae for computing system reliability are derived on
the basis of the technique developed.
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1 Introduction
Natural extension, a tool to extend statistical knowledge to other domains and to
make a set of available statistical partial evidence coherent, can appear and be
used in different forms. In [1] four equivalent forms of the natural extension were
reported. They are all nothing other than properly stated optimisation problems
for obtaining lower and upper coherent bounds of probability characteristics of
interest. The primal form suggests seeking coherent bounds defined by a set of
feasible probability distributions, and this set, in turn, is formed by the available
evidence expressed as constraints in the optimisation task. If no evidence is avail-
able (the state of complete ignorance), then the solution is sought over the set of
all possible probability distributions, which brings us to the vacuous probability of
the event of interest A, i.e., P(A) ∈ [0,1]. The crux of such optimisation problems
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is that their solutions are defined on the family of degenerate probability distribu-
tions1, which are included on equal footing in the set of all possible probability
distributions. As proven in [1], solving these optimisation problems, on the set of
all possible probability distributions, gives the same solution as that obtained on
only the set of degenerate distributions. This issue is closely related to the central
theorems and methods of Chebychev systems as described in [2]. All this would
simply be mathematical subtlety, that is, far from practitioners’ interest, if this did
not give us a clue for deriving more precise previsions of interest for continuous
random variables. For these variables it is often not realistic to assume that the
probability masses are concentrated in a few points as opposed to being contin-
uously distributed over the set of possible outcomes. The existence of solutions
on degenerate distributions often results in high imprecision, negating the prag-
matic value of the assessments of interest. For example, in reliability applications
the time to failure of a system/component can not admit (except for very special
cases) the concentration of probability masses in a very few points of the positive
real line. Not being able to utilise such evidence leads to the fact that imprecision
in the reliability of a system grows rapidly as the number of components in the
system increases, making the results rather practically useless [3].

This feature of the natural extension was found disturbing and precluded wider
implementation of imprecise statistical reasoning into reliability analysis. An at-
tempt to mitigate the influence of degenerate probability distributions on the so-
lutions was undertaken in [4]. No significant effect was attained through the in-
troduction of judgements on the skewness and unimodality of the distributions
as, in this case, the peaks of degenerate distributions simply become repositioned
and probability masses become redistributed among the peaks. The nature of the
distributions defining the solutions stays the same.

In this paper we explore a more drastic and, as it will be demonstrated, effec-
tive way to exclude the family of degenerate distributions from the set of proba-
bility distributions, which, as was expected, results in more precise previsions of
interest. This is attained through judgements on a value (or a function, in general)
that dominates the probability density function ρ(x) of a continuous random vari-
able X . That is, we introduce judgements of the form ρ(x)≤Ψ(x), where Ψ(x) is
a real-valued positive function satisfying the inequalities 1≤ R

R+

Ψ(x)dx < ∞, and

demonstrate a way of their utilisation. In particular, Ψ(x) can be set as Ψ(x) =
K · I[a,b](x) where a,b ∈ R+ and a≤ b, I[a,b](x) is the indicator function such that
I[a,b](x) = 1 if x ∈ [a,b], and I[a,b](x) = 0 otherwise, and K ≥ (b− a)−1 is a con-
stant.

Similar ideas of utilising bounds on density functions were explored in [5].
The tool of their utilisation was dynamic programming which gives us numerical

1The probability distribution of a continuous random variable is referred to as degenerate if the
probability masses are concentrated in a finite number of points belonging to the continuous set of
possible states
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solutions of the stated problems, while we suggest an approach to solving the
problems analytically.

Breaking down a multidimensional case, X=(X1, . . . ,Xn), provides a theoreti-
cal basis for system reliability computations, which is a subject of the second part
of the paper.

2 Relevant basics of the approach
Comprehensive coverage of the foundation of the theory of imprecise previsions
can be found in the books [6] and [7]. In this section we briefly describe only
those concepts that are necessary to understand the approach developed.

Consider a system consisting of n components. Let fi j(xi) be j−th function of
the i-th component lifetime xi, i = 1, . . . ,n, and j = 1, . . . ,mi. Suppose that reliabil-
ity characteristics of the components are not known precisely and represented as
a set of lower and upper previsions ai j = M( fi j(xi)),ai j = M( fi j(xi)), i = 1, . . . ,n,
and j = 1, . . . ,mi, which means that there exist mi interval-valued judgements for
the i-th component formally represented as expected values. The functions f i j(xi)
can be regarded as gambles, where a gamble is a real-valued function on a pos-
sibility space whose value is uncertain [6]. If, for instance, fi j(xi) = x, then the
lower prevision ai j is the lower bound of the mean time to failure of the i-th com-
ponent; or if fi j(xi) = I[t,∞)(xi), where I[t,∞)(xi)=1 if xi ∈ [t,∞) and I[t,∞)(xi)=0
otherwise, then the lower prevision ai j is the lower bound of the probability of a
failure occurrence within [t,∞).

Denote X=(X1, . . . ,Xn) a random vector and x = (x1, . . . ,xn) is the vector of
numerical values for X1, ...,Xn. Then, there exists a function g(X) of the compo-
nent lifetimes that characterises the system’s reliability. The function g(X) is also
a gamble.

In order to compute the coherent lower and upper previsions M(g) and M(g)
of interest characterising the system reliability, a proper optimisation problem
(also referred to as the natural extension in its primal form) can be posed

M(g)〈M(gt)〉= inf
ℜn

〈
sup
ℜn

〉
Z

Rn
+

g(x)ρ(x)dx (1)

subject to

0≤ ρ(x),
R

Rn
+

ρ(x)dx = 1,

ai j ≤
R

Rn
+

fi j(xi)ρ(x)dx≤ ai j, i = 1, ...,n, j = 1, ...,mi.





(2)

Here the minimum and maximum are taken over the set ℜn of all possible n-
dimensional density functions {ρ(x)} satisfying conditions (2). That is, each con-
straint in (2) is associated with a subset of ℜn and the intersection of those subsets,
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if not empty, defines the solutions of the above optimisation problems. If the ini-
tial interval-valued data, forming the constraints, are not consistent, then some of
the subsets of ℜn associated with the constraints are disjoint and the solution does
not exist. The requirement of the existence of a non-empty set of probability dis-
tributions associated with the set of constraints is the only consistency principle
imposed on the initial interval-valued data. This requirement is equivalent to the
principle of avoiding sure loss [6] and is easily subject to technical checks.

If the components of a system are independent, then ρ(x) = ρ1(x1),. . . ,ρn(xn).
In some cases the duals of optimisation problems (1)-(2) can be stated, which

makes it technically easy to solve them [1]. The duals of (1)-(2) are

M(g) = sup
c0,ci j ,di j

(
c0 +

n

∑
i=1

mi

∑
j=1

(ci jai j−di jai j)

)
, (3)

subject to c0 ∈ R, ci j,di j ∈ R+ and for any xi ≥ 0, i = 1,2, ...,n, j = 1,2, ...,mi,

c0 +
n

∑
i=1

mi

∑
j=1

(ci j−di j)I[t,∞)(xi)≤ g(x). (4)

And

M(g) = inf
c0,ci j ,di j

(
c0 +

n

∑
i=1

mi

∑
j=1

(ci jai j−di jai j)

)
, (5)

subject to c0 ∈ R,ci j,di j ∈ R+ and for any xi ≥ 0, i = 1,2, ...,n, j = 1,2, ...,mi,

c0 +
n

∑
i=1

mi

∑
j=1

(ci j−di j)I[t,∞)(xi)≥ g(x). (6)

The validity of the transition from a primal form similar to (1)-(2) to the dual form
is explained in [1], [8].

Problems (3)-(4) and (5)-(6) are linear optimisation problems and and have
technically straightforward solutions.

In some cases dual problems do not exist. This takes place if a primal op-
timisation problem is not linear. For example, the judgement of independence
among system components, which is equivalent to the introduction of ρ(x) =
ρ1(x1),. . . ,ρn(xn), makes the problem non-linear, and, as a consequence, it leads
to the non-existence of the dual optimisation problem.

3 Extending knowledge: one-dimensional case
Let us consider first a one-dimensional case of extending partial statistical infor-
mation to probability characteristics of interest. That is, we will be focusing in
this section on the construction of new imprecise characteristics provided some
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other imprecise statistical characteristics are known on the same possibility set,
and, more important, we will demonstrate how “soft” judgements on the proba-
bility density function of a random variable can be modelled and utilised in the
framework of the theory of imprecise probabilities.

Assume that there are m interval-valued judgements on probability character-
istics on a specific possibility set, i.e. M ( fi(X))∈ [ai,ai], and there is an additional
judgement of ρ(x)≤Ψ(x), 1≤ R

R+

Ψ(x)dx < ∞. The objective is to extend this ev-

idence to the prevision of interest M (g(X)) that cannot be found precisely, as the
initial data are partial.

Write the primal form of natural extension

M (g)
〈
M (g)

〉
= inf

ℜ

〈
sup

ℜ

〉
Z

R+

g(x)ρ(x)dx (7)

subject to

0≤ ρ(x)≤Ψ(x),
R

R+

Ψ(x)dx = H < ∞,
R

R+

ρ(x)dx = 1 and

ai ≤
R

R+

fi(x)ρ(x)dx≤ ai, i = 1,2, ...,m.



 (8)

The dual of the above optimisation problem cannot be straightforwardly writ-
ten. First, introduce a new variable z(x) instead of ρ(x)

z(x) =
Ψ(x)−ρ(x)

H−1
,

and denote Γ =
R

R+

g(x)Ψ(x)dx; Φi =
R

R+

fi(x)Ψ(x)dx, i = 1,2, ...,m.

It is clear that
R

R+

z(x)dx = 1. Then, optimisation problem (7)-(8) can be rewrit-

ten

M (g)
〈
M (g)

〉
= inf

ℜ

〈
sup

ℜ

〉
R

R+

g(x)ρ(x)dx =

= Γ− (H−1)sup
Z

〈
inf
Z

〉{
R

R+

g(x)z(x)dx

} (9)

subject to

0≤ z(x),
R

R+

z(x)dx = 1, Φi−ai
H−1 ≤

R

R+

fi(x)z(x)dx ≤ Φi−ai
H−1 ,

i = 1, ...,m.



 (10)

And finally, the challenge is to solve the following problems

s (g)〈s (g)〉= inf
Z

〈
sup

Z

〉
Z

R+

g(x)z(x)dx, (11)
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subject to (10).
Before we go on to the duals, one consistency condition must be fulfilled. It

is of avoiding sure loss [6] and is transparent from the stand of common sense
and can be written as inf( f (x)) ≤M ( f (x)) ≤M ( f (x)) ≤ sup( f (x)). Applied to
objective functions (9), it appears as

inf(g)≤ Γ− (H−1)sup
Z

{
R

R+

g(x)z(x)dx

}
≤

Γ− (H−1) inf
Z

{
R

R+

g(x)z(x)dx

}
≤ sup(g)

Optimisation problems (11) subject to (10) have their duals

s(g) = sup
c0,ci,di

{
c0 +

m

∑
i=1

[
ci

(
Φi−ai

H−1

)
−di

(
Φi−ai

H−1

)]}
(12)

subject to c0 ∈ R, ci,di ∈ R+ and for any x≥0 c0 +
m
∑

i=1
(ci−di) fi(x)≤ g(x). And

s(g) = inf
c0,ci,di

{
c0 +

m

∑
i=1

[
ci

(
Φi−ai

H−1

)
−di

(
Φi−ai

H−1

)]}
(13)

subject to c0 ∈ R, ci,di ∈ R+ and for any x≥0 c0 +
m
∑

i=1
(ci−di) fi(x)≥ g(x).

Thus, having derived the dual optimisation problems (12) and (13), we have
got a tool for utilising “soft” judgements concerning probability density functions
and extending them to other probability characteristics of interest defined on a
one-dimensional possibility set.

Example 1. The information concerning a continuous random variable X is
that of ρ(x) ≤ Ψ(x) = K · I[0,T ](x) < ∞, where T,K are fixed positive numbers.
What are the bounds for the expectation M(X)?

The above approach brings us to the following results

M(X) =
KT 2

2
− (KT −1)T = T

(
1− KT

2

)
and M(X) =

KT 2

2
.

Example 2. Assume now that besides the information stated in example 1 we
know precisely the probability P{a≤ X ≤ a} = p, where 0 ≤ a < a ≤ T . How
would the given information change the bounds for the expectation M(X)?

The result is

M(X) = T
(
1− KT

2

)
+(T −a) [K(a−a)− p] ,

M(X) = KT 2

2 −a [K(a−a)− p] .
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4 Computation of system reliability
Extending knowledge on multidimensional possibility sets, taking into account
imprecise judgements on probability density functions, is undertaken in a similar
way to the one-dimensional case described above. The multidimensional case is
broken down in detail in [9]. In this section we represent the results concerning
system reliability computations that follow from this case.

As it has been found earlier (see elsewhere [3], [10], [11]), the reliability of a
system, PSeries, the components of which are connected in series given the lower
and upper bounds of the components’ reliabilities and the state of complete igno-
rance concerning their dependence, is calculated according to the formulae

PSeries = M
(

I[t,∞)(min
i

xi)

)
= max

(
0;

n

∑
i=1

p
i
− (n−1)

)
,

and

PSeries = M
(

I[t,∞)(min
i

xi)

)
= min

i
pi,

where PSeries ≤ PSeries ≤ PSeries, and pi and pi, i = 1, ...,n are the lower and upper
reliabilities of the components.

By applying the above described approach, the formulas for the calculation
of the reliability of series systems become updated in the light of the evidence
concerning the probability density function of time to failure

PSeries = Γ− (H−1)min
i

(
Φi−ai

H−1

)
= Γ−min

i
(Φi−ai),

PSeries = Γ− (H−1)max
(

0;
n
∑

i=1

(
Φi−ai
H−1

)
− (n−1)

)
=

= Γ−max
(

0;
n
∑

i=1
(Φi−ai)− (H−1) · (n−1)

)
.

The reliability of a system, PParallel , the components of which are connected in
parallel given the lower and upper bounds of the components’ reliabilities and the
state of ignorance concerning their independence, is calculated according to the
formulas (see elsewhere [3], [10], [11])

PParallel = M
(

I[t,∞)(max
i

xi)

)
= max

i
p

i
,

PParallel = M
(

I[t,∞)(max
i

xi)

)
= min

(
1;

n
∑

i=1
pi

)
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Their update in the light of the new evidence appears as follows

PParallel = Γ− (H−1)min
(

1;
n
∑

i=1

(
Φi−ai
H−1

))
=

= Γ−min
(

(H−1);
n
∑

i=1
(Φi−ai)

)
,

and

PParallel = Γ− (H−1)max
i

(
Φi−ai

H−1

)
= Γ−max

i
(Φi−ai).

For a system of an arbitrary structure the reliability bounds satisfy the inequalities
[3], [10], [11]:

PArbStruct ≥ max
1≤ j≤r

max(0,L j),

where r is a number of system minimal paths π1,π2, ...,πr, L j = ∑
i∈π j

p
i
− (µ j−1),

and µ j is the number of components belonging to path π j, and

PArbStruct ≤ min
1≤ j≤s

min

(

∑
i∈K j

pi;1

)
,

where s is a number of system minimal cut sets denoted by K1,K2, ...,Ks.
Now by applying the approach developed and using the substitutions pi =

Φi−ai
H−1 , pi = Φi−ai

H−1 , we obtain

PArbStruct ≥ Γ− min
1≤ j≤s

min

(
∑

i∈K j

(Φi−ai);(H−1)

)
,

PArbStruct ≤ Γ− max
1≤ j≤r

max(0,L∗j),

where L∗j = ∑
i∈π j

(Φi−ai)− (H−1) · (µ j−1).

Example 3. A system consists of two components (n=2) connected in se-
ries, and the reliability of the first component is p1 ∈ [a1,a1] and the second
is p2 ∈ [a2,a2]. One more judgement is of the form ρ(x1,x2) ≤ Ψ(x1,x2) = K ·
I{[0,T ];[0,T ]}(x1,x2), where K andT are constants and I{[0,T ];[0,T ]}(x1,x2) is a two-
dimensional indicator function. What is system reliability?

The reliabilities of the components for an arbitrary time tare to be written in
the form (2)

a1 ≤
T
R

0
I[t,T ](x1)

T
R

0
ρ(x1,x2)dx1dx2 ≤ a1,

a2 ≤
T
R

0
I[t,T ](x2)

T
R

0
ρ(x1,x2)dx1dx2 ≤ a2.
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Note that in this case H = KT 2, Γ = K(T − t)2, hence

PSeries = Γ−min
i

(Φi−ai) = Γ−
T
R

t

T
R

0
Ψ(x1,x2)dx1dx2 +max

i
(ai) =

= max
i

(ai)−Kt(T − t);

PSeries = Γ−max
(

0;
n
∑

i=1
(Φi−ai)− (H−1) · (n−1)

)
=

= min
(

K(T − t)2;(Kt2 +
2
∑

i=1
ai−1)

)
.

5 Concluding remarks
Judgements concerning the function Ψ(x), which is believed to dominate the true
probability distribution of a continuous variable, are practically elicitable and may
be unambiguously understood by those inexperienced in probabilistic reasoning.
So, a sample probability density function is defined by the totality of the values
ρi = ni

/
(N∆x), i = 1,2, ..., where ni is the number of observed realisations of a

continuous random variable X falling in the i−th bin with a width of ∆x, and
N is the size of the sample. For example, in reliability analysis the continuous
random variable is time to failure or time between failures, and usually reliability
characteristics are counted for a time period of 1 year. That is, the width of the
bins is equal to 1 year for any i except for the last bin which is an open interval [xk,
∞). As a matter of fact, any reliability calculation and failure reporting systems
are scaled to one-year assessments so that the experts in the field are used to think
of reliability characteristics as values scaled to a year. A question of “what would
be the maximum percentage of failures per year for a specified component over
its lifetime?” or alike would be quite easy to answer for an expert or to assess
based on even scarce failure evidence.
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