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Abstract

We apply random set theory to an analysis of future climate change. Bounds
on cumulative probability are used to quantify uncertainties in natural and
socio-economic factors that influence estimates of global mean temperature.
We explore the link of random sets to lower envelopes of probability fami-
lies bounded by cumulative probability intervals. By exploiting this link, a
random set for a simple climate change model is constructed, and projected
onto an estimate of global mean warming in the 21st century. Results show
that warming estimates on this basis can generate very imprecise uncertainty
models.
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1 Introduction
It is widely acceped by now that a discernible influence of anthropogenic emis-
sions of greenhouse gases (GHGs) on the earth’s climate exists. Greenhouse gas
concentrations in the atmosphere have risen by, to name just a few, 30% (car-
bon dioxide), 250% (methane) and 15% (nitrous oxide) in the industrial era since
1750, mainly due to human activity. Empirical evidence for a growing climate
change signal is mounting, and nearly all climate models need the increased ra-
diative forcing due to growing GHG concentrations to reproduce this signal. Still,
uncertainty abounds. How sensitive is the climate to growing GHG concentra-
tions? What amount of greenhouse gases will humankind put into the atmosphere
in the 21st century?
∗This work has been supported in part by the Deutsche Bundesstiftung Umwelt (German Federal

Foundation of the Environment).
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We believe that the application of imprecise probability concepts carries the
potential to greatly improve the situation in climate change forecasting and inte-
grated assessment of climate change policies. However, an obstacle might be the
dynamical nature of climate change models, and the large number of uncertain
variables which mostly range over continuous possibility spaces. In this paper,
we present an application of random set methods to the estimation of global mean
temperature (GMT) change in the 21st century. We interprete the correspond-
ing belief functions as a lower envelope of a set of probability measures, and
try to respect this interpretation throughout the reasoning process. The uncertain
model parameters are initially quantified by lower and upper cumulative proba-
bility distribution functions (CDF) on the real line. In section 2, we discuss how
this information can be converted into a random set, combined for independent
model parameters, and projected onto the model output. In section 3, we present
the simple temperature change model, and construct a random set for its uncertain
parameters. In section 4, the uncertainty in the input values is projected onto an
estimate of global mean temperature change.

2 Methods

2.1 Random Sets of Imprecise CDF Models
Consider an uncertain quantity X that enters a model of some causal relationship,
e.g. of the link between GHG emissions and GMT. The imprecise uncertainty
about X shall be described by a lower bound FX : R→ [0,1] and an upper bound
FX : R→ [0,1] for a set of CDFs FX(x) := P(X ≤ x) on the real line R. In the
following, such an uncertainty assessment will be called an imprecise CDF model

MX (F ,F) := {P |∀ x ∈ R F(x)≤ P(−∞,x]≤ F(x)} (1)

A monotone set function P : R → [0,1], P( /0) = 0, P(R) = 1 is a lower en-
velope or coherent lower probability on the Borel algebra R of the real line, if
it defines a non-empty set of countably additive probability measures M (P) :=
{P |∀ A ∈ R P(A)≤ P(A)}, and ∀ A ∈ R P(A) = infP∈M (P) P(A) [13, theorem
3.3.3]. An ∞-monotone lower envelope is a belief function Bel.

In the theory of Dempster [4], belief functions are generated by a multi-valued
mapping from an underlying space Ψ = {ψ1, ...,ψn} onto a field of sets, in our
case the Borel algebra R . By means of the multi-valued mapping, a probabil-
ity mass assignment m on Ψ can be transferred to R , i.e. there exists m : R →
[0,1], with m(A) > 0 for only a finite number of sets F = {E1, ...,En} ⊂ R and
∑A∈R m(A) = 1. The pair (F ,m) is called a (finite support) random set, and the
sets Ei ∈ F focal elements. A belief function Bel and its conjugate plausibility
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function Pl are connected to a random set by [4, 11]

Bel(A) = ∑
B⊆A

m(B) = ∑
i |Ei⊆A

mi , Pl(A) = ∑
B∩A6= /0

m(A) = ∑
i |Ei∩A6= /0

mi

Thus, knowledge of the random set (F ,m) suffices to determine Bel and Pl on R .

We explore the relationship between the lower envelope of an imprecise CDF
model and a belief function that can be represented by a finite support random set
(In the following, the reference to the finiteness of the random set will be omitted).
The goal is to capture the information content of an imprecise CDF model with a
random set.

Proposition 1 Let MX (F ,F) be an imprecise CDF model as defined in (1). Let
A be the algebra generated by the set of half-closed intervals (a,b], a < b of the
real line R. Let (F ,m) be a random set, and BelF , PlF the corresponding belief
and plausibility functions, respectively.

If (I) (F ,m) contains only closed intervals Ei = [xi,xi],
(II) (F ,m) includes no pair of focal elements Ei, E j with xi < x j < x j < xi, and
(III) ∀ x ∈ R BelF (−∞,x] = F(x), PlF (−∞,x] = F(x),

then ∀ A ∈ A BelF (A) = PX (A) := inf
P∈MX (F,F)

P(A)

Proof. Step 1: Consider an arbitrary (a,b] ∈ A , a < b. We have to show
PX (a,b] = BelF (a,b] and PX(a,b] = PlF (a,b]. Since PX (A) = 1−PX (Ac) and
BelF (A) = 1−PlF (Ac), this implies that the equalities hold for the complement
(a,b]c as well.

1a) PX (a,b] = F(b)−F(a) = ∑
i |Ei∩(−∞,b]6= /0

mi− ∑
j |E j⊆(−∞,a]

m j

= ∑
s(i) |Es(i)⊆(−∞,a]

ms(i) + ∑
t(i) |Et(i)∩(a,b]6= /0

mt(i)− ∑
j |E j⊆(−∞,a]

m j

= PlF (a,b]

1b) PX(a,b] = max[0,F(b)−F(a)] = max[0, ∑
i |Ei⊆(−∞,b]

mi− ∑
j |E j∩(−∞,a]6= /0

m j ]

If F(b) < F(a), there exists E∗ = [x∗,x∗] ∈ F with E∗∩ (−∞,a] 6= /0 and E∗ 6⊆
(−∞,b]. Assume an arbitrary E ′ = [x′,x′] ∈ F with x′ > a≥ x∗. By condition (II),
x′ ≥ x∗ > b. Thus, E ′ 6⊆ (a,b], and BelF (a,b] = 0.

Assume there exists E∗ ∈ F with E∗ ∩ (−∞,a] 6= /0 and E∗ 6⊆ −(∞,b]. By
condition (I)+(II), all Ei ⊆ (−∞,b] ∈ F intersect (−∞,a], and F(b) < F(a).
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Thus, if F(b)≥ F(a), there is no such focal element E∗ ∈ F . In other words,
∀ Ei ∈ F Ei 6⊆ (−∞,b]⇒ Ei∩ (−∞,a] = /0.

⇒ PX (a,b] = ∑
s(i) |Es(i)⊆(a,b]

ms(i) + ∑
t(i) |Et(i)∩(−∞,a]

mt(i)− ∑
j |E j∩(−∞,a]6= /0

m j

= BelF (a,b]

Step 2: Consider an arbitrary union of k disjoint half-closed intervals Ak =
(a1,b1]∪ ...∪ (ak,bk], a1 < b1 < ... < ak < bk.

Choose a CDF F∗ : R→ [0,1] with F∗(a1) = min[F(a1),F(b1)], F∗(b1) =
F(b1), ..., F∗(ak) = min[F(ak),F(bk)], F∗(bk) = F(bk). Since F∗(a1) ≤
F∗(b1) ≤ ... ≤ F∗(ak) ≤ F∗(bk), such a CDF does exist, and is contained in
MX (F ,F).

P∗(Ak) = F∗(bk)−F∗(ak)+ ...+F∗(b1)−F∗(a1)

= max[0,F(bk)−F(ak)]+ ...+max[0,F(b1)−F(a1)]

= PX (ak,bk]+ ...+PX (a1,b1]

Since the lower envelope PX is super-additive on a union of disjoint sets

[13, Ch. 2.7.4], PX (Ak) = P∗(Ak). Thus, PX (
k
S

l=1
(al ,bl ]) =

k
∑

l=1
PX(al ,bl ]. Since

PX (al ,bl ] = Bel(al ,bl ] as shown in step 1:

2a) PX(Ak) =
k

∑
l=1

∑
i|Ei⊆(al,bl ]

mi = ∑
i|Ei⊆

k
S

l=1
(al ,bl ]

mi = BelF (Ak)

2b) PX(Ak) = PX (−∞,bk]−PX ((−∞,a1]∪ (b1,a2]∪ ...∪ (bk−1,ak])

= F(bk)−F(a1]−PX(b1,a2]− ...−PX (bk−1,ak]

= ∑
i|Ei∩(a1,bk]6= /0

mi− ∑
j|E j⊆

k−1
S

l=1
(bl ,al+1]

m j = PlF (Ak)

Every element of A is either /0, R, a union of k ∈ N disjoint half-closed inter-
vals, or its complement. For the latter, PX (A) = BelF (A) has been shown in step
1 and 2. For /0, R, PX( /0) = BelF ( /0) = 0 and PX(R) = BelF (R) = 1. 2

Since the random set (F ,m) contains only a finite number of focal elements,
its corresponding belief and plausibility function cannot fulfil condition (III) of
proposition 1 for continuous F and/or F. For application purposes, however, this
defect is not disturbing. Every imprecise CDF model with continuous lower and
upper bound can be approximated by two step functions approaching the lower
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bound from below and the upper bound from above [7, 12]. Consider two step
functions SF∗,SF∗ : R→ [0,1] of the form 0 = SF(x1) < ... < SF(xk) = 1,

SF∗(x) =





SF∗(x∗i) x∗i ≤ x < x∗i+1
0 x < x∗1
SF∗(x∗k) x∗k ≤ x

SF∗(x) =





SF∗(x∗j+1) x∗j < x≤ x∗j+1
0 x≤ x∗1
SF∗(x∗k) x∗k′ < x

If ∀ x ∈ R SF∗(x) ≥ SF∗(x), the two step functions define an imprecise CDF
model M (SF∗,SF∗) := {P |∀ x ∈ R SF∗(x) ≤ P(−∞,x] ≤ SF∗(x)}. The fol-
lowing algorithm can be used to construct a random set (F ,m), which fulfils the
requirements of proposition 1, from two arbitrary SF∗≤ SF∗. Let the lower bound
have cumulative probability SF∗(x∗i) at the “step” points x∗1 < ... < x∗n, and the
upper bound have cumulative probability SF∗(x∗j) at x∗1 < ... < x∗m.

Algorithm 1 1. Initialize indices k = 1 (running over the focal elements of
the random set to be constructed), i = 1 (running over x∗i), j = 1 (running
over x∗j ). Let pk denote the cumulative probability already accounted for in
step k. Assign p0 = 0.

2. Construct random set Ek = [x∗j , x∗i].

3. (a) SF∗(x∗i) < SF∗(x∗j): mk = SF∗(x∗i)− pk−1 , pk = SF∗(x∗i). Raise
indices k→ k +1, i→ i+1. Return to step 2.

(b) SF∗(x∗i) > SF∗(x∗j ): mk = SF∗(x∗j)− pk−1 , pk = SF∗(x∗j ). Raise
indices k→ k +1, j→ j +1. Return to step 2.

(c) SF∗(x∗i) = SF∗(x∗j ): mk = SF∗(x∗j)− pk−1 . If SF∗(x∗i) = SF∗(x∗j) =
1 abort the algorithm.
If SF∗(x∗i) = SF∗(x∗j) < 1, set pk = SF∗(x∗j ). Raise indices k→ k+1,
i→ i+1, j→ j +1. Return to step 2.

Algorithm 1 is well defined. For each step k, x∗j ≤ x∗i, mk > 0, and the al-
gorithm will always reach the points x∗n,x∗m with SF∗(x∗n) = SF∗(x∗m) = 1 and
abort. It constructs a random set (F ,m) with k ≤ n + m focal elements. The Ek
are either closed intervals [ak,bk] or singletons {a} = [ak,ak]. The algorithm is
also applicable to the case of a precise probability, where SF∗ = SF∗ = SF.

2.2 Combining and Extending Random Sets
In almost all assessments of climate change, uncertainty accumulates from dif-
ferent sources. In general, we need to consider a multivariate uncertainty model
that arises from a vector of uncertain quantities X = {X1, ...,Xn}, each of which
is described by an imprecise CDF model MXi(F ,F) on the real line R. There are
different ways to construct a joint lower envelope PX from the lower envelopes of
independent marginals PXi

. They depend on the concept of independence that is
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employed to generate the joint envelope [2, 13]. In general, the resulting envelopes
agree only on product sets A1× ...×An , Ai ⊆ R.

In our case, the lower envelopes PXi
of the independent marginals are rep-

resented by belief functions BelFi with corresponding random sets (Fi,mi) =
{(E1i ,m1i), ...,(Eki ,mki)}. The concept of random set independence [4] leads to
joint belief functions by applying Dempster’s rule of combination to logically
independent “marginal” random sets (Fi,mi) , 1≤ i≤ n.

(F ,m) = {(El1...ln = El1 × ...×Eln,ml1...ln = ml1 · ... ·mln), 1≤ li ≤ ki } (2)

It can be easily checked that (F ,m) generates indeed a belief and plausibility
function BelF and PlF that agree with the joint lower and upper envelopes PX
and PX on product sets, no matter under which concept of independence they
were generated. However, it is less clear, how BelF relates to the different types
of the joint lower envelope on sets A ∈ R n that are not product sets. Comparisons
of different independence concepts on finite possibility spaces indicate that ran-
dom set independence yields a lower envelope that is dominated by the envelopes
emanating from epistemic or strong independence [2]. It needs to be further inves-
tigated how far these findings translate to the special case presented here. For the
time being, we use random set independence to construct the joint lower envelope
BelF from the independent marginals BelFi .

Consider a model of some causal relationship, which generates a transfer func-
tion f : Rn → Rm , y = f (x). Let the uncertainty in the input variables x be de-
scribed by MX (BelF ) := {PX |∀ A ∈ R n BelF (A)≤ PX(A)}. The corresponding
random set (F ,m) = {(E1,m1), ...,(Ek,mk)} can be transferred to the model out-
put y by applying the extension principle for random set-valued variables [5]:

f (Ei) := {y |∃ x ∈ Ei y = f (x)} , m f (B) := ∑
f (Ei)=B

mi B ∈ Rm (3)

Let ( f (F ),m f ) denote the transferred random set. It corresponds to a belief func-
tion Bel f (F ) that is the lower envelope of a set of probabilities MY (Bel f (F )).
Let f : Rn → Rm be Borel measurable, i.e. ∀ B ∈ R m f−1(B) = {x ∈ Rm :
f (x) ∈ B} ∈ R n. Then, every probability measure P on (Rn,R n) is transformed
by the mapping f into a probability measure Pf on (Rm,R m) defined by ∀ B ∈
R m Pf (B) := P( f−1(B)). Using this definition, we can transform each element
of MX (BelF ) to a probability measure on (Rm,R m), thus generating:

f (MX (BelF )) := {PY |∃ PX ∈MX (BelF ) ∀ B ∈ R m PY (B) = PX( f−1(B))}

Proposition 2 Let R n, R m be Borel algebras, f : Rn→ Rm a Borel measurable
transfer function. Let (F ,m), BelF describe the set of probabilities MX (BelF ).
Let f (MX (BelF )) be the f -tranformed set of probabilities as defined above.
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Similarly, let ( f (F ),m f ) be the f -extension of (F ,m) calculated from equa-
tion (3), and Bel f (F ) the corresponding belief function. Then

f (MX (BelF )) ⊆ MY (Bel f (F )) := {PY |∀ B ∈ R m Bel f (F )(B)≤ PY (B)}

Proof. Consider an arbitrary PY ∈ f (MX (BelF )). There exists a PX ∈MX (BelF )
with ∀ B ∈ R m PY (B) = PX( f−1(B)). For a particular, yet arbitrary B ∈ R m

PY (B) = PX( f−1(B)) ≥ BelF ( f−1(B)) = ∑
Ei⊆ f−1(B)

mi

= ∑
f (Ei)⊆B

mi = Bel f (F )(B)

2

3 A Random Set for a Simple Climate Model

3.1 Global Mean Temperature Model
We use a simple dynamical model to link radiative forcing F(t) to a change ∆T
in global mean temperature (GMT) since preindustrial times [14].

Ce ·∆T ′(t) = F(t)−F2x ·
∆T (t)

T2x
(4)

Ce effective ocean heat capacity
F2x radiative forcing for a doubling of atmospheric CO2

T2x climate sensitivity

Differential equation (4) is the simplest type of energy balance model. It equates
the net radiative flux into the system at the top of the atmosphere to oceanic heat
uptake Ce∆T ′. If the radiative forcing was kept constant at a value F(t) = F2x, the
system would undergo an equilibrium temperature change of ∆T = T2x. Climate
sensitivity T2x is a crucial parameter to characterize the response of the climate
system to an increase in GHG concentrations.

The Intergovernmental Panel on Climate Change (IPCC) gives an estimate
of climate sensitivity T2x = [1.5 K,4.5 K] [3]. The panel explicitely refrains from
specifying probabilistic information. Recently, models of intermediate complex-
ity (EMICs) were used to establish probability distributions from a comparison
of model results with historical atmosphere, surface and deep ocean temperature
data [1, 6, 8]. Efforts are hampered by the presence of natural variability, the lack
of long-term data and the multitude of forcings.

In this analysis, we use the probability distributions of [1, 6] to generate an
imprecise CDF model for T2x (fig. 1). The estimates of [1] are shifted to consider-
ably higher values of climate sensitivity compared to [6], ranging up to values of
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Figure 1: Imprecise CDF model for T2x: Shown are 5%, 25%, 50%, 75% and 95% quantiles of
probability distributions from [1, 6]. Estimates of [6] depend on a prior probability for T2x. Estimates
of [1] depend on whether solar forcing (S), volcanic aerosol forcing (V) and tropospheric ozone (T)
was added to greenhouse gas (G) and aerosol forcing (A). The capital letters G, A, T, S, V in the figure
key specify the radiative forcing components that were considered for the particular estimate of [1].

T2x = 22 K. One reason could be that [1] does not compare their results with deep
ocean temperature data. [6] requires the ocean record to restrict T2x from above.
However, [8] considers ocean heat uptake, and fails to discriminate between cli-
mate sensitivity in the range T2x = [1 K,10 K]. In this situation, we simply cut of
the probability distributions of [1] at T2x = 10 K, and allocate their total probabil-
ity mass P(T2× ≥ 10 K) to this value.

Fig. 1 depicts the resulting ranges for 5%, 25%, 50%, 75% and 95% quantile
estimates in [1, 6]. We interpolate the extreme values of the ranges to generate
a lower and upper CDF, and approximate the resulting imprecise CDF model
with two step functions SF∗ and SF∗ (Fig. 1). There is some arbitrariness here.
It could be resolved by fixing the number of “step” points T2x,i∗ and T ∗2x, j, and
calculating the optimal approximation according to some accuracy measure [7,
12]. Algorithm 1 is applied to construct a random set (FT2x ,mT2x) that corresponds
to MT2x (SF∗,SF∗) := {P |∀ T2x ∈R SF∗(T2x)≤ P(−∞,T2x]≤ SF∗(T2x)} (in the
sense of proposition 1). MT2x(SF∗,SF∗) can be compared with the IPCC estimate
[1.5 K, 4.5 K] for climate sensitivity. The probability for T2x ∈ [1.5 K, 4.5 K] lies
in the interval [0,1], for T2x < 1.5K in [0,0.25], and for T2x > 4.5 K in [0,0.75]. The
numbers show that MT2x (SF∗,SF∗) does not support the IPCC estimate, especially
for high climate sensitivities T2x > 4.5 K. This reflects the fact that the upper
bound of the IPCC estimate is not supported by [1, 6, 8].

Effective ocean heat capacity Ce is an artificial quantity that arises from the
simple form of the energy balance model (4). It depends on ocean characteristics,
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but also on climate sensitivity [3]. A comparison of model (4) with emulations
of different AOGCMs suggest a functional dependence of Ce on T2x of the form
Ce ∼ T γc

2x with 0 < γc ≤ 1. We specify an interval uncertainty for the parameters
C̄ = Ce(T2x = 3 K) and γc, which is an adequate choice in the light of the large
uncertainty surrounding ocean characteristics like vertical diffusivity [6]. Interval
uncertainty is the simplest form of an imprecise CDF model. Lower and upper
CDF are either 0 or 1. The model can be immediately captured by a random set
(FC̄,γc

,mC̄,γc
) containing just one focal element E = [40 Wa/m2K, 50 Wa/m2K]×

[0.6,1] with probability mass assignment m(E) = 1.
An additional uncertainty concerns the present day global mean warming ∆To

since 1860, which enters model (4) as initial value. Estimates of ∆To lie in the
range 0.6±0.2 K. We adopt the interval uncertainty [0.4 K, 0.8 K] for ∆To, since
its small influence on future GMT projections does not justify a more complicated
imprecise CDF model.

3.2 Radiative Forcing Model
We group the anthropogenic sources of radiative forcing F(t) into carbon diox-
ide, which is the most important GHG, the “other” greenhouse gases (OGHG)
including both the remaining direct as well as indirect GHGs, and aerosols. So-
lar and volcanic sources are neglected since we are interested in estimating the
anthropogenic climate change signal.

F(t) = F2x ln
(

CCO2(t)
CCO2(1750)

)
/ ln2+FAer g(EAer(t))+FOGHG h(t) (5)

CCO2 atmospheric CO2 concentration
EAer anthropogenic sulfate aerosol emissions
FAer Total aerosol forcing in the period 1990-2000
FOGHG Total OGHG forcing in the period 1990-2000

The radiative properties of aerosol particles are most uncertain. Aerosols in-
fluence the radiation balance not only directly, but also indirectly by altering cloud
formation processes. The IPCC estimates that the negative forcing of aerosols has
been in the range [-0.8 W/m2, -0.2 W/m2] (direct effect) and [-2 W/m2, 0 W/m2]
(indirect effect) for the period 1990-2000 [10]. [1, 6, 8] have investigated FAer in
their comparison of model results with historical data. Fig. 2 shows the ranges
for the 5%, 25%, 50%, 75% and 95% quantile estimates from [1, 6]. [8] presents
a histogram probability which can be converted into two step functions for the
lower and upper bound on the CDFs that are supported by the probability masses
allocated to the bins of the histogram. Analogous to the case of climate sensitivity,
we construct a lower CDF SF∗ and upper CDF SF∗ (solid lines in fig. 2). Algo-
rithm 1 is used to generate the random set (MFAer ,mFAer ) that corresponds to the
imprecise CDF model MFAer (SF∗,SF∗).
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Figure 2: Imprecise CDF model for FAer : Shown are 5%, 25%, 50%, 75% and 95% quantiles of
probability distributions from [1, 6], and a histogram probability from [8]. See Fig. 1 for additional
explanation of the figure key.

The probability that FAer is contained in the IPCC estimate [-2.8 K, -0.2 K]
(direct and indirect effect combined) lies in the range [0.95,1]. In contrast to cli-
mate sensitivity, the IPCC range includes MFAer (SF∗,SF∗) almost entirely. The
results in [1, 6, 8] support a more narrow range, where in particular the potential
of a very strong negative aerosol forcing contribution is discarded.

Estimates for the radiative forcing contributions of indirect GHGs, in particu-
lar troposheric and stratospheric ozone, exhibit relative errors between 40%-70%.
The indirect GHGs have contributed around 30-40% to FOGHG in the last decade.
We capture the uncertainty by the interval FOGHG ∈ [0.8 W/m2, 1.2 W/m2].

We link the uncertainty in the time-dependent paths of atmospheric CO2 con-
centration CCO2(t), future changes in the radiative forcing of the OGHG h(t), and
anthropogenic aerosol emissions EAer(t) directly to the socio-economic sphere.
Thereby, we neglect any uncertainty about the response of the biogeochemical
cycles to anthropogenic emissions. In a special report on emissions scenarios
(SRES) [9], the IPCC has formulated a range of scenarios describing future path-
ways of society and economy on a global scale. The major branching points of
these scenarios are globalization vs. regionalization and sustainability orienta-
tion vs. growth orientation. In this analysis, we specify just two parameters G
(“Growth”) and S (“Shift”), with CCO2(t) , h(t) ∼ eGt−St2

. We restrict S ≤
G/200, so that the growth in atmospheric CO2 concentration and radiative forcing
of OGHGs can be dampened, but not reversed by a “shift” S in the 21st century.

As the future socio-economic development is entirely uncertain, it is appropri-
ate to specify interval uncertainties for G∈ [0.004/a, 0.012/a ] and S∈ [0,G/200].
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Growth rates from 0.4% to 1.2% per year lead to atmospheric CO2 concentrations
from 480 ppmv to 1230 ppmv in 2100 (present day: 370 ppmv), and to a forcing
contribution of the OGHG from 1 W/m2 to 4 W/m2. This covers the full range of
the SRES scenarios including uncertainty in the biogeochemical cycles [3].

3.3 Combining the Random Set Information
Most parameter pairs are physically and epistemically independent. Present day
warming To depends physically on climate sensitivity and ocean heat capacity,
but knowledge of To alone does not constrain the assessment of T2x and Ce. A
more critical issue is the epistemic dependence of FAer and T2x. Although physi-
cally independent, comparisons of model results with historical data will have a
tendency to produce high estimates of T2x for a large negative radiative forcing
FAer of aerosols, and vice versa [6]. Neglecting this dependence will yield a more
imprecise estimate of future GMT change, since the probability weight of com-
binations with large negative FAer and low T2x leading to a weak GMT increase,
and with small negative FAer and high T2x leading to a strong rise of GMT, will be
overestimated. This issue needs to be investigated in further studies. For the time
being, we use equation (2) based on random set independence to combine the ran-
dom sets for all eight parameters par := (∆T0, T2x, C̄, γc, FAer, FOGHG, G, S) to a
joint random set (Fpar,m).

4 Estimation of Global Mean Temperature Change
Differential equation (4) and radiative forcing model (5) generate a continuous
transfer function that maps the uncertain model parameters to an increase ∆T
in GMT since 1860. The extension principle for random sets ([5], equation 3)
transfers the random set (Fpar,m) for the uncertain parameters to a random set
(F∆T ,m) for GMT increase. In our specific case, the images f (Ei,par) =
[∆T i(t),∆T i(t)] can be calculated with standard gradient-based optimization meth-
ods. After discretizing time in sufficiently small time steps ∆t, the boundaries of
the range at time tk = k ∆t + to are found by solving

∆T i(tk) = min
(∆T0,T2x,C̄,γc,FAer,FOGHG,G,S) ∈ Ei,par

∆T (tk) (6)

subject to ∆T (tl) = ∆T (tl−1)+∆t ·
(

F(tl−1)

Ce
− F2x

Ce
· ∆T (tl−1)

T2x

)
1≤ l ≤ k

∆T i(tk) = max
(∆T0,T2x,C̄,γc,FAer,FOGHG,G,S) ∈ Ei,par

∆T (tk) (7)

subject to ∆T (tl) = ∆T (tl−1)+∆t ·
(

F(tl−1)

Ce
− F2x

Ce
· ∆T (tl−1)

T2x

)
1≤ l ≤ k
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Figure 3: Image [∆T (t),∆T (t)] of a single focal element E∗ = [1.8 K, 6.0 K] × [-1.37 W/m2,-0.62
W/m2]×(∆To,C̄,γc,FOGHG,G,S) ∈ Fpar for the years 2025, 2050, 2075 and 2100. Shown are also the
cases with solely socio-economic or solely forcing and climate uncertainty.

It can be checked that ∆T (t) is monotone in ∆To,C̄,γc,FAer,FOGHG,G,S and
convex in T2x. The latter is due to the fact that T2x influences ∆T both directly
and indirectly through its connection to effective ocean heat capacity. Thus, pro-
gram (7) is a well-defined convex optimization problem. Care has to be taken with
program (6). The solution will be a boundary point of the focal element Ei,par, and
we have to check both for the lower and upper bound of T2x.

Fig. 3 shows the image [∆T (t),∆T (t)] of a single focal element. The range
of the image grows considerably in time. We performed a sensitivity analysis
with partly resolved uncertainty. Uncertainty in the radiative forcing and climate
parameters dominates the overall uncertainty in the first half of the 21st century,
but socio-economic uncertainty becomes equally important in the second half of
the 21st century. Most strikingly, the uncertainties on the subspaces combine in a
nonlinear way. A much larger overall uncertainty is found in particular for cases
where the natural systems and socio-economic uncertainties are of similar size.

The projected random set (F∆T ,m) for GMT increase can be used to construct
the lower CDF F∆T and upper CDF F∆T . It is important to note that the corre-
sponding imprecise CDF model M∆T (F ,F) := {P |∀ x∈R F∆T (x)≤P(−∞,x]≤
F∆T (x)} can be more imprecise than M∆T (BelF∆T ) := {P |∀ A∈A BelF∆T (A)≤
P(A)}, i.e. M∆T (F ,F)⊇M∆T (BelF∆T ). This is due to the fact, that after applying
the extension principle, the focal elements Ei,∆T = [∆T i(t),∆T i(t)] ∈ F∆T might
violate condition (II) of proposition 1. In this case, the lower envelope P∆T of
M∆T (F ,F) is strictly smaller than BelF∆T for some A ∈ A . Recalling proposi-
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a. Full uncertainty b. Forcing and climate uncertainty only

c. Climate uncertainty only d. Forcing uncertainty only

Figure 4: Lower and upper CDFs for GMT increase ∆T in the years 2025, 2050, 2075, 2100

tion 2, it can be seen that M∆T (F ,F) does not contain more information than
(Fpar,m), which captures the uncertainty in the model parameters, would allow.

M∆T (F ,F)⊇M∆T (BelF∆T )⊇Mpar(BelFpar )

Fig. 4 shows the lower and upper CDFs that are generated by the random set
(F∆T ,m). We consider the area between lower and upper CDF as an indicator for
the imprecision in the uncertainty. It can be seen that the imprecision in the GMT
estimate for the case of full uncertainty in the model parameters is enormous.
This is partly due to the large number of uncertain parameters, as a comparison
with the other cases shows. However, the cases (4.b) and (4.c) also exhibit large
imprecision. This reflects the fact that the underlying imprecise CDF models for
the climate parameters are already very imprecise. Certainly, they are conservative
estimates, as the results of different studies were not weighed against each other.
Some imprecision is also induced by the combination of the uncertainty for single
parameters using random set independence (sec. 3.3).

The results can be compared with the IPCC estimate [1.8 K, 6.6 K] for GMT
increase in 2100 relative to 1860 [3]. The probability for ∆T ∈ [1.8 K, 6.6 K] lies
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in the interval [0,1], for ∆T < 1.8 K in [0,0.95], and for ∆T > 6.6 K in [0,0.965].
Despite the large range of the IPCC estimate, the uncertainty in GMT increase
is too imprecise to discriminate against values outside this range. The probability
mass allocated to values smaller than 1.8 K stems from random sets allowing for
climate sensitivity values that are below the IPCC estimate for climate sensitivity.
Similarly, the probability mass allocated to GMT increases higher than 6.6 K
is due to climate sensitivity values above the IPCC estimate. As a comparison
of (4.c) and (4.d) underlines, the uncertainty in climate parameters is the most
influential factor on the uncertainty in GMT increase.

5 Conclusion
Imprecise probability concepts carry the potential to consistently capture the dif-
ferent types of uncertainties and different degrees of knowledge that are encoun-
tered in climate change analysis. However, they need to be applicable to dynam-
ical problems with a large number of continuous uncertain variables. We suggest
that imprecise CDF models are conceptually flexible and mathematically tractable
enough to fulfil these competing requirements to some extent. When the impre-
cise CDF model is bounded by lower and upper step functions on the real line, the
information about the encompassed set of additive probabilities can be condensed
in a random set (F ,m). The corresponding belief function BelF is the lower en-
velope of the imprecise CDF model on the algebra generated by the half-closed
intervals of the real line. Moreover, if the random set extension principle is used
to project a random set onto the range of a measurable function, no information is
added in the sense that every additive probability dominating BelF is transferred
into a probability dominating the “extended” belief function.

We have constructed a random set for a simple climate model, and projected it
onto an estimate for global mean temperature increase. The resulting estimate is
very imprecise, with uncertainties about socio-economic development, radiative
forcing and climate characteristics combining in a nonlinear way. The large im-
precision of the estimate has different reasons and implications. Firstly, we incor-
porated a very broad range of factors in the analysis. Imprecision will be reduced
if the range of factors is limited by formulating more specific questions. Secondly,
we combined the random sets of single uncertain factors by assuming random set
independence. This has increased the imprecision in the overall estimate, since
aerosol forcing and climate sensitivity are not epistemically independent, when
estimated from the present day climate change signal. Thirdly, the CDF models
for the single parameters should be considered conservative estimates, which can
be improved upon, when more comparisons of model results with historical data
become available. Imprecision can be reduced in particular, if it is discriminated
between the reliability of different models and methods.

Nevertheless, the results show that uncertainty is a key issue in the integrated
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assessment of climate change. Random set methods provide new insights into the
structure of the uncertainty, particularly into its imprecision. The link to imprecise
CDF models seems to be an important yardstick for assessing information losses
when combining random sets, and applying the extension principle. More theo-
retical work is needed here to enhance the applicability of random sets to climate
change analysis. In addition, methods need to be developed to determine impre-
cise CDF models directly from a comparison of model results with historical data.
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