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Abstract

For many problems there is only sufficient prior information for a Bayesian
decision maker to identify a class of possible prior distributions. In such cases
it is of interest to find the range of possible values for the prior expectation
for some real valued function of the parameter of interest. Here we show
how this can be done when the imprecise prior assessment is based on linear
constraints. In particular we find the joint range of possible values for a pair
of such functions. We also study the joint range of the posterior expectation
for a pair of functions.
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1 Introduction
Consider the usual statistical inference problem where a subjective Bayesian must
select a prior probability distribution which reflects their prior knowledge and be-
liefs about the unknown state of nature. Often one is unable to actually choose a
single prior even though some prior information is present. When this occurs the
Bayesian often selects a family of possible prior distributions. In such cases one
could be interested in the range of possible values for some function defined on
the the family of possible priors. More generally one could be interested in the set
of possible values for a pair of functions. By judiciously selecting different pairs
of functions such a graphical representation could help the Bayesian assess how
sensible their initial choice for the family of priors really is. These graphical rep-
resentations could help a pair of experts resolve possible conflicting prior beliefs.
It could be used to check for areas of disagreement and to see how adjustments of
some of their beliefs could lead to a merging of opinions.
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In section two we assume that the parameter space contains only a finite num-
ber of points, say k. If p = (p1, . . . , pk) denotes a typical prior distribution we
assume that the prior information can be expressed through linear equalities and
inequalities involving the pi’s. This restricts the class of possible priors to a con-
vex subset, C say, of the k−1 dimensional simplex of possible probability vectors
of length k. Note C must be a convex polytope generated by a finite number of
extreme points or vertices. Let φ denote a real valued function defined on the pa-
rameter space. Then its prior expectation is a linear function on C . Dickey (see
Dickey (2003)) has developed an interactive computing environment which com-
putes the minimum and maximum of its expectation over C . This programs allows
the statistician to incorporated their prior information in stages and see how the
range of φ changes. Here we are interested in finding the range of a pair of such
functions. Because the prior expectations of the two functions are linear functions
of p the range of possible values must be a convex set. Moreover, its extreme
points must be contained in set of points which are images of the extreme points
of C . Hence, this problem is easily solved if one knows the extreme points of C .
But these can be found using a program that developed by Fuduka. See Fuduka
(2003).

When considering the posterior expectation of such functions our problem
becomes much more difficult analytically since the posterior expectation is no
longer a linear function over C . However, knowing the extreme points of C lets
one find an approximate solution quite easily. Using these points one can generate
random values in C by assigning random weights to them. Then one finds the
values of the two functions at each of the realizations and plots these pairs of
values.

In section three we consider the situation where the parameter is a r dimen-
sional vector. We assume that it belongs to a convex polytope in r-dimensional
Euclidean space defined by some known linear equalities and inequalities which
reflect some of prior information of the statistician. A Bayesian needs to select
a prior or possibly a family of prior distributions over this set to further reflect
their uncertainty. For a given prior one is interested in computing prior and pos-
terior expectations of some function of the parameter. In practice, it is usually not
possible to make independent draws from a probability density defined on such a
set. In such cases statisticians often employ Markov chain Monte Carlo methods
to generate dependent samples from the posterior from which expectations can be
computed approximately. Here, we use the Metropolis-Hastings algorithm to con-
struct dependent samples drawn from a prior of interest. If the statistician selects
as their family of priors all possible convex combinations of some finite collection
of priors defined on the parameter space then for any pair of functions defined on
the parameter space one can find the range of all possible values of their prior or
posterior expectations.

As far as we know statisticians have not really addressed problems where
imprecise knowledge is expressed through linear constraints. In section four we
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will note examples of somewhat similar problems that have been studied in the
operations research literature. Finally, we will point out some of the difficulties
when either the dimension of C or the parameter space gets too large.

2 The parameter space is finite
We begin by assuming that the parameter space contains only finitely many points,
say k. In k-dimensional Euclidean space let Λ denote the k−1 dimensional sim-
plex of p vectors with pi≥ 0 and ∑k

i=1 pi = 1. We assume that the known relations
among the pi’s can be expressed by

Ap = a (1)

where A is a known r× k matrix and a is a known vector of length r and

Bp≤ b (2)
p≥ 0 (3)

where B is a known s× k matrix and b is a known vector of length s. The set of
p ∈ Λ which satisfy the above equations form a closed convex subset of Λ which
we will denote by C .

Note that the interior of C is empty but we assume that properly considered
C will have a nonempty interior in some smaller dimensional Euclidean space
with a dimension of at least two. If φ1 and φ2 are two functions defined on the
parameter space we let C (φ1,φ2) denote their range of possible values over C . Our
problem is to find this set. To see what could happen in practice we considered
the following simple example.

Example 1 We let k = 10 and imposed two equality constraints and two inequal-
ity constraints. The equality constraints were p5 = p6 and ∑10

i=1 ipi = 5.5 while the
inequality constraints were p1 ≤ p2 and ∑4

i=1 pi ≤ 0.5. When doing the posterior
calculations we assumed that the probabilities of seeing the observed data under
the 10 possible parameter values were 0.1, 0.15, 0.09, 0.2, 0.3, 0.2, 0.1, 0.05, 0.07
and 0.02.

As we noted in the introduction C (φ1,φ2) is a convex set whose extreme points
are contained in the image of all the extreme points of C . Hence, this becomes an
easy problem once we know the extreme points of C .

Fortunately for many problems the extreme points of C can be found easily
using a program that is available over the Internet. See Fuduka (2003). It turns out
for our example that C has 28 extreme points.

For definiteness we let φ1(i) = (i−5.5)2 for i = 1, . . . ,10 and φ2 be the indi-
cator function of the set {2,3,4,5}.
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Plotting φ1 and φ2 at the extreme points of C we found the seven extreme
points of C (φ1,φ2).

Since we know the extreme points of C we can use the Dirichlet family of
distributions to generate a fairly flexible class of distributions which take values in
C and from which one can simulate directly. If q1, . . . ,qm are the extreme points of
C and W is Dirichlet(α) where α = (α1, . . . ,αm) then ∑M

i=1 Wiqi defines a random
distribution on C . In some cases one may be able to make a judicious choice of
α if some partial information about the φ’s are available. For our example we
generated 1,000 random values using the Dirichlet distribution with each of the
10 parameter values set equal to 0.1.

In the upper plot of Figure 1 we plotted the posterior expectations of the
φ’s for these 1,000 pairs of values along with the seven extreme points for the
prior expectations. The prior expectations are darker and four of these points are
clearly visible. They form the lower boundary of C (φ1,φ2). Another, (14.03,0.56),
is clearly visible as well but maybe hard to identify because the plot is quite small.
The other two, (3.82,0.64) and (4.58,0.67), are totally obscured by the posterior
expectations. As to be expected the posterior expectations form a smaller set than
the prior expectations.

Being able to find the extreme points of C is a powerful tool. In our somewhat
limited experience the program we used seems quite good. In one constrained
problem we considered in a different context it found over 28,000 extreme points.
Using the Dirichlet distribution on the set of weights associated with the extreme
points is a convenient distribution to sample from. These distributions are known
as multivariate B-splines and are well studied. See for example Dahmen and Mic-
chelli (1983). If one had a closed form expression for their densities then one
could use importance sampling to approximate expectations under other densi-
ties. Unfortunately this can only be done in practice for very small problems. See
for example Choudhuri (2003).

In practice one would use a much larger sample that 1,000 when studying the
posterior expectations. But if the dimension of C gets to large one may not be
able to take a large enough sample to get a reasonable approximation. In such
cases one can find the minimum or maximum of the posterior expectation of a
particular φ using a random search. The basic idea underlying random searches is
well know and is quite simple. See for example Swann (1974).

3 The parameter space is a convex polytope
Here we will consider cases where the parameter space is no longer finite. We
will assume that the parameter is a m dimensional vector, θ and that any possible
choice for θ must satisfy

Aθ = a (4)
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where A is a known r×m matrix and a is a known vector of length r and

Bθ≤ b (5)

where B is a known s×m matrix and b is a known vector of length s.
These constraints represent some of the statistician’s prior information about

θ. The parameter space, Θ, is the set of all θ which satisfy the above two equations.
It is a convex polytope in m dimensional Euclidean space with an empty interior.

We begin by assuming that the statistician can select a prior density f over
the parameter space to reflect the rest of their prior information. After discussing
this case we will consider the situation where the statistician can only determine
a family of possible prior densities.

Let φ denote some function defined on Θ. Then we are interested in finding

µ =
Z

Θ
φ(θ)h(θ)dθ (6)

approximately. Interesting choices of h include f and the posterior density of θ
under f given the data.

For most cases of interest this means employing Markov chain Monte Carlo
methods. Here we will use the Metropolis-Hastings algorithm. With the Metropolis-
Hastings algorithm one generates dependent observations, Y1,Y2, . . . from a suit-
able chosen Markov chain with values in Θ and then calculates

µ̂n =
1
n

n

∑
i=1

φ(Yi)

In nice situations µ̂n→ µ almost surely.
If the current value of the chain is θ∗ then one selects a proposal value for the

next possible value in the sequence, θ′, according to some probability distribution.
Whether or not this new value is used depends on this probability distribution and
the value of h at the two points. If q(u,v) denotes the probability of selecting v as
the proposal point when u is the current value we let

R =
h(v)q(v,u)

h(u)q(u,v)
(7)

and accept the proposal with probability min(1,R). From this equation we see that
the density h needs to be know only up to a constant since the value of R does not
depend on this value.

We now explain how this can be done for our problem. Suppose θ∗ is our
current state which is assumed to lie in the relative interior of Θ. In particular,
this means that it yields a strict inequality in all the equations in 5. There is an
intuitive two step process by which we can choose the proposal. First, we select a
random direction, d, in Θ. Remember that even though d is a vector of length m
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it must remain in Θ which is essentially a lower dimensional set. The distribution
for choosing d will not depend on the value θ∗ Next, we find the set of points in
Θ which lie either in the direction d or −d from θ∗ and choose the proposal at
random from this set.

It is important to note that for this scheme if θ′ is the proposal then

q(θ∗,θ′) = q(θ′,θ∗)

This follows because if d is the direction from θ∗ to θ′ then the only way to move
from θ∗ to θ′ is if the directions d or −d were selected in the first step. Of course
the same is true if we are moving from θ′ to θ∗. Clearly, the second step has
the same distribution no matter which of the two points was chosen as the initial
point.

To implement this scheme we proceed as follows. To get our direction d we
choose at random a vector from S , the unit sphere in m dimensional Euclidean
space and then project it onto the null space of A. Next, we normalize this vector
so that its length is one and denote it by d. Remember that d ∈ S . Let S(A) denote
the the subset S consisting of all vectors which can be generated in this way. Since
we use the uniform distribution on the surface of S to choose the first vector,
the distribution of d must be uniform on S(A). This follows by symmetry. The
probability of d falling in any region of some fixed shape is independent of the
location of the region in S(A).

Let θ∗ denote a point which lies in the relative interior of Θ and consider
vectors of the form

θ∗+αd (8)

where α is a real number. Note if d does not belong to the null space of A this
point cannot belong to Θ whenever α 6= 0. On the other hand if Ad = 0 and α
is sufficiently close to zero then this point will belong to Θ. Hence, α should be
selected from the set of possible values that satisfy all the constraints of equation
5. This is a total of s constraints. Each constraint will result in either an upper or
lower bound for α. Consider the interval formed by the maximum of these lower
bounds to the minimum of these upper bounds. This is the range of possible values
for α for which the vector in equation 8 will belong to Θ. Given a θ∗ and a d in
this equation then one just selects a value for α from the uniform distribution on
its interval of possible values resulting in the proposal

θ′ = θ∗+αd

To recap, this is essentially a very simple procedure. Given a current value in
the interior of Θ we first pick a random direction in Θ and then find how far we can
move either in this or the opposite direction and still remain in Θ. Note that this
method of selecting a proposal point does not depend in any way on the function
h although from equation 7 the probability of it being accepted does depend on h.
When h is the uniform distribution then the proposal is always accepted.
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Suppose now the statistician does not have enough prior information to select
a single prior density over Θ but can only specify a family of possible priors on
Θ. A convenient and often sensible choice for such a family is all possible convex
combinations of some finite set of densities. Let f1, . . . , fn denote such a finite set
of densities and Π the be the family of all possible convex combinations of the
fi’s. For a function φ define on Θ let Π(φ) be the range of possible values of the
prior expectation of φ as the prior ranges over all members of Π. Since for each f i
we can find its φ expectation approximately we can find Π(φ) approximately. It is
just the interval from the minimum to the maximum of these n prior expectations.
Suppose instead we wished to find the joint range of the prior expectations of two
functions as the prior ranged over Π, say Π(φ1,φ2). This is easily done since it
is just the convex hull of all points of the form (

R

φ1 fi,
R

φ2 fi) for i = 1, . . . ,n.
Posterior calculations are handled in exactly the same way since for any prior
in Π the posterior is just a convex combination of the n posteriors. Finally, we
emphasize the importance of only needing to know any probability density up to
a constant since for most of these kind of problems the normalizing constant will
be unknown.

Example 2 We let m = 5 and supposed θ is the parameter for the multinomial
distribution. We imposed the constraints θ1 ≤ θ2, (θ1 +θ2)/2≤ (θ3 +θ4 +θ5)/3
and θ4≤ θ5 to get the parameter space Θ. We assumed the class of possible priors
is all possible convex combinations of three Dirichlet distributions restricted to
Θ. These were taken to be Dirichlet(2,2,2,2,2), Dirichlet(0.5,0.5,0.5,0.5,0.5) and
Dirichlet(0.5,1.0,1.5,2,2.5). The two functions of interest were φ(θ) = θ4−θ3 and
φ2(θ) = θ5− θ3. To compare the prior and posterior expectations we assumed
that a random sample of size 20 had been observed with the observed counts of
states 1, 2, 3, 4 and 5 being 2, 3, 4, 3 and 8 respectively.

Using our methods we found approximately the three extreme points of Π(φ1,φ2)
and the corresponding extreme points for the posterior problem. As we noted be-
fore it is crucial that the densities on Θ need only be known up to a constant to find
these integrals approximately. The results are given in the lower plot of Figure 1.
The prior expectations are marked by 0 and the posterior expectations are marked
by x. As to be expected the posterior range is much smaller than the prior range.
Using our approach and considering various sets of constraints, families of priors,
choices of φ1 and φ2 and hypothetical samples can be useful in helping one select
a sensible representation of their prior beliefs for a particular problem.

We end this section by noting that our method of picking a proposal point can
be adapted to the random search method we mentioned in section 2. Formally, the
two spaces C and Θ are essentially the same. In the random search algorithm given
a point in the interior of C one needs to be able to choose a point at random from
a small neighborhood that contains it. Hence after a direction has been selected
at random rather than allowing a move that is as far as possible in either direction
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Figure 1: The upper plot contains the seven extreme points for the prior expecta-
tions and the plot of 1,000 posterior expectations for the functions φ1 and φ2 in
Example 1. The lower plot gives the extreme points for prior (marked by 0) and
posterior (marked by x) expectations of (φ1,φ2) for Example 2. In both cases the
horizonal and vertical axes are the φ1 and φ2 expectations respectively.



Lazar & Meeden: Exploring Imprecise Probability Assessments 369

one restricts the new point to be no more than ε away in either direction from the
current point where ε > 0 is fixed.

4 Discussion
Although constraints seem a natural way to incorporate prior information into an
inference problem they have not been widely considered in the statistical litera-
ture. The main reason seems to be that they are difficult to deal with both theo-
retically and practically. Betrò and Guglielmi (2000) considered robust Bayesian
analysis under moment constraints in a fairly abstract setting and concluded that
none of the current algorithms were good enough to be adopted for routine use.
Generating random samples from distributions defined over bounded subsets of m
dimensional Euclidean has been considered in a variety of contexts. Smith (1984)
considers the problem of generating independent uniform observations from a
bounded region while Belisle, Romeijin and Smith (1993) considers algorithms
for generating observations from a general multivariate distribution. They assume
that the region of interest is open with a nonempty interior which will not work
here. Boender et al. (1991) and Chen and Schmeiser (1993) consider somewhat
related problems.

At the present time Markov chain Monte Carlo methods seem to be the best
way to handle the types of problems considered in section 3. They come with no
guarantees however. If run long enough they will converge to the correct answer
but in a given example it can be very difficult to know when to stop. When m is
large it is impossible to visualize Θ. From our experience, it seems one should
select a starting value for θ that is somewhere in the “center” of Θ. In some cases
it seems that it is possible for the chain to spend long periods trapped in a corner
near the boundary of Θ. If you start in the center then any region of Θ you even-
tually reach you will also eventually leave. When trying to compute equation 6
approximately it is not necessary to visit every niche and corner of Θ especially
those where h puts little weight. But in examples we have studied we have seen
that it can take a very long time to reach certain regions very near the boundary.
As be noted by many authors when m increases we must deal with the “curse of
dimensionality”. For a helpful discussion on the convergence of Markov chain
Monte Carlo simulations see Geyer (1992) and Gelman and Rubin (1992).

The methods discussed here not only can help a single statistician evaluate
the consequences of their prior assessments but could help a pair of experts re-
solve possibly conflicting prior beliefs. It can be used to check how areas of dis-
agreement will effect their inferences. It could help them study how adjustments
of some of their beliefs could lead to a merging of opinions. Clearly this is not
a theory of how to readjust one beliefs when face with new information but a
way to explore the consequences of readjustments of linear constraints. Here we
have emphasized exploring jointly the prior or posterior expectations for a pair of
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functions. The methods work for jointly exploring three and even more functions
however convenient graphical representations are no longer possible.

Our simulations were done using R. We are preparing a small package that
would make it easy for others to implement these methods. Once it is finished we
will submit it to the R archives for public distribution. We hope to complete this
sometime this year.

Finally, the authors wish to thank Charles Geyer for many helpful discussions.
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