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Abstract

This paper studies the possibility of representing lower previsions by con-
tinuous linear functionals. We prove the existence of a linear isomorphism
between the linear space spanned by the coherent lower previsions and that
of an appropriate space of continuous linear functionals. Moreover, we show
that a lower prevision is coherent if and only if its transform is monotone. We
also discuss the interpretation of these results and the new light they shed on
the theory of imprecise probabilities.
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1 Introduction
The theory of imprecise probabilities especially that of coherent lower previsions
has been designed to mathematically cope with subjective behavior in decision
situations (cf. Walley [11]). It has evolved so extensively that coherent lower pre-
visions have been repeatedly reinvented under different names like e.g. “coherent
risk measures” (cf. Delbaen [4]) or “maxmin expected utility” (cf. Gilboa and
Schmeidler [7]).

From an applicational and often also mathematical point of view nonlinear
functionals like coherent lower previsions cannot as nice be handled as (mono-
tone) continuous linear functionals. So, in this paper, we are interested in repre-
senting the former functionals by the latter. For nonadditive set functions such a
representation is well-known as Dempster-Shafer-Shapley Representation Theo-
rem in the discrete case or as Möbius transform in the general case (cf. Denneberg
[5], Gilboa and Schmeidler [6] and Marinacci [10]).

The main steps of constructing such a transformed set function run as follows.
First, given a totally monotone set function ν on an algebra A , to every set A ∈ A
is assigned a function Ã on the extreme points of the convex set of normalized
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totally monotone set functions and defined by Ã(η) := η(A). Since the extreme
points are the filter games and therefore {0,1}-valued (cf. Choquet [3] p. 260 f.)
all Ã can be interpreted as characteristic functions of the sets {η | η(A) = 1}.
Then, by different methods, it can be shown that there exists a bijective mapping
from the set of totally monotone set functions to the set of (positive) measures on
the σ-algebra generated by the Ã, A ∈ A . Finally, this bijective mapping can be
extended to the linear spaces each spanned by the respective class of set functions.

In this paper we will show that the main results of these theorems do not
presuppose the functions being totally monotone set functions. Even a structured
domain like an algebra is not necessary to obtain analogous results for coherent
lower previsions. In our main theorem (Theorem 2) we provide a representation
theorem for coherent lower previsions which contains results analogously to those
sketched in the preceding paragraph for totally monotone set functions.

2 Preliminaries
Let Ω be a nonempty set, B(2Ω) the linear space of bounded (w.r.t. the supremum
norm) real-valued functions on Ω and K⊂B(2Ω) be nonempty. To avoid laborious
considerations of special cases, we will assume that there is at least one nonzero
function in K. A lower prevision on K is a real-valued functional P : K → R. A
lower prevision P is called coherent, if P( f ) ≥ ∑n

i=1 λiP( fi)+ λ0 whenever f ≥
∑n

i=1 λi fi +λ0 with f , fi ∈K, λi > 0, λ0 ∈R, n∈N. This definition is not the usual
one (cf. Walley [11, Definition 2.5.1]) but it follows immediately from Proposition
3.1.2 (d) and Lemma 3.1.3 (b) in Walley’s book and it will be of use to prove a
functional being not coherent. Furthermore, this characterization of coherence can
nicely be interpreted in the following way. As usual, Ω denotes a possibility space,
K a set of gambles, i.e. positive or negative rewards depending on the uncertain
state ω ∈ Ω. A lower prevision P of a gamble f is then the supremum buying
price for f one is willing to pay. Since the system of buying prices have to fulfill
some justified consistency properties, Walley introduced the notion of coherence
which, using the characterization given above, means that, whenever a gamble f
is dominating a portfolio of other gambles (possibly including a sure gain or loss
λ0) independently of the state ω, one should be willing to pay at least as much for
f as one is willing to pay for the individual gambles included in the portfolio (not
for the portfolio as whole - this would be considered as one gamble).

If K consists of characteristic functions then P can be interpreted as a set func-
tion and then is called a coherent lower probability. We have shown in [8] that the
normalized exact games in cooperative game theory are the coherent lower proba-
bilities. Simple examples of coherent lower probabilities are unanimity games, i.e.
set functions uA on an algebra A with A ∈A and uA(B) = 1 if B⊃ A and 0 else. If
K is a linear space containing constant functions then P is a coherent lower previ-
sion if and only if it is monotone, positively homogeneous, superadditive, normal-
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ized (i.e. P(1) = 1) and constant additive (i.e. P( f +c) = P( f )+P(c)). This char-
acterization is almost equivalent to that of “coherent risk measures” (cf. Delbaen
[4] and Maaß [9]). It is well-known (cf. Walley [11], Chapter 3) that every coher-
ent lower prevision can be extended coherently to the linear space of all bounded
real-valued functions. The minimum of all such extensions exists and is called the
natural extension. Since coherence implies that every function f ∈ K is mapped
into the bounded interval inf f ,sup f , CLP(K) is contained in BLP(K). Denote by
BLP(K) the linear space of all lower previsions on K which are bounded w.r.t. the
operator norm ‖ ·‖, ‖P‖ := sup f∈K, f 6=0

|P( f )|
‖ f‖∞

, and by CLP(K) the convex set of all
coherent lower previsions on K.

The linear space BLP(K) will additionally be considered as a topological
space endowed with the topology T having as subbase the sets B(P, f ,ε) := {P′ ∈
BLP(K) | |P′( f )−P( f )|< ε}, with P∈BLP(K), f ∈K, ε > 0. The definition of T
is similar to that of the weak∗ topology and it is the smallest making all functions

f̃ : BLP(K)→ R, f̃ (P) := P( f )

continuous for all f ∈ K. The set of all such f̃ will be denoted by K̃, the linear
space spanned by K̃ will be denoted by span(K̃). The topology T is also known as
the topology of pointwise convergence and, by definition of the product topology,
T is identical with the relative topology of BLP(K) as a subset of the product
space Π f∈KR f , R f := R for all f ∈ K.

We start with some topological results that will serve as technical basis for the
following analysis.

Proposition 1 Under the topology T the linear space BLP(K) is a locally convex
and Hausdorff topological linear space.

Proof. We have to show that T possesses a base consisting of convex sets. Since
convexity is preserved under forming intersections it suffices to show that the
given subbase of T consists of convex sets. Therefore, suppose P1,P2 ∈ B(P, f ,ε)
with P ∈ BLP(K), f ∈ K and ε > 0 and let λ ∈ [0,1]. Then

|λP1( f )+(1−λ)P2( f )−P( f )| ≤ λ|P1( f )−P( f )|+(1−λ)|P2( f )−P( f )| < ε,

i.e. B(P, f ,ε) is convex since P1,P2 and λ were chosen arbitrarily. Hence, all
elements of the subbase are convex since P, f and ε were chosen arbitrarily. 2

Proposition 2 The unit ball in (BLP(K),‖ · ‖), B := {P ∈ BLP(K) | ‖P‖ ≤ 1}, is
T -compact.

Proof. Let I := Π f∈K [−1,1]. By Tychonoff’s Theorem, I is compact w.r.t. the
product topology. Let τ : B→ I be the injective mapping τ(P) := Π f∈K

P( f )
‖ f‖∞

. Since
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the sets B(P, f ,ε) := {P′ ∈ B | |P′( f )−P( f )|< ε} with P ∈ B, f ∈ K, ε > 0 form
a subbase for the relative topology TB of B generated by T and since {Π f∈KU f |
U f = R ∀ f ∈ K \ { f ′},U f ′ =]x− ε,x + ε[, f ′ ∈ K,x ∈ R,ε > 0[} is a subbase of
the product topology in RK , the images of the TB-subbase elements of TB form
a subbase of the relative product topology in τ(B). Thus τ is a homeomorphism
between B endowed with the relative T -topology, and τ(B) endowed with the
relative product topology. Therefore, to prove that B is T -compact, it suffices
to show that B is T -closed. This is easily done since for any P ∈ BLP(K) with
‖P‖> 1 there exist a f ∈K and a ε > 0 with |P( f )|> ‖ f‖∞ +ε such that B(P, f ,ε)
is an open neighborhood of P disjoint from B, i.e. B is T -closed. 2

Proposition 3 The set CLP(K) is T -compact in BLP(K).

Proof. Obviously, CLP(K) is a subset of the T -compact set B. So, it remains
to prove that CLP(K) is T -closed. Suppose P is a noncoherent lower previ-
sion. Then there exist f , fi ∈ K, λi > 0, λ0 ∈ R, i ∈ {1, . . . ,n} and ε > 0 with
f ≥ ∑n

i=1 λi fi +λ0 and P( f )+ ε < ∑n
i=1 λiP( fi)+λ0. Setting εi := ε/(2∑n

k=1 λk),
the set B(P, f , 1

2 ε)∩Tn
i=1 B(P, fi,εi) is an open neighborhood of P which is dis-

joint from CLP(K). Hence, CLP(K) is T -compact. 2

The main result of this paper will heavily base on the Bishop-de Leeuw
Theorem (cf. Alfsen [1, Theorem I.4.14]) which, like Choquet’s Theorem, be-
longs to a group of results generalizing the famous Krein-Milman Theorem. We
recall that the Baire σ-algebra is the smallest σ-algebra for which all continuous
real-valued functions are measurable, with, as usual, the Borel σ-algebra on the
range space R. Furthermore, denote by ex(X) the set of extreme points of X .

Theorem 1 (Bishop-de Leeuw) Suppose E is a locally convex Hausdorff space
over R and X a nonempty compact convex subset of E. Denote by A(X) the linear
space of continuous real-valued functions a : X → R which are affine, i.e. a(λx+
(1−λ)y) = λa(x)+ (1−λ)a(y) for x,y ∈ X, 0 ≤ λ ≤ 1 and by B0 the Baire σ-
algebra on X. Then for every x ∈ X there exists a probability measure µx on the
σ-algebra ex(X)∩B0, such that

a(x) =

Z

adµx for all a ∈ A(X). (1)

Generally, it is not possible to replace the Baire σ-algebra by the more usual
Borel σ-algebra (cf. Alfsen [1, p. 39 f.]).

3 Main Results
In this section, we present the announced isomorphism between the linear space
spanned by CLP(K) and a linear space of continuous linear functionals and char-
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acterize the previsions in CLP(K) by monotonicity of their transform. As a prepa-
ration, we start with a simple application of the Bishop-de Leeuw Theorem.

Lemma 1 For every coherent lower prevision P on K there exists a probability
measure µP on the σ-algebra ex(CLP(K))∩B0, such that

P( f ) =

Z

f̃ dµP for all f ∈ K. (2)

Proof. The assertion made in the lemma follows directly from Theorem 1 using
Proposition 1 and 3 and from f̃ ∈ A(CLP(K)) for all f ∈ K. 2

We obviously have found that the continuous linear functional
R·dµP repre-

sents the coherent lower prevision P via the nonlinear application f 7→ f̃ . Un-
fortunately, the representing measure µP needs not to be unique as the following
example shows.

Example 1 Let Ω = {1,2,3} and ν : 2Ω → R be the coherent lower probability
defined by ν(A) := 1

2 iff |A| = 2 and ν(A) := 0 iff |A| < 2. Then ν is an extreme
point of the set of coherent lower probabilities on 2Ω, CLP(2Ω)1. Suppose ν is
a convex combination of two coherent lower probabilities ν1 and ν2 Obviously,
ν1(A) = ν2(A) = ν(A) for all A with ν(A)∈ {0,1}, i.e. |A| 6= 2. Therefore, suppose
ν1({1,2}) > ν({1,2}) = 1

2 . By coherence of ν1, 1{1} ≥ 1{1,2}+1{1,3}−1 implies
ν1({1})≥ ν1({1,2})+ν1({1,3})−1 such that ν1({1,3}) < 1

2 . Analogously, we
conclude ν1({2,3}) < 1

2 . The same argument applied to ν2 implies that both ν1
and ν2 are at least for two of three sets A with |A| = 2 smaller than or equal to
ν(A). Hence, ν1 = ν2 = ν.
Further on, it is easy to see that all unanimity games on 2Ω are extreme points of
CLP(2Ω).
The coherent lower probability ν′ : 2Ω→ R defined by ν′(A) := 1

3 iff |A|= 2 and
ν′(A) := 0 iff |A| < 2 can be obtained by two different convex combinations of
extreme points of CLP(2Ω), ν′ = 1

3 u{1,2}+
1
3 u{1,3}+

1
3 u{2,3} and ν′ = 2

3 ν+ 1
3 uΩ.

Since the coefficients of the extreme points used in the convex combinations are
the masses of the transform µν′ of ν′, we obtain that uniqueness of the representing
measure cannot be guaranteed.

To obtain uniqueness, we have to draw our attention to the integrals because
for two representing measures µP and µ′P of P we have, by Lemma 1,

Z

f̃ dµP =
Z

f̃ dµ′P for all f ∈ K. (3)

So, if we just restrict the continuous linear functional
R·dµP to the linear space

span(K̃) we get the desired uniqueness.

1It can be shown that ν is the only non-unanimity game in the set of extreme points of CLP(2Ω).
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The subsequent lemma (cf. Maaß [9, Proposition 6]) is mainly for technical
use in the proof of the following theorem. As will be discussed after Lemma 3, it
can be of practical use.

Lemma 2 Let {Pi}i∈I be a nonempty indexed set of coherent lower previsions on
K⊂B(2Ω) and the lower prevision P : B(2I)→R be coherent. Then the functional

K→ R, f 7→ P(i 7→ Pi( f )) (4)

is a coherent lower prevision.

Proof. The functional defined in (4) is well defined since coherence of the Pi im-
plies−∞ < inf f ≤Pi( f )≤ sup f < ∞ such that the function i 7→ Pi( f ) is bounded
for every f ∈ K. By considering the natural extensions E i of Pi, coherence is eas-
ily verified for the functional B(2Ω)→ R, f 7→ P(i 7→ E i( f )) by using the char-
acterization of coherence on linear spaces, and therefore for its restriction to K as
defined in (4). 2

This rather abstract lemma can be used to prove results which were formulated
as individual theorems in Walley’s book (cf. Walley [11, 2.6.3 - 2.6.7] and Maaß
[8, Corollary 4.2]). The following lemma generalizes one of these results, namely
that convex combinations of coherent lower previsions are again coherent.

Lemma 3 Let X ⊂CLP(K), A be a σ-algebra over X making all f̃ measurable
and µ be a probability measure on A . Then the lower prevision

P : K→ R, P( f ) :=
Z

f̃ dµ (5)

is coherent.

Proof. The integral
R·dµ is of course coherent and applies to functions X → R,

P′ 7→ f̃ (P′) = P′( f ). Applying Lemma 2 yields the desired result. 2

Before proceeding with the main issue of this paper, a possible application of
Lemma 2 should be sketched. Suppose I is a nonempty set of persons assigning
values in a coherent way to all gambles f ∈ K, i.e. {Pi}i∈I is an indexed set of
coherent lower previsions. Furthermore, suppose we also want to assign values
coherently to all f ∈ K just by incorporating the Pi. Using the already cited well-
known theorems (cf. Walley [11, 2.6.3 - 2.6.7]), we could take the lower envelope
of all Pi, infi∈I Pi, as our coherent lower prevision if we were very cautious. If we
had certain opinions on the coherent lower previsions of all persons we also could
assign weights λi to every Pi and take ∑i∈I λiPi as our coherent lower prevision
(cf. Lemma 3). But using Lemma 2 we can go even further. We can assign weights
µ(J) to “coalitions” J ⊂ I in order to express that if certain persons agree on the
evaluation of some gamble f this should count more than the evaluations of other
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persons. If this set function µ is supermodular then the Choquet integral
R·dµ is

coherent and, by Lemma 2, so is the lower prevision f 7→ R

(i 7→ Pi)dµ
By merely collecting the results from Lemma 1, the remarks following Exam-

ple 1 (especially Equation (3)) and Lemma 3, we obtain the subsequent proposi-
tion which contains the essential mathematical part of the main theorem of this
paper (Theorem 2).

Proposition 4 The mapping

CLP(K) →
{(Z

·dµ
)
|span(K̃)

| µ : ex(CLP(K))∩B0→ R probability measure
}
,

P 7→
(Z

·dµP
)
|span(K̃)

(6)

with P( f ) =
R

f̃ dµP for all f ∈ K is bijective.

We now expand this first result to the linear spaces spanned by the respective
sets used in Proposition 4. Thus, denote by

V1 :=
{

λ1P1−λ2P2 | λ1,λ2 ≥ 0,P1,P2 ∈CLP(K)
}

(7)

the linear space of functionals spanned by CLP(K) and by

V2 :=
{(Z

·dµ
)
|span(K̃)

| µ : ex(CLP(K))∩B0→ R of bounded variation
}
. (8)

the linear space of restricted integrals w.r.t. signed measures on ex(CLP(K))∩B0
of bounded variation. Let V1 be endowed with TV1 , the relative topology of V1
generated by T , i.e. the smallest topology making all f̃ restricted to V1 continuous
and let V2 be endowed with TV2 , the weak∗ topology, i.e. the smallest topology
making all natural embeddings ˜̃f : V2→R, ˜̃f ((

R ·dµ)|span(K̃)) :=
R

f̃ dµ continuous.
Further on, let the norm ‖ · ‖V1 be defined by

‖P‖V1 := inf{λ1 +λ2 | P = λ1P1−λ2P2,λ1,λ2 ≥ 0,P1,P2 ∈CLP(K)} (9)

and the norm ‖ · ‖V2 be analogously to ‖ · ‖V1 defined by

‖
(Z

·dµ
)
|span(K̃)

‖V2

:= inf
{

λ1 +λ2 |
(Z

·dµ
)
|span(K̃)

= λ1
(Z

·dµ1
)
|span(K̃)

−λ2
(Z

·dµ2
)
|span(K̃)

,

λ1,λ2 ≥ 0,µ1,µ2 probability measures
}
. (10)

We defer the easy but technical proof of ‖ · ‖V1 and ‖ · ‖V2 really being norms
to the end of this section and just proceed with the main result.
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Theorem 2 There is a linear isomorphism J∗ between the linear spaces V1 and
V2. The isomorphism is determined by the identity

P( f ) =

Z

f̃ dµ for all f ∈ K. (11)

The isomorphism J∗ is topological, i.e. a homeomorphism, between the topolog-
ical spaces (V1,TV1) and (V2,TV2). The isomorphism J∗ is isometric between the
normed spaces (V1,‖ ·‖V1) and (V2,‖ ·‖V2). Moreover, P is coherent if and only if
its transformed is monotone.

Proof. To prove that J∗ is well defined, it suffices to show that for every P ∈V1
there is a measure µ : ex(CLP(K))∩B0 → R of bounded variation with P( f ) =
R

f̃ dµ for all f ∈ K because uniqueness of the image is guaranteed by Equation
(11). Suppose P = λ1P1−λ2P2 with λ1,λ2 ≥ 0 and P1,P2 ∈CLP(K). Then, by
Proposition 4, there exist probability measures µ1,µ2 on ex(CLP(K))∩B0 satis-
fying P1( f ) =

R

f̃ dµ1 and P2( f ) =
R

f̃ dµ2 for all f ∈ K. Thus,

P( f ) = λ1P1( f )−λ2P2( f ) = λ1

Z

f̃ dµ1−λ2

Z

f̃ dµ2 =

Z

f̃ d(λ1µ1−λ2µ2) (12)

for all f ∈ K, i.e. J∗ is well defined. Injectivity of J∗ directly follows from Equa-
tion (11) since P1 6= P2, P1,P2 ∈ V1, implies

R

f̃ dµ1 6=
R

f̃ dµ2 for all f ∈ K with
P1( f ) 6= P2( f ) and µ1 resp. µ2 satisfying Equation (11) for P1 resp. P1. Since,
by the Hahn-Jordan Decomposition Theorem, every measure µ of bounded varia-
tion can be decomposed into a difference µ = λ1µ1−λ2µ2, λi ≥ 0, µi probability
measures, i ∈ {1,2}, we obtain surjectivity of J∗ simply by reading Equation (12)
from right to left, again using Proposition 4. Linearity of J∗ is rather obvious. So,
we have shown that J∗ is a linear isomorphism between the linear spaces V1 and
V2.
By setting X := K and V := V1 in the subsequent Proposition 5, it follows imme-
diately that J∗ also is a homeomorphism between the topological spaces (V1,TV1)
and (V2,TV2).
For proving isometry of J∗, we observe that any decomposition of J∗(P),
J∗(P) = λ1

(
R·dµ1

)
|span(K̃)

− λ2
(

R·dµ2
)
|span(K̃)

, with λ1,λ2 ≥ 0, µ1,µ2 probabil-
ity measures, directly corresponds to a decomposition of P by Proposition 4,
P = λ1Pµ1

− λ2Pµ2
. Therefore, the infima in the respective definitions of ‖ · ‖V1

and ‖ · ‖V2 are taken over the same sets, i.e. ‖J∗(P)‖V2 = ‖P‖V1 for all P ∈V1. 2

We now provide the deferred, fairly general proposition used in Theorem 2.2

2This proposition can also be used to prove that the isomorphism between the linear spaces re-
spectively spanned by the totally monotone set functions and the signed bounded Borel measures
(cf. Marinacci [10, Theorem 3]) is a homeomorphism. Marinacci proved homeomorphy only for the
respective unit balls (w.r.t. the norm which is not compatible to the topology) instead of the whole
spaces.
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Proposition 5 Let X be a nonempty set and V a linear space of real-valued func-
tions on X. Define

X̃ := {x̃ : V → R | x̃(v) := v(x),x ∈ X}, (13)
Ṽ := {ṽ : X̃ → R | ṽ(x̃) := x̃(v),v ∈V}, (14)
˜̃X := { ˜̃x : Ṽ → R | ˜̃x(ṽ) := ṽ(x̃), x̃ ∈ X̃ .} (15)

Endow TV with the smallest topology on V making all x̃ ∈ X̃ continuous and
endow TṼ with the smallest topology on Ṽ making all ˜̃x ∈ ˜̃X continuous.
Then J : V → Ṽ , v 7→ ṽ is a linear topological isomorphism.

Proof. Linearity and injectivity of J is easily verified by successively applying
the definitions of Ṽ and X̃ . Additionally, by definition of Ṽ , J is surjective. For
proving J being a homeomorphism it suffices to show that the elements of the
respective subbase of TV , {x̃−1(O) |O ⊂R open} and TṼ , { ˜̃x−1(O) |O ⊂R open},
are mapped onto each other as preimages under J and J−1. This follows almost
directly from the above definitions since

J−1( ˜̃x−1(O)) = J−1({ṽ | ˜̃x(ṽ) ∈ O})
= J−1({ṽ | x̃(v) ∈ O})
= J−1({ṽ | v ∈ x̃−1(O)})
= x̃−1(O)

and analogously J(x̃−1(O)) = ˜̃x−1(O). 2

We end this section with a lemma proving the function ‖ · ‖V1 and ‖ · ‖V2 in
fact being norms.

Lemma 4 The functions ‖ · ‖V1 and ‖ · ‖V2 are norms on the respective spaces.

Proof. Obviously, ‖0‖V1 = 0. Now suppose ‖P‖= 0 for a P∈V1. Since all f ∈ K
are bounded and since every coherent lower prevision maps f into the bounded
interval [inf f ,sup f ], we obtain |P( f )| < ε for every ε > 0, i.e. P = 0. Further on,
for all P ∈V1 and c ∈ R, c 6= 0,

‖cP‖ = inf
{

λ1 +λ2 | cP = λ1P1−λ2P2,λ1,λ2 ≥ 0,P1,P2 ∈CLP(K)
}

= inf
{
|c|λ1+λ2

|c| | P = λ1
c P1− λ2

c P2,λ1,λ2 ≥ 0,P1,P2 ∈CLP(K)
}

= |c| inf
{λ1
|c| +

λ2
|c| | P = λ1

|c|P1− λ2
|c|P2,λ1,λ2 ≥ 0,P1,P2 ∈CLP(K)

}

= |c| · ‖P‖.

Finally, the triangle inequality holds because whenever P = P1 + P2 with
P,P1,P2 ∈ V1, P1 = λ1,1P1,1−λ1,2P1,2, P2 = λ2,1P2,1−λ2,2P2,2, Pi, j ∈ CLP(K)



Maaß: Linear Representation of Lower Previsions 381

and λi, j ≥ 0 with i, j ∈ {1,2} then P = (λ1,1P1,1 +λ2,1P2,1)−(λ1,2P1,2 +λ2,2P2,2)
holds whereat (λ1,1P1,1 + λ2,1P2,1),(λ1,2P1,2 + λ2,2P2,2) ∈ CLP(K). Therefore,
‖P1 +P2‖ ≤ ‖P′‖+‖P′′‖. 2

4 Summary, Outlook and Open Problems
In this paper we have presented a linear isomorphism between the linear space
V1, spanned by the coherent lower previsions on an arbitrary nonempty set K and
an appropriate linear space V2 of continuous linear functionals. Thereby, we have
shown that the famous representation theorems for totally monotone set functions
do not depend on this special class, not even on the structure of the domain.

For applications, we are heavily interested in transformations of coherent
lower previsions that can practically be handled. It is well-known that the set of
extreme points of the set of normalized totally monotone set functions on a finite
algebra is finite and consists of all unanimity games which is a finite set. There-
fore, every totally monotone set function on a finite domain can be represented
as a convex combination of unanimity games. It remains as an open problem to
determine the set of extreme points of CLP(K) for a given K. Additionally, for
possible application of Theorem 2, it remains as an open problem what condition
K has to meet in order to make ex(CLP(K)) finite.

Theorem 2 can be used to construct coherent lower previsions in the following
way. After determining the extreme points of the convex set of coherent lower
previsions any coherent lower prevision can be obtained by assigning weights to
all extreme points. There is an analogous situation in Dempster-Shafer Theory
where these weights are called “basic probability assignments”. So, by working
on the set of extreme points of CLP(K) with linear functionals, things are getting
easier and often more applicable.

Finally, we will outline why the transform given in Theorem 2 should not be
called “Möbius transform” like in the case of totally monotone set functions. On
an algebra A the zeta function can be expressed in terms of unanimity games,
ζ(A,B) := uA(B). In the case of considering totally monotone set functions on a
finite algebra instead of coherent lower previsions (cf. Denneberg [5], Gilboa and
Schmeidler [6] and Marinacci [10]), the integrand of Equation (11) is always a
zeta function because the set of extreme points of the set of normalized totally
monotone set functions consists of all unanimity games. This gives rise to call
the two set functions appearing in the transformation equation the zeta transform
resp., since the zeta function and the Möbius function are mutually inverse, the
Möbius transform of the respective other set function. Since we have seen in Ex-
ample 1 that the set of extreme points of CLP(A) contains more than unanimity
games the interpretation of using zeta functions can not be preserved such that the
term “Möbius transform” can not be justified in our case.



382 ISIPTA ’03

Acknowledgements
The author is indebted to D. Denneberg for valuable discussions and to the anony-
mous referees for their helpful suggestions and comments.

References
[1] E. M. Alfsen. Compact Convex Sets and Boundary Integrals. Springer,

Berlin, 1971.

[2] E. Bishop and K. de Leeuw. The Representation of Linear Functionals by
Measures on Sets of Extreme Points. Annales de l’Institut Fourier, 9:305–
331, 1959.

[3] G. Choquet. Theory of Capacities. Annales de l’Institut Fourier, 5:131–295,
1953/54.

[4] F. Delbaen. Coherent Risk Measures on General Probability Spaces. 1–37 in
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