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Abstract

Given a random set coming from the imprecise observation of a random
variable, we study how to model the information about the distribution of this
random variable. Specifically, we investigate whether the information given
by the upper and lower probabilities induced by the random set is equivalent
to the one given by the class of the distributions of the measurable selections;
together with sufficient conditions for this, we also give examples showing
that they are not equivalent in all cases.
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1 Introduction
Random sets have been successfully applied in such different fields as economy
([11]) or stochastic geometry ([14]), and they have been studied under different
interpretations, like the behavioral ([19]) or the evidential one ([7]). In this pa-
per, we will interpret a random set as the result of the imprecise observation of a
random variable ([13]). Under this interpretation, our information about the prob-
ability distribution of the random variable is given by the class of distributions
of the measurable selections of the random set. This class of distributions is a
subset of the class of probability measures bounded between the upper and lower
probabilities ([7]) of the random set. These functions satisfy Walley’s axioms of
∗This paper has been partially funded by FEDER-MCYT, grant number BFM2001-3515, and Fun-
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coherence ([21]), and are moreover ∞-alternating and ∞-monotone, respectively
([20]).

Although working with the upper and lower probabilities leads to a number of
mathematical simplifications ([20, 21]), the information they provide is in general
more imprecise than the one given by the set of distributions of the measurable se-
lections ([16, 18]). In this paper, we will investigate under which conditions these
two models are equivalent. The results we obtain will show when it is advisable
to model our information through the upper and lower probabilities and when this
produces a loss of precision.

In Section 2, we introduce some concepts and notations that we will use in the
rest of the paper, and recall some previous works on the subject. In Section 3, we
investigate the information that the upper and lower probabilities give about the
distribution of the original random variable, and about the value of this distribu-
tion on an arbitrary set. Finally, in Section 4 we give some additional comments
and remarks.

2 Preliminary concepts
We will consider a probability space (Ω,A ,P), a measurable space (X ,A ′) and a
multi-valued mapping Γ : Ω→ P (X). If X is a topological space, we will denote
βX its Borel σ-field. A topological space is said to be Polish when it is separable
and complete for some compatible metric d, and it is called Souslin if it is the
bijective image of a Polish space. The multi-valued mapping will be called open
(resp. complete, closed, compact) if Γ(ω) is an open (resp. complete, closed, com-
pact) subset of X for every ω ∈Ω.

Formally, a random set is a multi-valued mapping satisfying some measura-
bility condition. There are different conditions, such as the weak, the strong, or
the graph-measurability ([12]). Most of them are based on the notion of upper and
lower inverse:

Definition 1 Let (Ω,A ,P) be a probability space, (X ,A ′) be a measurable space
and Γ : Ω→ P (X) a multi-valued mapping. Given A ∈ A ′, its upper inverse is
Γ∗(A) = {ω ∈Ω | Γ(ω)∩A 6= /0}, and its lower inverse is Γ∗(A) = {ω ∈Ω | /0 6=
Γ(ω)⊆ A}.

When there is no possible confusion about the multi-valued mapping we are
working with, we will use the notation A∗ := Γ∗(A) and A∗ := Γ∗(A). By a ran-
dom set we will mean throughout a strongly measurable multi-valued mapping.
The strong measurability is necessary for the upper and lower probabilities of the
random set to be defined on A ′.

Definition 2 A multi-valued mapping is called strongly measurable if A∗ ∈ A
∀A ∈ A ′.
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Note that A∗ = X∗∩((Ac)∗)c ∀A∈A ′, whence if Γ is strongly measurable, we
also have A∗ ∈A ∀A ∈A ′. The concepts of upper and lower probabilities induced
by a random set were introduced by Dempster in [7]:

Definition 3 Given a random set Γ : Ω→ P (X), the upper probability of A∈A ′

is P∗Γ(A) = P(A∗)
P(X∗) , and its lower probability is P∗Γ(A) = P(A∗)

P(X∗) .

When there is no ambiguity about which random set is inducing the upper and
lower probability, we will denote P∗ := P∗Γ and P∗ := P∗Γ.

As we said in the introduction, we will regard a random set as the result of
the imprecise observation of a random variable U0 : Ω→ X (which we will call
original random variable), in the sense that for every ω in the initial space all
we know about U0(ω) is that it belongs to the set Γ(ω). As a consequence, Γ(ω)
will be assumed to be non-empty for every ω, and hence P∗(A) = P(A∗) and
P∗(A) = P(A∗) for all A ∈ A ′. The upper and lower probabilities induced by a
random set are conjugate functions, and they are moreover ∞-alternating and ∞-
monotone capacities, respectively ([20]). This means in particular that they satisfy
Walley’s axioms of coherence ([21]).

If Γ is the imprecise observation of U0, all we know about this variable is that
it belongs to the class of measurable selections (or selectors) of Γ,

S(Γ) := {U : Ω→ X measurable |U(ω) ∈ Γ(ω) ∀ω}.

The probability distribution of U0 belongs to

P(Γ) := {PU |U ∈ S(Γ)},

and our information about PU0(A) is given by the set of values

P(Γ)(A) := {PU(A) |U ∈ S(Γ)}.

There are two other classes of probabilities that may be useful in some situations.
The first one is

∆(Γ) := {Q probability | Q(A) ∈ P(Γ)(A) ∀A ∈ A ′}.

This is the set of distributions whose values are compatible with the information
given by the random set. It is clear that P(Γ) ⊆ ∆(Γ). If they coincide, the infor-
mation about the distribution of the original random variable is equivalent to the
information about the values it takes. On the other hand, we can also consider the
class

M(P∗) := {Q probability | Q(A)≤ P∗(A) ∀A ∈ A ′}
of distributions dominated by P∗, or credal set generated by P∗. This class is
convex and easier to handle in practice than P(Γ). Using the inequalities P∗(A)≤
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PU(A) ≤ P∗(A), valid for any U ∈ S(Γ), A ∈ A ′, we deduce that ∆(Γ) ⊆M(P∗).
We see then that P(Γ) ⊆ ∆(Γ) ⊆M(P∗). As we showed in [16], both inclusions
can be strict, and in some cases the use of the upper and lower probabilities can
produce a loss of precision, which in turn can cause some misjudgements. It is
therefore interesting to see in which cases it is reasonable to use P∗ and P∗.

Although the class of the distributions of the selectors of a random set ([1, 9])
and the upper probability it induces ([14, 20]) have been thoroughly studied in
the literature, the connection between them has not received much attention. It
was investigated for the case of X finite in [16], and for some particular infinite
spaces in [3, 6, 10, 15, 18]. Our goal in this paper is to somewhat fill this gap.
Specifically, we will study two different problems:

• First, we will investigate the relationship between ∆(Γ) and M(P∗), which
tells us if the upper and the lower probabilities are informative enough about
the value PU0(A) for some arbitrary A ∈ A ′.

• Then, we will study when P(Γ) = M(P∗), i.e., under which conditions the
upper probability keeps all the information about PU0 .

3 Study of the probabilistic models for PU0

3.1 P∗(A),P∗(A) as a model for PU0(A)

Let us start investigating the relationship between ∆(Γ) and M(P∗). As we men-
tioned before, ∆(Γ) models the information that Γ gives about the probability
values of the elements in A ′. Therefore, by investigating its equality with M(P∗)
we will see whether P∗ and P∗ are informative enough about the ‘true’ probability
of an arbitrary set A. This is formally stated in the following proposition.

Proposition 1 Let (Ω,A ,P) be a probability space, (X ,A ′) a measurable space
and Γ : Ω→ P (X) a random set. Then,

∆(Γ) = M(P∗)⇔ P(Γ)(A) = [P∗(A),P∗(A)] ∀A ∈ A ′.

Let us consider then some arbitrary A ∈ A ′, and let us study the relationship
between P(Γ)(A) and [P∗(A),P∗(A)]. It is clear that the latter is a superset of
the former. In order to give conditions for the equality, we must see if the maxi-
mum and minimum values of P(Γ)(A) coincide with P∗(A) and P∗(A), and also if
P(Γ)(A) is convex.

This problem was studied in [18]. We showed there that P(Γ)(A) has a max-
imum and a minimum value (it is indeed a closed subset of [0,1]), and that these
values do not coincide in all cases with P∗(A),P∗(A), even in the non-trivial
case of S(Γ) 6= /0. Moreover, P(Γ)(A) is not convex in general. The following
theorem gives sufficient conditions for the equalities P∗(A) = maxP(Γ)(A) and
P∗(A) = minP(Γ)(A). It generalizes previous results from [6].
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Theorem 1 [18] Consider (Ω,A ,P) a probability space, (X ,τ) a topological
space and Γ : Ω→ P (X) a random set. Under any of the following conditions:

1. Ω is complete, X is Souslin and Gr(Γ) ∈ A⊗βX ,

2. X is a separable metric space and Γ is compact,

3. X is a separable metric space and Γ is open,

4. X is a Polish space and Γ is closed,

5. X is a σ-compact metric space and Γ is closed,

we have P∗(A) = maxP(Γ)(A) and P∗(A) = minP(Γ)(A) ∀A ∈ βX . Moreover, if

6. X is a separable metric space and Γ is complete,

then P∗(A) = maxP(Γ)(A),P∗(A) = minP(Γ)(A) ∀A∈Q ({Bn}n), where {Bn}n =
{B(xi;q j) | i ∈ N,q j ∈ Q} is a countable basis of τ(d) associated to a countable
dense set {xn}n and Q ({Bn}n) is the field generated by {Bn}n.

This theorem gives sufficient conditions for the equalities P∗ = maxP(Γ) and
P∗ = minP(Γ). The coherence of P∗ implies ([21]) that it is the upper envelope
of the set of the finitely additive probabilities it dominates. We have proven that,
under conditions (1) to (5) from Theorem 1, it is indeed the upper envelope of
the class of countably additive probabilities induced by the selectors. A similar
(symmetrical) remark can be made for P∗.

Let us remark in passing that results established in Theorem 1 guarantee the
existence of a selector of Γ whose distribution coincides with P∗ on a finite chain.
Indeed, in [5] Couso showed that the equality P∗(A) = supP(Γ)(A) ∀A ∈ A ′ im-
plies the equality between the Choquet integral of a bounded random variable
respect to the upper probability of a random set ([8]) and the supremum of class
of the integrals respect to the distributions of the measurable selections. This al-
lows us to deduce the following result, which generalizes theorem 1 from [3].

Theorem 2 Let Γ : Ω→ P (X) be a random set and V : X → R a bounded ran-
dom variable. Under any of the conditions (1) to (5) from the previous theo-
rem, (C)

R

VdP∗ = sup{R V dPU |U ∈ S(Γ)} and (C)
R

VdP∗ = inf{R VdPU |U ∈
S(Γ)}.

On the other hand, we have already remarked that the equality between ∆(Γ)
and M(P∗) relies on the equalities P∗(A) = maxP(Γ)(A) and on the convexity of
P(Γ)(A) for every A ∈ A ′. Concerning the latter, we have proven the following:

Proposition 2 [18] Let Γ : Ω→ P (X) be a random set, and consider A ∈A ′. Let
U1,U2 ∈ S(Γ) satisfy PU1(A) = maxP(Γ)(A), PU2(A) = minP(Γ)(A). Then,
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P(Γ)(A) is convex⇔U−1
1 (A)\U−1

2 (A) is not an atom 1.

In particular, P(Γ)(A) is convex ∀A ∈ A ′ if the initial space is non-atomic;
this condition holds for instance if we have some additional information stating
that PU0 is continuous. Nevertheless, the non-atomicity of (Ω,A ,P) is not neces-
sary for P(Γ)(A) to be convex, as we showed in [16]. If we join Theorem 1 and
Proposition 2, we derive the following corollary:

Corollary 1 Let Γ : Ω→ P (X) be a random set satisfying any of the conditions
(1) to (5) from Theorem 1. If A∗ \A∗ is not an atom for any A∈ βX , ∆(Γ) = M(P∗).

3.2 P∗,P∗ as a model for PU0

Let us study now the equality between P(Γ) and M(P∗), which tells whether the
upper probability keeps all the available information about the distribution of the
original random variable, PU0 . The class of the distributions of the selectors has
been studied for some types of random sets (see for instance [1, 9, 10]). However,
its relationship with the credal set generated by the upper probability has not been
investigated in detail. In [16], we studied this problem for the case of X finite, and
in [15] the attention was focused on random intervals. On the other hand, Castaldo
and Marinacci proved in [3] a result for compact random sets on Polish spaces.

The equality between ∆(Γ) and M(P∗) does not guarantee that P(Γ) = M(P∗),
and neither does the equality between P(Γ) and ∆(Γ) ([16]). Then, a possible
approach for our problem would be determining sufficient conditions for P(Γ) =
∆(Γ), and join them with the ones stated in Corollary 1. Unfortunately, it does
not seem easy (except in trivial situations) to characterize this last equality. We
are going to show that a reasoning based on the extreme points of M(P∗) will
be more fruitful in our context: it allows us to easily characterize the equality
between P(Γ) and M(P∗) in the finite case, and we can use this to derive some
results for the case of X separable metric. When X is finite, the extreme points
of M(P∗) are in correspondence with the permutations on X , in the following
manner2:

Theorem 3 [4] Consider X = {x1, . . . ,xn} finite and µ a 2-alternating capacity
on P (X). For any π ∈ Sn, define a probability Qπ on P (X) satisfying

Qπ({xπ(1), . . . ,xπ( j)}) = µ({xπ(1), . . . ,xπ( j)})∀ j = 1, . . . ,n.

Then, Ext(M(µ)) = {Qπ | π ∈ Sn} and M(µ) = Conv({Qπ | π ∈ Sn}).
1By this we mean that for every α ∈ (0,1) there is some measurable B ⊆U−1

1 (A) \U−1
2 (A) with

P(B) = αP(U−1
1 (A)\U−1

2 (A)).
2This theorem is an extension, for 2-alternating capacities, of a result given by Dempster ([7]) for

random sets on finite spaces.
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We can see ([16]) that given X finite and Γ : Ω→ P (X) a random set, it is
Ext(M(P∗)) ⊆ P(Γ), and as a consequence P(Γ) = M(P∗) ⇔ P(Γ) is convex.
This equivalence does not hold for the case of X infinite, as the following example
shows:

Example 1 (sketch) Let Γ : (0,1)→ P ([0,1]) be defined between the probabil-
ity space ((0,1),β(0,1),λ(0,1)) and the measurable space ([0,1],β[0,1]) by Γ(ω) =
(0,ω) ∀ω ∈ (0,1). It is easy to see that this mapping is strongly measurable.

• Given U ∈ S(Γ), it can be checked that PU({0}) = 0,PU([0,x])≥ x ∀x, and
λ(0,1)({x ∈ (0,1) | PU([0,x]) = x}) = 0.

• Conversely, consider a probability measure Q : β[0,1]→ [0,1] satisfying the
three previous properties. This implies that it also satisfies Q([0,x)) ≥ x
and Q([0,x)) > x for all but a null subset of (0,1), that we will denote NQ.
The quantile function U of Q is a measurable mapping satisfying PU =
Q,U(ω) ∈ Γ(ω) ∀ω /∈ NQ. We can modify U on NQ without affecting its
measurability so that all its values are included in those of Γ, whence we
deduce that Q ∈ P(Γ).

• We deduce that P(Γ) is the class of probability measures with Q({0}) =
0,Q([0,x]) ≥ x ∀x and Q([0,x]) > x for all but a null subset of [0,1], and
we can easily check that this class is convex.

• The Lebesgue measure λ[0,1] on β[0,1] satisfies λ[0,1](A)≤P∗(A) ∀A∈ β[0,1];
hence, it belongs to M(P∗), and clearly it does not satisfy λ[0,1]([0,x]) > x
with probability 1. As a consequence, P(Γ) ( M(P∗).

In [17], we investigated the form of the extreme points of M(µ) for the case of
µ 2-alternating and upper continuous, and for (X ,d) a separable metric space. The
idea in that paper was to approximate a distribution Q : βX→ [0,1] by distributions
coinciding with Q on some finite fields. We will use a similar reasoning in our
next theorem, where we consider the upper probability P∗ induced by a random
set (and hence not necessarily upper continuous). We will work in this paper with
the topology of the weak convergence, whose main properties can be found in
[2]. Together with the well-known Portmanteau’s theorem, we will also use the
following result:

Proposition 3 [2] Let (X ,d) be a separable metric space, and consider a class
U ⊆ βX such that (i) it is closed under finite intersections and (ii) every open
set is a finite or countable union of elements from U. Let {Pn}n,P be a family of
probability measures on βX such that Pn(A)→ P(A) ∀A ∈U. Then, the sequence
{Pn}n converges weakly to P.

Let {xn}n be a countable set dense on (X ,d), and define {Bn}n := {B(xi;q j) |
i ∈ N,q j ∈Q} a countable basis of τ(d). Let us denote Q ({Bn}n) the field gener-
ated by {Bn}n, Qn the field generated by {B1, . . . ,Bn}. Then, Q ({Bn}n) = ∪nQn,
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and it can easily be checked that Q ({Bn}n) satisfies the hypotheses (i) and (ii)
stated in the previous proposition. Any element of Qn is a (finite and disjoint)
union of elements from Dn := {C1∩C2∩·· ·∩Cn |Ci ∈ {Bi,Bc

i }∀i : 1, . . . ,n}. Let
us denote this class Dn := {En

1 , . . . ,En
kn
}.

Theorem 4 Let (Ω,A ,P) be a probability space, (X ,d) a separable metric space
and Γ : Ω→ P (X) a random set such that P∗(A) = maxP(Γ)(A) ∀A∈ Q ({Bn}n).
Then,

1. M(P∗) = Conv(P(Γ)).

2. P(Γ) = M(P∗)⇔ P(Γ) is convex.

Proof.

1. It is clear that Conv(P(Γ)) ⊆ M(P∗). Conversely, consider Q1 ∈ M(P∗),
and fix n∈N. Consider the finite measurable space (Dn,P (Dn)), and let us
define the multi-valued mapping

Γn : Ω → P (Dn)

ω ↪→ {En
i | Γ(ω)∩En

i 6= /0}.

• Given I ⊆ {1, . . . ,kn},Γ∗n({En
i }i∈I) = {ω | ∃i ∈ I,En

i ∈ Γn(ω)}= {ω |
∃i ∈ I,Γ(ω)∩En

i 6= /0} = Γ∗(∪i∈I En
i ) ∈ A ⇒ Γn is strongly measur-

able.

• Define a probability measure Q : P (Dn) → [0,1] by Q({En
i }) =

Q1(En
i ) ∀i. Then, given I ⊆ {1, . . . ,kn},

Q({En
i }i∈I) = Q1(∪i∈IEn

i )≤ P∗Γ(∪i∈IEn
i ) = P∗Γn

({En
i }i∈I),

whence Q ∈M(P∗Γn
).

Now, from Theorem 3 M(P∗Γn
) = Conv({Qπ | π ∈ Skn}), where the proba-

bility measure Qπ : P (Dn)→ [0,1] is defined by Qπ({En
π(1), . . . ,E

n
π( j)}) =

P∗Γn
({En

π(1), . . . ,E
n
π( j)}) = P∗Γ(∪ j

i=1En
π( j)) ∀ j = 1, . . . ,kn.

For any of these extreme points, there is some Pπ ∈ P(Γ) with Pπ(En
j ) =

Qπ({En
j }) ∀ j = 1, . . . ,kn: it suffices to take into account that, as we have

seen in Theorem 2, we can approximate P∗Γ on a finite chain. As a conse-
quence, for the probability Q ∈ Conv({Qπ | π ∈ Sn}) defined above, there
is some Pn ∈ Conv(P(Γ)) such that Pn(En

j ) = Q({En
j }) = Q1(En

j ) ∀ j =
1, . . . ,kn. The sequence {Pn}n ⊆ Conv(P(Γ)) satisfies Pn(A)→ Q1(A) for
all A ∈ Q ({Bn}n). Applying Proposition 3, we conclude that {Pn}n con-
verges weakly to Q1, whence M(P∗)⊆Conv(P(Γ)) and we deduce the de-
sired equality.
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2. For the direct implication, it suffices to see that M(P∗) is convex. Con-
sider P1,P2 ∈M(P∗),α ∈ (0,1); then, there are {P1

n}n,{P2
n}n⊂M(P∗) con-

verging weakly to P1,P2, respectively. Let A ∈ βX be a (αP1 +(1−α)P2)-
continuity set. It is 0 = (αP1 + (1− α)P2)(δ(A))3 = αP1(δ(A)) + (1−
α)P2(δ(A)), and therefore A is also a P1,P2-continuity set. From Portman-
teau’s theorem (see for instance [2]), P1

n (A)→ P1(A) and P2
n (A)→ P2(A),

whence (αP1
n + (1−α)P2

n )(A)→ (αP1 + (1−α)P2)(A), and again using
Portmanteau’s theorem we deduce that the sequence {αP1

n +(1−α)P2
n}n⊂

M(P∗) converges weakly to αP1 + (1−α)P2. Hence, this probability be-
longs to M(P∗).

For the converse implication, assume that P(Γ) is convex. Then, applying
the first point of this theorem, it is

M(P∗) = Conv(P(Γ))⊆Conv(P(Γ)) = P(Γ) = P(Γ)⇒ P(Γ) = M(P∗).

2

The second part of this theorem extends a result mentioned before for the
finite case (it can be checked that in that case both P(Γ) and M(P∗) are closed).
We deduce that a way to determine conditions for the equality M(P∗) = P(Γ) is
to give sufficient conditions for the convexity of P(Γ). We have done this in our
next theorem. It uses the following supporting result.

Lemma 1 Let (Ω,A ,P) be a non-atomic probability space, (X ,d) a separable
metric space and Γ : Ω → P (X) a random set. Then, the class of probabili-
ties Hn := {Q : P (Dn) → [0,1] probability | ∃Q′ ∈ P(Γ) such that Q({En

i }) =
Q′(En

i ) ∀En
i ∈Dn} is convex for every n.

Proof. Fix n ∈ N, and consider P1,P2 ∈ Hn,α ∈ (0,1). Then, there exist
U1,U2 ∈ S(Γ) with PU1(E

n
i ) = P1({En

i }),PU2(E
n
i ) = P2({En

i }) ∀i = 1, . . . ,kn. Let
us consider the measurable partition of Ω given by {Ci j | i, j = 1, . . . ,kn} with
Ci j =U−1

1 (En
i )∩U−1

2 (En
j ); from the non-atomicity of (Ω,A ,P), there is, for every

i, j, some measurable Di j ⊆Ci j such that P(Di j) = αP(Ci j). Define C = ∪i, jCi j,
and

U := U1IC +U2ICc .

Then, U is a measurable combination of selectors of Γ, whence U ∈ S(Γ).
Moreover,

3δ(A) denotes here the boundary of the set A.
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PU(En
l ) = P(U−1

1 (En
l )∩C)+P(U−1

2 (En
l )∩Cc)

=
kn

∑
i=1

P(Dli)+
kn

∑
j=1

(P(C jl)−P(D jl))

=
kn

∑
i=1

αP(Cli)+
kn

∑
j=1

(1−α)P(C jl)

= αPU1(E
n
l )+(1−α)PU2(E

n
l ) ∀l = 1, . . . ,kn,

and we deduce that αP1 +(1−α)P2 ∈ Hn. 2

Theorem 5 Let (Ω,A ,P) be a non-atomic probability space, (X ,d) a separable
metric space and Γ : Ω→ P (X) a random set. Then, P(Γ) is convex.

Proof. Let us show first that Conv(P(Γ)) ⊆ P(Γ). Consider P1,P2 ∈ P(Γ),α ∈
(0,1). Applying the previous lemma, for every n there is Qn ∈ P(Γ) with Qn(A) =
(αP1 +(1−α)P2)(A) ∀A ∈ Qn, where Qn is the field generated by {B1, . . . ,Bn}.
Now, applying Proposition 3 we deduce that {Qn}n converges weakly to αP1 +
(1−α)P2 and this probability belongs to P(Γ). From this, we deduce in particular
the equality Conv(P(Γ)) = P(Γ). The first set in this equality is the closure of
a convex set of probabilities defined on a separable metric space. Following the
course of reasoning from the proof of point 2 from Theorem 4, we can deduce
that Conv(P(Γ)) (and hence P(Γ)) is convex. 2

A similar proof would allow us to deduce that ∆(Γ) is convex when (Ω,A ,P)
is non-atomic and (X ,d) separable. Now, using Theorems 1, 4 and 5, we derive
the following result:

Corollary 2 Let (Ω,A ,P) be a probability space, (X ,d) be a separable metric
space, and Γ : Ω→ P (X) a random set. Under any of the following conditions:

1. Γ is open,

2. Γ is complete,

3. X is σ-compact and Γ is closed,

M(P∗) =Conv(P(Γ)). If in addition (Ω,A ,P) is non-atomic, then M(P∗) = P(Γ).

Proof. The first part follows from Theorem 1 and the first point of Theorem
4. For the second part, it suffices to apply the second point of Theorem 4 and
Theorem 5. 2
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This corollary extends results from [3, 16], and tells us that under fairly gen-
eral conditions, the upper probability can be used to model the available infor-
mation without producing a (big) loss of precision. It also extends some results
from [10]: it is proven there that given two closed random sets Γ1,Γ2 on a separa-
ble Banach space, the equality between P∗Γ1

and P∗Γ2
implies that Conv(P(Γ1)) is

equal to Conv(P(Γ2)). Similar results can be seen in [1, 9]. We have proven that
it is indeed P∗Γ1

= P∗Γ2
⇒Conv(P(Γ1)) = Conv(P(Γ2)) = M(P∗Γ1

) = M(P∗Γ2
), and

only requiring Γi to be complete on a separable metric space ∀i = 1,2. On the
other hand, we deduce that under the hypotheses of the second part of Corollary
2, if P(Γ) is weakly closed, it is also convex, and M(P∗) is closed. The converses
are not true in general. The following example shows that P(Γ) is not necessarily
closed when M(P∗) is closed:

Example 2 [15] Consider Γ : [0,1]→ P ([0,1]) defined by Γ(ω) = [−ω,ω] ∀ω ∈
[0,1]. Then, it can be proven that M(P∗) is closed (indeed, this holds for any
compact random set on a Polish space). However, given the selectors A,B ∈ S(Γ)
defined by A(ω) =−ω,B(ω) = ω ∀ω, it can be checked that PA+PB

2 /∈ P(Γ). This
shows that P(Γ) is not convex. As a consequence, it is not closed either: if it were,
it would be P(Γ) = P(Γ) = M(P∗) = M(P∗) convex, a contradiction.

On the other hand, Example 1 shows that P(Γ) is not closed either if it is
convex. Indeed, that implication does not hold even if P(Γ) = M(P∗):

Example 3 Consider (Ω,A ,P) = ((0,1),β(0,1),λ(0,1)) a non-atomic probability
space, and let Γ : Ω→ P (R) be constant on (0,1). Then, M(P∗) = {Q : βR →
[0,1] probability | Q((0,1)) = 1}. Given a probability measure Q ∈ M(P∗), its
quantile function U : (0,1)→ R is a selector of Γ and satisfies PU = Q, whence
P(Γ) = M(P∗) convex. However, the sequence of degenerate probability measures
on 1

n , {δ 1
n
}n ⊆ P(Γ), converges weakly to δ0 /∈ P(Γ). Hence, this set is not closed.

4 Conclusions and open problems
In this paper, we have compared the different models of the probabilistic informa-
tion given by a random set, when this random set is the imprecise observation of a
random variable. We have considered three different sets of probability measures,
and through them we have investigated whether an imprecise probability model
in terms of the upper and lower probabilities is useful in this context.

The results we have established allow us to conclude that under fairly general
conditions, the upper and lower probabilities induced by a random set can be used
to summarize the information on the distribution of the original random variable
without a substantial loss of precision. Nevertheless, there are still a number of
particular cases of random sets which are worth a detailed study. We would also
like to study the topological structure of P(Γ) and M(P∗) under other than the
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topology of the weak convergence, and derive other sufficient conditions for the
equalities ∆(Γ) = M(P∗) and P(Γ) = M(P∗). Finally, it would also be interesting
(though we are not very optimistic in this respect) to obtain sufficient conditions
for the equality P(Γ) = M(P∗) in terms of the images of the random set, as it was
done in [15] for the particular case of random intervals.
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