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Abstract
Set-valued estimation offers a way to account for imprecise knowledge of the
prior distribution of a Bayesian statistical inference problem. The set-valued
Kalman filter, which propagates a set of conditional means corresponding to
a convex set of conditional probability distributions of the state of a linear
dynamic system, is a general solution for linear Gaussian dynamic systems.
In this paper, the set-valued Kalman filter is extended to the non-linear case
by approximating the non-linear model with a linear model that is chosen to
minimize the error between the non-linear dynamics and observation models
and the linear approximation. An application is presented to illustrate and
interpret the estimator results.
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1 Introduction
In this paper we address the statistical inference problem of estimating a set
of time-varying parameters of a discrete-time dynamical system that is moni-
tored with discrete-time observations of its behavior. Such a real-time estimator
is called a filter. For example, consider an aircraft flight for which radar data are
collected as functions of its kinematic parameters (position and velocity). The
filtering problem is to obtain instantaneous estimates of its trajectory.

A reasonable model structure for this class of problems is for the system dy-
namics to be modeled as a finite-dimensional Markov process that is characterized
by a stochastic difference equation of the form

xk+1 = f(xk)+wk (1)

for k = 0,1, . . ., where the p-dimensional vector xk is the state of the system at
time k, and is the time-varying parameter set to be estimated. The p-dimensional
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vector function f is the dynamical model for the system, and the p-dimensional
vector wk is an uncorrelated process termed the process noise, with covariance
matrix Qk. The process noise represents random disturbances to the system.

The observation model for this system is of the form

yk = h(xk)+vk (2)

for k = 1,2, . . ., where the q-dimensional vector function h models the observa-
tions as a function of the state. The q-dimensional vector vk is an uncorrelated
process, termed the observation noise, with covariance matrix R. The observation
noise represents random measurement errors.

The general filtering problem for this class of systems is to determine the
conditional distribution of {xk,k > 0}, given {y j, j ≤ k}. This problem is easily
solved formally: densities are propagated forward via the Chapman-Kolmogorov
equation and observations are incorporated using Bayes theorem. However, there
are very few system models that lead to closed form solutions. An important spe-
cial case for which the solution is well known is the linear Gaussian system with
precise probability distributions. According to this model, the dynamical and ob-
servational equations are linear functions of the state, i.e. ,

xk+1 = Fkxk +wk (3)

and
yk = Hkxk +vk, (4)

where the processes wk and vk and the initial state x0 are all assumed to be jointly
normally distributed and mutually uncorrelated. For this special case, the sub-
sequent states xk, being linear combinations of normally distributed random vari-
ables, are also normally distributed, and the problem is solved by directly comput-
ing the conditional expectation and covariance of the state. The stationary linear
filtering problem (that is, when Fk and Hk are constant matrices) was solved by
Wiener [14, 4], and the nonstationary case was solved by Kalman [5], Kalman
and Bucy [7], and Kalman [6], resulting in the well-known Kalman filter.

Since the normal distribution is not preserved under non-linear transforma-
tions, it is not straightforward to compute the conditional mean and variance for
non-linear systems. The set-valued estimation problem was addressed for the non-
linear case by Kenney and Stirling [8], who provide an approximate solution for
the propagation for a set of conditional densities of the state based upon Galerkin
approximations to Kolmogorov’s equations. Unfortunately, however, this latter
approach, although theoretically elegant, is very computationally intensive and
has not yet proven to be a practical solution. Practical non-linear estimation tech-
niques include linearization approaches such as the extended Kalman filter [3],
Monte Carlo particle filters [2], and interacting multiple-model filtering [1]. Al-
though our approach is essentially Kalman filter based, alternative approaches to
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set-valued filtering are possible topics of future research. Our preliminary assess-
ment, however, is that extending a particle filter to the imprecise case would be
computationally very demanding.

Kalman filter-based approaches (both linear and extended) typically employ
a precise prior distribution for the initial state. This is a strict Bayesian approach
that is often assumed out of convenience. If this assumption is unwarranted, the
precision attributed to the resulting state estimates will not be a realistic indica-
tion of their accuracy. Of course, if the system is observable, the influence of the
initial conditions will become asymptotically negligible as more and more data
are processed. But, for systems with limited data, or if accuracy assessments after
a few observations are of interest, then the effect of the initial conditions will be
critical.

Imprecise probability theory [13] has emerged as a way to account for igno-
rance as well as uncertainty in decision making. For the problem here considered,
we are concerned with situations where we are unable to specify with confidence
the prior distribution of x0. One way to approach this problem is to character-
ize the prior as a convex set of distributions, rather than a singleton. This convex
Bayesian approach is advocated by Levi [9, 10] as a way of suspending judgment
between choices when there is insufficient information to choose a single distri-
bution. Thus, if p1(x) and p2(x) are possible prior distributions for x0, then so
is every convex combination αp1(x)+(1−α)p2(x), where α ∈ [0,1]. The filter-
ing problem is then to propagate and update this convex set of distributions. This
problem was solved for the linear case by Morrell and Stirling [12], resulting in
the set-valued Kalman filter.

This paper presents an alternative approach to set-valued non-linear filtering.
In Section 2 we review linear set-valued Kalman filtering, which we then extend
to deal with non-linear systems in Section 3. Finally, we provide an example in
Section 4, and we finish with a discussion in Section 5.

2 Linear Set-Valued Filtering
Consider the system dynamics and observation equations presented in (3) and
(4). The set-valued Kalman filter computes a sequence of estimate sets and a
corresponding sequence of estimate covariances [12]. An estimate set is denoted
Xk| j, the set of estimates of the system state at time k given the observations y1
through y j, and is represented in terms of the p-dimensional vector ck| j and the
p× p matrix Kk| j as

Xk| j =
{

x:
(
x− ck| j

)T S−1
k| j
(
x− ck| j

)
≤ 1
}

, (5)

where Sk| j = Kk| jKk| j
T . The set-valued Kalman filtering equations provide a two-

stage recursion for computing ck| j , Kk| j, and the estimation error covariance Pk| j
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for j = k−1 (prediction between observations) and j = k (updating new observa-
tions, or filtering).

Initialization: We assume that the initial state of the dynamic system is charac-
terized by a distribution that lies in the set

X =
{

x∼N
(
m,P0|0

)
: m ∈ X0|0

}
,

where N
(
m,P0|0

)
denotes the normal distribution with mean m and positive-

definite covariance matrix P0|0, and X0|0 denotes a hyper-ellipsoid defined
by

X0|0 =
{

x:
(
x− c0|0

)T S−1
0|0
(
x− c0|0

)
≤ 1
}

, (6)

where S0|0 = K0|0K0|0
T .

Prediction Step:
ck|k−1 = Fk−1ck−1|k−1 (7)

Pk|k−1 = Fk−1Pk−1|k−1Fk−1
T +Qk−1 (8)

Kk|k−1 = Fk−1Kk−1|k−1 (9)

The predicted set-valued state estimate is given by

Xk|k−1 =
{

x:
(
x− ck|k−1

)T S−1
k|k−1

(
x− ck|k−1

)
≤ 1
}

, (10)

with Sk|k−1 = Kk|k−1Kk|k−1
T .

Filter Step:
ck|k = ck|k−1 +Wk

[
yk−Hkck|k−1

]
(11)

Pk|k = [I−WkHk]Pk|k−1 (12)

Kk|k = [I−WkHk]Kk|k−1, (13)

where Wk is the Kalman gain:

Wk = Pk|k−1Hk
T [HkPk|k−1Hk

T +R
]−1

. (14)

The filtered set-valued estimate is then given by

Xk|k =
{

x:
(
x− ck|k

)T S−1
k|k
(
x− ck|k

)
≤ 1
}

(15)

It is shown in [12] that, if the linear system defined by (3) and (4) is uniformly
observable and controllable (e.g. , see [3]), then Kk|k → 0 as k→ ∞. Thus, in the
limit, the set-valued estimates converge to a point, and the imprecise probability
distributions converge to a precise distribution. For systems that are not uniformly
observable and controllable, or if the time sequence is not infinite, then impreci-
sion cannot be eliminated. Observability and controllability guarantee only that
Pk|k will be bounded [3]. This does not mean, however, that the estimation error
covariance Pk|k tends to zero as k→ ∞.
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Figure 1: Approximation points for the extended set-valued Kalman filter.

3 Extension to Non-linear System Models
We desire to apply the set-valued Kalman filter to non-linear systems using a
linear approximation to the system model. In an extended Kalman filter, such an
approximation is made by computing a first-order Taylor series expansion of the
non-linear functions about a point-valued state estimate. Unfortunately, because
we have a set of state estimates, the set-valued Kalman filter cannot be extended
in the same way, and we instead choose approximations that best fit the non-linear
functions over the estimate set.

We propose the following approach to finding approximations of the system
dynamic and observation functions over the entire estimate set. A set of approx-
imation points is chosen; the parameters of affine approximations to the dynam-
ics and observation functions are computed to minimize the weighted squared
errors between the function values and approximation values evaluated at the ap-
proximation points. Our method of choosing approximation points relies on the
hyper-ellipsoidal shape of the estimation sets. Figure 1 illustrates our method for a
two-dimensional estimate set (i.e., p = 2). Specifically, we form the set of approx-
imation points from the centroid of the estimate set, each point where an axis of
the hyper-ellipse intersects the ellipse, and all points equidistant from the centroid
and boundary points. Since the estimate set is a p-dimensional hyper-ellipse, the
set of approximation points will require 4p+1 elements. The set-valued Kalman
filter requires (approximate) linear dynamics and observation models in which the
approximations are good over the entire estimate set.



Morrell & Stirling: An Extended Set-valued Kalman Filter 401

3.1 Approximating the Dynamics and Observation Functions
We choose approximations of the following form:

f(xk)≈ Fkxk + f0
k (16)

and
h(xk)≈Hkxk +h0

k . (17)

The linearizations are obtained by solving the following problems for Fk and
f0
k and for Hk and h0

k . Let x(0)
k|k through x(N−1)

k|k be values in Xk|k, denoted the filtered

approximation points, and let x(0)
k|k−1 through x(N−1)

k|k−1 be values in Xk|k−1, denoted

the predicted approximation points. Let d(n)
k be the error between the actual dy-

namics function and the linear approximation evaluated at x(n)
k|k :

d(n)
k = f

(
x(n)

k|k

)
−Fkx(n)

k|k − f0
k .

Also, let e(n)
k be the error between the actual observation function and the linear

approximation evaluated at x(n)
k|k−1:

e(n)
k = h

(
x(n)

k|k−1

)
−Hkx(n)

k|k−1−h0
k .

We choose Fk, f0
k and Hk, h0

k to minimize the sums, respectively, of weighted
squared dynamics and observation errors evaluated at the approximation points:

Fk, f0
k = argmin

F,f0

N−1

∑
n=0

`
(n)
k

[
d(n)

k

]T [
d(n)

k

]

and

Hk,h0
k = argmin

H,h0

N−1

∑
n=0

`
(n)
k

[
e(n)

k

]T [
e(n)

k

]
,

where `
(n)
k is a weight associated with the nth approximation point.

This is a simple weighted least squares problem [11]. We define the following
matrices:

Lk = diag
(
`
(0)
k , . . . , `

(N−1)
k

)

Ak =

[
x(0)

k|k . . . x(N−1)
k|k

1 . . . 1

]
, Bk =

[
x(0)

k|k−1 . . . x(N−1)
k|k−1

1 . . . 1

]
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Ck =




fT
(

x(0)
k|k

)

...
fT
(

x(N−1)
k|k

)


 , Dk =




hT
(

x(0)
k|k−1

)

...
hT
(

x(N−1)
k|k−1

)


 .

The solution to the weighted least squares problem is
[

Fk
T

f0
k

T

]
=
(
AkLkAk

T )−1 AkLkCk

and [
Hk

T

h0
k

T

]
=
(
BkLkBk

T )−1 BkLkDk.

An example of choosing approximation points is given in Section 4 in the
context of a target tracking problem. Once these quantities are defined, the set-
valued Kalman filter is applied to the equations

xk+1 = Fkxk + f0
k +wk (18)

and
yk = Hkxk +h0

k +vk. (19)

Initialization: The extended set-valued Kalman filter is initialized in the same
way the set-valued Kalman filter is initialized.

Prediction Step:
ck|k−1 = f(ck−1|k−1) (20)

Pk|k−1 = Fk−1Pk−1|k−1Fk−1
T +Qk−1 (21)

Kk|k−1 = Fk−1Kk−1|k−1 (22)

Filter Step:
ck|k = ck|k−1 +Wk

[
yk−h(ck|k−1)

]
(23)

Pk|k = [I−WkHk]Pk|k−1 (24)

Kk|k = [I−WkHk]Kk|k−1, (25)

where Wk is the Kalman gain as given by (14). The filtered set estimate is
then given by (15).
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Figure 2: The tracking scenario for application of the set-valued Kalman filter.
The target moves in a straight line from left to right. Sensors 1 and 2 measure
their range to the target at each time.

4 Example: Target Tracking using Range Measure-
ments

In this section, we present an example of this linearization technique for the set-
valued filter. We track a moving target using measured range from one or two fixed
sensors; one or both sensors may operate at any point in time. The target moves
in a two-dimensional Cartesian coordinate system. Figure 2 illustrates the target
motion, sensor locations, and range measurements. The set-valued filter estimates
the target position and velocity in both dimensions as a function of time from the
range measurements.

We use a linear model of the form (3) for the target dynamics. The target state
xk consists of four elements: the target position in the x and y directions, denoted
xk(0) and xk(1), and the target velocity in the x and y directions, denoted xk(2)
and xk(3). The system dynamics matrix is the following:

F=




1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1


 ,

where ∆t is the time between observations. The process noise covariance matrix



404 ISIPTA ’03

is

Qk = σ2




∆t3

3 0 ∆t2

2 0
0 ∆t3

3 0 ∆t2

2
∆t2

2 0 ∆t 0
0 ∆t2

2 0 ∆t


 ,

where σ2 is the intensity of a white continuous-time Gaussian noise process mod-
eling the target acceleration.

For this example, we locate Sensor 1 at coordinates (0,20) and Sensor 2 at
coordinates (20,0). The ranges from the sensors to the target at time k are denoted
as rk(1) and rk(2). These ranges are computed as

rk(1) =

√
(xk(0)−0)2 +(xk(1)−20)2

rk(2) =

√
(xk(0)−20)2 +(xk(1)−0)2.

Since one or both sensors may be in use at any given k, the observation func-
tion h(xk) will be either a one- or two- dimensional vector function of the state
xk. When only Sensor 1 is in use, h(xk) = rk(1).When both sensors are in use,

h(xk) =

[
rk(1)
rk(2)

]
.

In this problem, the system dynamics are linear; thus, we need to approximate
only the observation function. We select the predicted approximation points x(n)

k|k−1
as follows. The observations depend only on the target position and not on its
velocity, so we select approximation points to cover the range of position values
in the estimate set Xk|k−1. These position values lie in an ellipse defined by the
upper left sub-matrix of Sk|k−1. We use the centroid of the ellipse, the four points
at the intersection of the boundary of the ellipse with its axes, and the four points
equidistant between the centroid and boundary points. We use weights of 1.0 for
the centroid point, 0.5 for the midpoints, and 0.1 for the boundary points.

In the example scenario, the target starts at the point (10,10) with a velocity
of one unit/second to the right. The time ∆t between observations is 2 seconds.
Only Sensor 1 provides range measurements from time k = 1 to k = 4; after k =
4, both sensors provide range measurements. Figure 3 shows the set estimates
of the target position for this scenario. The initial estimate set is circular. The
range observations from Sensor 1 quickly reduce the size of the estimate set in the
direction of the target from the sensor, but do not provide information about the
target location along the perpendicular direction. When range information from
Sensor 2 becomes available at time k = 5, the set of estimates becomes much
smaller, since now there is enough information in the observations to locate the
target. In other words, during the first 4 time units, when the system is not fully
observable, the set of estimates does not shrink in the unobservable direction, but
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Figure 3: Estimate sets.

thereafter, the system is fully observable and the set of means shrinks in both
directions.

It must be emphasized that the ellipses in Figure 3 do not correspond to like-
lihood contours (contours of constant value of probability density); rather, they
define a set of position estimates, each of which has a legitimate claim to being a
valid assessment of the true state of the system. If time were to increase without
bound with both sets of observations available, the system would be observable
and, in the limit, it would converge to a singleton representing the mean value
of a unique limiting distribution (a precise probability). The covariance of this
distribution, however, would converge to a steady-state, but non-zero, level, such
that no increase in the accuracy of the (now point-valued) state estimates can be
achieved.

5 Discussion
For time-varying estimation scenarios that are either not uniformly observable and
controllable or, even if they are observable and controllable, are of such short du-
ration that transients in the estimator dynamics do not have time to damp out, set-
valued estimation provides a realistic means of accounting for imprecise knowl-
edge of the mean of the prior distribution.

Non-linear filtering requires the propagation of the entire distribution, in con-
trast to the need to propagate only the first two moments with linear filtering. This
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accounts for the difficulty associated with non-linear estimation. The conventional
extended Kalman filter is a well-accepted and practical solution for point-valued
estimates, but it does not apply to the set-valued case. The extended set-valued
Kalman filter provides an approximate solution to the non-linear set-valued dy-
namic state estimation problem that is computationally feasible. As with the con-
ventional extended Kalman filter, however, it is not possible to prove global con-
vergence of the extended set-valued Kalman filter.
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