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Abstract

The emergence of robustness as an important consideration in Bayesian sta-
tistical models has led to a renewed interest in normative models of incom-
plete preferences represented by imprecise (set-valued) probabilities and util-
ities. This paper presents a simple axiomatization of incomplete preferences
and characterizes the shape of their representing sets of probabilities and
utilities. Deletion of the completeness assumption from the axiom system of
Anscombe and Aumann yields preferences represented by a convex set of
state-dependent expected utilities, of which at least one must be a probabil-
ity/utility pair. A strengthening of the state-independence axiom is needed to
obtain a representation purely in terms of a set of probability/utility pairs.
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1 Introduction
In the Bayesian theory of choice under uncertainty, a decision maker holds ra-
tional preferences among acts, which are mappings from states of nature {s} to
consequences {c}. It is typically assumed that rational preferences are complete,
meaning that for any two acts X and Y, either X �∼ Y (“X is weakly preferred to
Y) or else Y �∼X, or both. This assumption, together with other rationality axioms
such as transitivity and independence, leads to a representation of preferences by
a unique subjective probability distribution on states p(s) and a unique utility
function u(c) on consequences, such that X �∼ Y if and only if the subjective ex-
pected utility of X is greater than or equal to that of Y (Savage 1954, Anscombe
and Aumann 1963, Fishburn 1982). However, the completeness assumption may
be inappropriate if we have only partial information about the decision maker’s
preferences, or if realistic limits on her powers of discrimination are assumed, or
if there are actually many decision makers whose preferences may disagree.
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Incomplete preferences are generally represented by indeterminate (i.e., set-
valued) probabilities and/or utilities. Varying degrees of such indeterminacy have
been modeled previously in the literature of statistical decision theory and rational
choice:

i. If probabilities alone are considered to be indeterminate, then preferences
can be represented by a set of probability distributions {p(s)} and a unique
(perhaps linear) utility function u(c). The set of probability distributions
is typically convex, so the representation can be derived by separating hy-
perplane arguments (e.g., Smith (1961), Suppes (1974), Williams (1976),
Giron and Rios (1980), Nau (1992).) Representations of this kind are are
widely used in robust Bayesian statistics; an extensive treatment is given by
Walley (1991).

ii. If utilities alone are considered to be indeterminate, preferences can be rep-
resented by a set of utility functions {u(c)} and a unique (perhaps objec-
tively specified) probability distribution p(s), a representation that has been
axiomatized and applied to economic models by Aumann (1962). The set
of utility functions in this case is also typically convex, so that separating
hyperplane arguments are again applicable.

iii. If both probabilities and utilities are allowed to be indeterminate, they can
be represented by separate sets of probability distributions {p(s)} and util-
ity functions {u(c)} whose elements are paired up arbitrarily. This repre-
sentation of preferences preserves the traditional separation of information
about beliefs from information about values when both are indeterminate
(Rios Insua 1990, 1992), but lacks a natural axiomatic basis. Rather, it arises
only as a special case of more general representations when probability and
utility assessments are carried out independently.

iv. More generally, we can represent incomplete preferences by sets of prob-
ability distributions paired with state-independent utility functions {(p(s),
u(c))}, a.k.a. “probability/utility pairs.” This representation has an appeal-
ing multi-Bayesian interpretation and provides a normative basis for tech-
niques of robust decision analysis (Moskowitz, Preckel and Yang, 1993)
and asset pricing in incomplete financial markets (Staum 2002). It has been
axiomatized by Seidenfeld, Schervish, and Kadane (1995, henceforth SSK),
starting from the “horse lottery” formalization of decision theory intro-
duced by Anscombe and Aumann (1963). However, as pointed out by SSK,
the set of probability/utility pairs is typically nonconvex and may even be
unconnected, so that separating hyperplane arguments are not directly ap-
plicable. Instead, SSK rely on methods of transfinite induction and indirect
reasoning to obtain their results.
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The objective of this paper is to derive a simple representation of incomplete
preferences for the elementary case of finite state and reward spaces, and to char-
acterize the shape of the resulting sets of probabilities and utilities. We begin by
deleting both completeness and state-independence from the horse-lottery axiom
system of Anscombe and Aumann, showing that this leads immediately to a repre-
sentation of preferences by a set of probabilities paired with state-dependent util-
ity functions {(p(s),u(s,c))}. Such pairs will be called state-dependent expected
utility (s.d.e.u.) functions. State-dependent utilities have been used in economic
models by Karni (1985) and Drèze (1987) and are also discussed by Schervish et
al. (1990). A set of s.d.e.u. functions is typically convex—unlike a set of prob-
ability/utility pairs—so that separating-hyperplane methods are still applicable
at this stage. We then re-introduce Anscombe and Aumann’s state-independence
assumption and show that it imposes (only) the further requirement that the rep-
resenting set should contain at least one probability/utility pair. Finally, we con-
sider the additional assumptions that must be imposed in order to shrink the rep-
resentation to (the convex hull of) a set of probability/utility pairs, and present
a constructive alternative to SSK’s indirect reasoning method. We show that al-
though the representing set of probability/utility pairs is nonconvex, it nonetheless
has a simple configuration: it is merely the intersection of a convex set of s.d.e.u.
functions with the nonconvex surface of state-independent utilities.

The organization of the paper is as follows. Section 2 introduces basic nota-
tion and derives a representation of preferences by convex sets of s.d.e.u. functions
when neither completeness nor state-independence is assumed. Section 3 incorpo-
rates Anscombe and Aumann’s state-independence assumption and shows that it
requires (only) the existence of at least one agreeing state-independent utility. Sec-
tion 4 discusses an example of SSK to highlight the implications of different con-
tinuity and strictness conditions. Section 5 gives the additional constructive axiom
that is needed to obtain a representation purely in terms of probability/utility pairs,
illustrated by another example. Section 6 briefly discusses the results.

2 Representation of incomplete preferences
Let S denote a finite set of states and let C denote a finite set of consequences.
Let B = {B : S×C 7→ ℜ}. An element X ∈ B is a horse lottery if X ≥ 0 and
∀s, ∑c X(s,c) = 1, with the interpretation that X(s,c) is the objective probability
of receiving consequence c when state s occurs. Henceforth, the symbols W, X,
Y, Z, and H will be used to denote horse lotteries; the symbol B will denote an el-
ement of B that is not necessarily a horse lottery (e.g., B may represent the differ-
ence between two horse lotteries). A horse lottery X is constant if the probabili-
ties it assigns to consequences are constant across states—i.e., if X(s,c) = X(s′,c)
for all s,s′,c. The symbol �∼ will denote non-strict preference between horse lot-
teries: X �∼ Y means that X is preferred or indifferent to Y, which is considered
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as the behavioral primitive. The domain of �∼ is the set of all horse lotteries. The
asymmetric part of �∼ will be denoted by �.

An event is a subset of S. The symbol E will be used interchangeably as the
name for an event and for its indicator function on S×C. That is, E(s,c) = 1[0] for
all c if the event E includes [does not include] state s. Es will denote the indicator
vector for state s. That is, Es(s′,c) = 1 for all c if s = s′ and zero otherwise. If α
is a scalar between 0 and 1, then αX+(1−α)Y is an objective mixture of X and
Y: it yields consequence c in state s with probability αX(s,c) + (1−α)Y (s,c).
If E is an event, then EX + (1−E)Y is a subjective mixture of X and Y: it
yields consequence c in state s with probability X(s,c) if E(s,c) = 1, and with
probability Y (s,c) otherwise.

Assume that C contains a “worst” and a “best” consequence, labeled 0 and 1
respectively.1 Other consequences are labeled 2,3, . . . ,K. The symbols Hc, for c∈
{0,1,2, . . . ,K}, and Hu, for u ∈ (0,1), will be used to denote special “reference”
horse lotteries. First, for all c ∈ {0,1,2, . . . ,K}, let Hc denote the horse lottery
that yields consequence c with probability 1 in every state. That is, Hc(s,c′) = 1
if c = c′ and Hc(s,c′) = 0 otherwise. For example, H2 is the horse lottery that
yields consequence 2 with probability 1 in every state. Next, for all u ∈ (0,1),
let Hu denote the horse lottery that yields the best and worst consequences with
probabilities u and 1−u in every state, which is the objective mixture:

Hu ≡ uH1 +(1−u)H0.

For example, H0.5 is the horse lottery that yields consequences 0 and 1 with equal
probability. Later on, consequences 0 and 1 will be assigned utilities of 0 and 1,
respectively, so that Hu will have an expected utility of u by definition.

The reference-lottery notation can be stretched further to define HE as the
horse lottery that yields the best consequence if event E occurs and the worst
consequence otherwise, i.e., the subjective mixture:

HE ≡ EH1 +(1−E)H0.

Bounds on subjective probabilities are expressible as preferences between subjec-
tive and objective mixtures of H0 and H1. For example, a preference of the form
HE �∼ Hp for some event E and p ∈ (0,1) means that “the probability of E is at
least p,” i.e., that p is a lower probability for E. Upper probabilities are defined
analogously. If X is a horse lottery and u is a scalar between 0 and 1, a preference

1Our assumption of a priori best and worst consequences follows Luce and Raiffa (1957) and
Anscombe and Aumman (1963), and it is technically without loss of generality in the sense that the
preference order can always be extended to a larger domain that includes two additional consequences
which by construction are better and worse, respectively, than all the original consequences. (Such an
extension is demonstrated by SSK, Theorem 2.) The best and worst consequences ultimately serve
to calibrate the definition and measurement of subjective probabilities, but even so the probabilities
remain somewhat arbitrary, as will be shown.
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of the form X �∼ Hu means that “the expected utility of X is at least u.” Equiva-
lently, we will say that u is a lower expected utility for X. Upper expected utilities
are defined analogously. Using the terms defined above, we now introduce the first
group of axioms that are assumed to govern rational preference:
A1 (Quasi order): �∼ is transitive and reflexive.
A2 (Mixture-independence): X �∼ Y⇔ αX+(1−α)Z �∼ αY+(1−α)Z ∀α ∈
(0,1).
A3 (Continuity in probability): If {Xn} and {Yn} are convergent sequences such
that Xn

�∼ Yn, then limXn
�∼ limYn.

A4 (Existence of best and worst): For all c > 1, H1 �∼ Hc �∼ H0.
A5 (Coherence, or non-triviality): H1 � H0 (i.e., not H0 �∼ H1).

A1 and A2 are von Neumann and Morgenstern’s first two axioms of expected
utility, minus completeness2, as applied to horse lotteries by Anscombe and Au-
mann (1963); see also Fishburn (1982). A3 is a strong continuity condition used
by Garcia del Amo and Rios Insua (2002) that also works in infinite-dimensional
spaces. A4 and A5 ensure non-triviality and provide reference points for proba-
bility measurement, as noted earlier.
DEFINITION: A collection of preferences {Xn �∼ Yn} is a basis3 for �∼ under
an axiom system if every preference X �∼ Y can be deduced from {Xn �∼ Yn} by
direct application of those axioms.

The primal geometric representation of �∼ is now given by:

Theorem 1 �∼ satisfies A1–A5 if and only if there exists a closed convex cone
B∗ ⊂ B , receding from the origin, such that for any horse lotteries X and Y:

X �∼ Y⇔ X−Y ∈ B∗.

In particular, if {Xn
�∼ Yn} is a basis for �∼ under A1–A5, then the cone B∗ is the

closed convex hull of the rays whose directions are {Xn−Yn} for all n together
with {H1−Hc} and {Hc−H0} for all c.4

Because the direction of preference between two horse lotteries X and Y depends
only on the direction of the vector X−Y, it follows that if EX+(1−E)Z �∼ EY+
(1−E)Z where E is an event, then EX +(1−E)Z′ �∼ EY + (1−E)Z′ for any
Z′. Consequently, we will simply write EX �∼ EY to indicate that EX + (1−
E)Z �∼ EY+(1−E)Z for all Z, or in other words, “X is preferred to Y conditional
on the event E.” This result enables us to give a simple definition of conditional
probability or expected utility: if E is an event and X is a horse lottery, then the
preference EX �∼ EHu means that “the conditional expected utility of X given E
is at least u.”

2The completeness assumption asserts that for any X and Y, either X �∼ Y or Y �∼X, or both. Here,
it is permitted that neither of these conditions holds—i.e., X and Y may be incomparable.

3Use of the term “basis” in this context is due to SSK.
4Proofs have been suppressed in the conference version of the paper but are available in the com-

plete version on the author’s web site at http://www.duke.edu/∼rnau.
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Now let a state dependent expected utility (s.d.e.u.) function be defined as a
function v : S×C 7→ ℜ, with the interpretation that v(s,c) is the expected utility
of receiving consequence c with probability 1 if state s obtains and receiving
consequence 0 with probability 1 otherwise. Let Uv(X) denote the expected utility
assigned to a horse lottery X by the s.d.e.u. function v:

Uv(X)≡ ∑
s∈S,c∈C

X(s,c)v(s,c).

DEFINITIONS: A s.d.e.u. function v is a probability/utility pair if it can be
expressed as the product of a probability distribution on S and a state-independent
utility function on C—i.e., if v(s,c) = p(s)u(c) for some functions p and u. A
s.d.e.u. function v agrees (one way) with �∼ if X �∼ Y⇒Uv(X) ≥Uv(Y). A set
V of s.d.e.u. functions represents �∼ if X �∼ Y⇔Uv(X)−Uv(Y)≥ 0 ∀ v ∈ V .

We now have, as the dual to Theorem 1:

Theorem 2 �∼ satisfies A1–A5 if and only if it is represented by a non-empty
closed convex set V ∗ of s.d.e.u. functions satisfying (w.l.o.g.) Uv(H0) = 0 and
Uv(H1) = 1.

(The proof relies on a separating hyperplane argument. For a similar result on a
more general space, see Rios 1992.) If {Xn �∼ Yn} is a basis for �∼ , then V ∗ is
merely the intersection of the linear constraints {Uv(Xn)≥Uv(Yn)}, Uv(H0) = 0,
Uv(H1) = 1, and 0≤Uv(Hc) ≤ 1 for all c ≥ 2. If the basis is finite, then V ∗ is a
convex polytope, whose elements need not be probability/utility pairs. Subsequent
sections of the paper will discuss the additional assumptions needed to ensure that
some points of V ∗—especially its extreme points—are probability/utility pairs.

3 The state-independence axiom
We now explore the implications, in the context of incompleteness, of the addi-
tional axiom introduced by Anscombe and Aumann5 to provide the usual sep-
aration of subjective probability from utility. First, define the concept of a not-
potentially-null event:
DEFINITION: An event E is not potentially null if HE �∼ Hp for some p > 0.

Thus, an event that is not potentially null is precluded from having zero as an
upper probability in any extension of �∼ satisfying A1–A5. The final axiom is
then:
A6 (State-independence): If X and Y are constant and E is not potentially null,

then EX �∼ EY ⇒ E′X �∼ E′Y for every other event E′.
An immediate contribution of A6, in light of A4, is to guarantee that conse-

quences 0 and 1 are best and worst in every state. Thus, if A6 holds, any s.d.e.u.

5Anscombe-Aumann refer to this assumption as “monotonicity in the prizes” or “substitutability.”
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function agreeing with �∼ may be considered to belong to the set V + ⊂ V de-
fined by:

V + ≡ {v : 0 = v(s,0) ≤ v(s,c) ≤ v(s,1) ≤ 1 ∀ s ∈ S, c≥ 2; ∑
s∈S

v(s,1) = 1}.

Henceforth it will be assumed (arbitrarily but w.l.o.g.) that consequences 0 and
1 have the same numerical utilities, namely 0 and 1, in every state as well as
unconditionally. Then, regardless of whether v is a probability/utility pair, define

pv(s)≡ v(s,1)

as “the” probability assigned to state s by v, since it is the expected utility of a
horse lottery that yields a utility of 1 if state s obtains and 0 otherwise.6 Corre-
spondingly, if E is an event,

pv(E)≡Uv(HE) = ∑
s∈E

pv(s)

is the probability assigned to E by v. Next define:

uv(s,c) ≡ v(s,c)/v(s,1) if v(s,1) > 0,

as the utility assigned to consequence c in state s by v. This utility is state-
independent if v is a probability/utility pair, otherwise it is state-dependent. In
these terms, the expected utility assigned to X by v can be rewritten as:

Uv(X) = ∑
s

pv(s)∑
c

uv(s,c)X(s,c).

We can now give a dual definition of conditional expected utility in terms of v in
the obvious way:

Uv(X|E) = Uv(XE)/pv(E).

If the conditional expected utility of X given E is at least u by our primal definition—
i.e., if EX �∼ EHu—then dually we have Uv(X|E)≥ u for any v agreeing with �∼
and satisfying pv(E) > 0, because for any agreeing v:

EX �∼ EHu⇒Uv(EX)≥Uv(EHu) = upv(E)⇔Uv(X|E)≥ u or else pv(E) = 0.

Another consequence of A6, in light of Theorem 1, is the property of stochas-
tic dominance. In particular, if X is obtained from Y by shifting probability mass

6The same method of defining probabilities is used by Karni (1993). Since this definition is based
on the arbitrary assignment of equal utilities to the best and worst outcomes in all states, it should not
be interpreted as the “true” probability of a hypothetical decision maker whose preferences are rep-
resented by v. The classic definitions of subjective probability given by Savage, Anscombe-Aumann,
and others, are all afflicted with the same arbitrariness. The intrinsic impossibility of inferring “true”
probabilities from material preferences is discussed by Kadane and Winkler (1988), Schervish et al.
(1990), Karni and Mongin (2000) and Nau (1995, 2002).
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to consequence 1 from any other consequence, and/or from consequence 0 to
any other consequence, in any state, then X �∼ Y. To see this, note that A6 to-
gether with A4 implies that EsH1 �∼ EsHc and EsHc �∼ EsH0 for state s and any
c > 1. Hence B∗ contains all vectors of the form Es(H1−Hc) and Es(Hc−H0).
If X−Y can be expressed as a non-negative linear combination of these vectors,
then X−Y∈B∗ and hence X �∼Y. To make this result more precise, let the [ . ]min
(“minimum s.d.e.u.”) operation be defined on B as follows:

[B]min ≡ min
v∈V +

Uv(B) = min
s∈S

[B(s,1)+ ∑
c≥2

min{0,B(s,c)}].

This quantity is the minimum possible state-dependent expected utility that could
be assigned to B: it is achieved by assigning, within each state, a utility of 0 to
those consequences c≥ 2 for which B is positive and a utility of 1 to those conse-
quences c≥ 2 for which B is negative, then assigning a subjective probability of 1
to the state in which the conditional expected utility of B is minimized. Stochastic
dominance and the negative orthant in B can now be defined in a natural way:
DEFINITIONS: X≥∗ [>∗] Y (“X [strictly] dominates Y”) if [X−Y]min≥ [>] 0.
The open negative orthant B− consists of those B that are strictly dominated by
the zero vector, i.e., B− = {B ∈ B : 0 >∗ B}.

A6 in conjunction with A1–A5 then implies that X≥∗ [>∗] Y⇒ X �∼ [�] Y.
If preferences are complete (i.e., if for any horse lotteries X and Y, either X �∼ Y
or Y �∼ X or both), then the primal representation B∗ is a half-space, the dual
representation V ∗ consists of a unique s.d.e.u. function v∗, and axiom A6 re-
quires the latter to be a probability/utility pair, which is the same result obtained
by Anscombe and Aumann (1963). (A6 implies that Uv∗(Hc|Es) = Uv∗(Hc) inde-
pendent of the state s.) In the absence of completeness, the contribution of A6 to
the separation of probability and utility is weaker, as summarized by:

Theorem 3 . �∼ satisfies A1–A6 if and only if it is represented by a nonempty
convex set V ∗∗ ⊆ V + of s.d.e.u. functions of which at least one element is a
probability/utility pair.

If {Xn �∼ Yn} is a basis for �∼ under axioms A1–A6, then any probability/utility
pair v that satisfies Uv(Xn) ≥Uv(Yn) for all n, v ∈ V +, belongs to the set V ∗∗.
Apart from this fact, it is not easy to characterize the set V ∗∗ in terms of proba-
bility/utility pairs, as will be illustrated in the sequel.

4 Strict vs. non-strict preference: an example
The results of the preceding section establish that a preference relation satisfying
A1–A6 is represented by a closed set of s.d.e.u. functions of which at least one is
a probability/utility pair. The closedness of the representing set is attributable to
the use of non-strict preference as the behavioral primitive, together with a strong
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continuity assumption. In contrast, SSK use strict preference as the behavioral
primitive, together with a weaker continuity assumption, to explicitly allow for
the representation of incomplete preferences by open sets that may fail to contain
probability/utility pairs.

The differences in these approaches are illustrated by an example of SSK
(Example 4.1) comprising two states and three consequences, i.e., S = {1,2} and
C = {0,1,2}. Consequences 0 and 1 have state-independent utilities of 0 and 1 by
assumption, so that a probability/utility pair is completely parameterized by the
probability assigned to state 1 and the utility assigned to consequence 2. Consider,
then, the two probability/utility pairs (pi,ui) in which p0(1) = 0.1 and p1(1) =
0.3, and u0(2) = 0.1 and u1(2) = 0.4. Let v0 and v1 denote the corresponding
s.d.e.u. functions—i.e., vi(s,c) = pi(s)ui(c) for i = 0,1. Then Uvi(X) denotes the
expected utility assigned to horse lottery X by (pi,ui). In particular,Uv0(H2) = 0.1
and Uv1(H2) = 0.4. Now let � be defined as the preference relation that satisfies
a weak Pareto condition with respect to these two probability/utility pairs—i.e.,
X�Y⇔{Uv0(X) >Uv0(Y) and Uv1(X) >Uv1(Y)}. Any s.d.e.u. function that is
a convex combination of v0 and v1 also agrees with�, so the representing set V ∗∗
is the closed line segment whose endpoints are v0 and v1, but none of its interior
points are probability/utility pairs.

Next SSK extend � to obtain a new preference relation �′′ by imposing the
additional strict preferences H0.4 �′′ H2 �′′ H0.1. The effect of this extension is
to chop off the two endpoints of the representing set of s.d.e.u. functions, so that
�′′ is represented by the open line segment connecting v0 with v1. SSK point out
that, although�′′ satisfies all their axioms, there is no agreeing probability/utility
pair for it, since the only two candidates have been deliberately excluded. They
proceed to axiomatize the concept of “almost state- independent” utilities, which
agree with a strict preference relation and are “within ε” of being state- inde-
pendent. Clearly, �′′ has an almost-state-independent representation, containing
points arbitrarily close to v0 and v1.

In our framework, where the language of preference is non-strict, there is
no way to implement a constraint such as H2 � H0.1 (i.e., to chop off v0) ex-
cept by asserting that H2 �∼ H0.1+ε for a specific positive ε. And if this asser-
tion is made, an interesting thing happens: axiom A6 begins to nibble on the
v0 end of the line segment and continues nibbling until the representation col-
lapses to the v1 end. To illustrate this process, let the non-zero elements of each
v be written out as v = ({v(s,c)}) = (v(1,1),v(2,1);v(1,2),v(2,2)). Thus, v0 =
(0.1,0.9;0.01,0.09) and v1 = (0.3,0.7;0.12,0.28). (Note that because these are
probability/utility pairs, the first two numbers in parentheses are the probabilities
of states 1 and 2, and the last two numbers are the same probabilities multiplied
by the utility of consequence 2.) Next, let the line segment from v0 to v1 be pa-
rameterized by vα ≡ (1−α)v0 +αv1 for α ∈ (0,1). In these terms we obtain:

vα = (0.1+0.2α,0.9−0.2α;0.01+0.11α,0.09+0.19α),
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whence:
Uvα(H2) = vα(1,2)+ vα(2,2) = 0.1+0.3α (4.1)

Uvα(H2|E1) =
vα(1,2)

vα(1,1)
=

0.01+0.11α
0.1+0.2α

(4.2)

Uvα(H2|E2) =
vα(2,2)

vα(2,1)
=

0.09+0.19α
0.9−0.2α

(4.3)

These are all monotone functions of α for α between 0 and 1, and they all are
equal to 0.1 at α = 0 and 0.4 at α = 1. However, for intermediate values of α,
(4.1) is greater than (4.3) and less than (4.2), and by invoking axiom A6, we can
play the last two off against each other. In particular, it follows from monotonicity
of (4.2) that

α≥ α∗⇒Uvα(H2|E1)≥
0.01+0.11α∗

0.1+0.2α∗
, (4.4)

whereas it follows from monotonicity of (4.3) that

Uvα(H2|E2)≥ u∗⇒ α≥ 0.9u∗−0.09
0.2u∗+0.19

(4.5)

Let the set V ∗∗ representing the original relation � henceforth be parameterized
as V ∗∗ = {vα|α∈ [0,1]}. Suppose that we now increase the lower utility of H2 by
ε = 0.01 by adding the preference assertion H2 �∼ H0.11 to the basis for �. This
additional assertion imposes the constraint Uvα(H2) ≥ 0.11 for all vα agreeing
with the extended relation, thus excluding v0 as an agreeing s.d.e.u. function. By
application of A6, we may conclude that Uvα(H2|E2)≥ 0.11 as well. Substituting
u∗= 0.11 in (4.5), it follows that the representing set must consist only of those vα
satisfying α≥ 0.042453. But now, substituting α∗ = 0.042453 back into (4.4), we
find that it must also satisfy Uvα(H2|E1) ≥ 0.135217. Since E1 is not potentially
null, A6 may be applied again to obtain Uvα(H2)≥ 0.135217. Thus, if we take one
bite out of the line segment by imposing the constraint Uvα(H2) ≥ 0.11, we end
up concluding that a larger bite Uvα(H2)≥ 0.135217 may be taken! If we now re-
peat the process by substituting u∗= 0.135217 in (4.5), we obtain α∗ = 0.146034,
which yields Uvα(H2|E1)≥ 0.201721 when substituted in (4.4). Successive itera-
tions yield u∗ values of 0.299288, 0.365247, 0.390144, 0.397381, 0.399317, and
so on with rapid convergence to 0.4, which is realized (only) at v1. The continuity
axiom then allows us to assert that H2 �∼ H0.4, which together with the original
constraint H0.4 �∼H2, establishes that the utility of consequence 2 is precisely 0.4.

If instead we start at the other endpoint, adding the constraint H0.4−ε �∼ H2
for ε > 0, the collapse occurs to the 0.1 value. If both constraints are added—i.e.,
if both endpoints are chopped off by finite margins, the entire interval is annihi-
lated, yielding incoherence (a violation of A5). Hence, this example is unstable
in the sense that any finite extension of the original preference relation leads to
a collapse to one or the other of the original probability/utility pairs, or else to
incoherence.
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5 The need for stronger state-independence
The original preference relation in SSK’s example is represented by a set of
s.d.e.u. functions whose extreme points are both probability/utility pairs. In our
framework, if either of these points is excluded, then the intervening points must
be excluded as well. Thus, in extending that relation, it is impossible to retain any
agreeing state-dependent utilities that are not convex combinations of agreeing
state-independent utilities. A second example shows that this is not always the
case under axioms A1–A6. In other words, a preference relation can satisfy these
axioms and yet not be represented by utilities that are state-independent or even
“almost” state-independent.

Let there be three states and three consequences, and let X denote the horse
lottery that satisfies X(1,0) = X(2,2) = X(3,1) = 1. That is, X yields conse-
quences 0, 2, and 1 with certainty in states 1, 2, and 3 respectively. Suppose that
all states are judged to have probability at least 0.1, and X is judged to have an
unconditional expected utility of at least 0.5. Furthermore, a coin flip between X
and {consequence 2 if state 1, otherwise Z} is preferred to a coin flip between
utility 0.5 and {utility 0.9 if state 1, otherwise Z}, but also a coin flip between X
and {utility 0.1 if state 2, otherwise Z} is preferred to a coin flip between utility
0.5 and {consequence 2 given state 2, otherwise Z}. (The common alternative Z
is arbitrary by Theorem 1.) Thus, the basis for �∼ is as follows:

HE �∼ H0.1 for E = E1,E2,E3, (5.1)

1
2

X+
1
2

Z �∼
1
2

H0.5 +
1
2

Z, (5.2)

1
2

X+
1
2
(E1H2 +(1−E1)Z) �∼

1
2

H0.5 +
1
2
(E1H0.9 +(1−E1)Z), (5.3)

1
2

X+
1
2
(E2H0.1 +(1−E2)Z) �∼

1
2

H0.5 +
1
2
(E2H2 +(1−E2)Z), (5.4)

Notice that (5.3) and (5.4) are obtained from (5.2) by replacing Z by subjective
mixtures of Z with different constant lotteries on the LHS and RHS. These last
two preferences imply that the lower bound on the expected utility of X among
all probability/utility pairs agreeing with �∼ must be strictly greater than 0.5.
To understand this implication, note that under any s.d.e.u. function that agrees
with �∼ , the differences in expected utility between the LHS’s and RHS’s of
(5.2), (5.3), and (5.4), must all be non-negative. Moreover, if the s.d.e.u. function
is a probability/utility pair, then in at least one of the two comparisons (5.3) and
(5.4), the difference in expected utility between LHS and RHS must be strictly
less than it is in (5.2), a situation that occurs when consequence 2 has a utility
strictly greater than 0.1 and/or strictly less than 0.9. If the difference in expected
utility between LHS and RHS is non-negative in all cases, then the difference can
never be zero in (5.2)—i.e., X cannot have a lower expected utility as small as
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0.5. In fact, the minimum expected utility of X among all probability/utility pairs
agreeing with (5.1–5.4) is 0.564314.

The question is whether, by direct application of axioms A1–A6, we can infer
that the expected utility of X is strictly greater than 0.5. The answer is: we cannot.
The problem is that axiom A6 is useless here because of the common nonconstant
term X in (5.2)–(5.4). In order to apply A6, we must first find non- negative lin-
ear combinations of the differences between the LHS’s and RHS’s of (5.1)–(5.4)
that are conditionally constant—i.e., of the form EB, where E is an event and B
is constant across states. But the search for such conditionally constant terms is
constrained here by the presence of a common nonconstant term X−H0.5 in the
differences between LHS’s and RHS’s of (5.2)–(5.4). Furthermore, in order for
A6 to “bite,” B needs to have a negative lower expected utility when conditioned
on some other event E′. The effect of applying A6 will then be to raise this lower
expected utility to zero, which shrinks the set of s.d.e.u. functions representing
�∼ . In the example, the few conditionally-constant lottery differences EB that

can be constructed from (5.1)–(5.4) all turn out to satisfy B ≥∗ 0, which is com-
pletely uninformative. The lower expected utility of X therefore remains at 0.5
despite the fact that this value is not realized, or even closely approached, by any
probability/utility pair agreeing with �∼ .

This example shows that when preferences are incomplete, axiom A6 is insuf-
ficient to guarantee that they are represented by a set of probability/utility pairs
(or their convex hull). Evidently, an additional state-independence condition is
needed, such as:
A7 (Stochastic substitution): If

αX+(1−α)(EX′+(1−E)Z) �∼ αY+(1−α)(EY′+(1−E)Z)

for some α ∈ (0,1) where X′ and Y′ and Z are constant lotteries and E is not
potentially null, then

αX+(1−α)(pX′+(1− p)Z) �∼ αY+(1−α)(pY′+(1− p)Z)

for some p ∈ (0,1].
In other words, the subjective mixtures of the constant lotteries X′ and Y′ with

Z can be replaced with objective mixtures against the background of a compari-
son between the nonconstant lotteries X and Y. In terms of the primal representa-
tion B∗, this assumption means that if B+EB′ ∈ B∗, where B′ is constant across
states and E is not potentially null, then B+ pB′ ∈ B∗ for some p > 0.7 Note that
if a collection of preferences {Xn �∼ Yn} satisfies A1–A6, then the imposition of
A7 cannot produce a contradiction. A1–A6 require the existence of at least one
probability/utility pair agreeing with {Xn

�∼ Yn}, and any probability/utility pair
that agrees with the original preferences will also agree with any new preferences
generated from them by A7.

7A2 and A6 imply only that this substitution may be performed in the nonstochastic case B = 0.
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The new axiom does affect the counterexample discussed above. (5.3) and
(5.4) can now be replaced by

1
2

X+
1
2
(pH2 +(1− p)Z) �∼

1
2

H0.5 +
1
2
(pH0.9 +(1− p)Z),

1
2

X+
1
2
(p′H0.1 +(1− p′)Z) �∼

1
2

H0.5 +
1
2
(p′H2 +(1− p′)Z),

for some p, p′ > 0. A mixture of these two comparisons in a ratio of p′ to p yields:

1
2

X+
1
2
(αH0.1 +αH2 +(1−2α)Z) �∼

1
2

H0.5 +
1
2
(αH0.9 +αH2 +(1−2α)Z),

where α = pp′/(p + p′). The LHS must have greater-or-equal expected utility
than the RHS, which (because of the H0.1 term on the left and the H0.9 term on
the right, and cancellation of the common terms H2 and Z) means that X must
have strictly greater expected utility than 0.5.

The main result, which generalizes this example, can now be stated as:

Theorem 4 �∼ satisfies A1–A7 if and only if it is represented by a nonempty set
V ∗∗∗ of s.d.e.u. functions that is the convex hull of a set of probability/utility pairs.

If {Xn
�∼ Yn} is a basis for �∼ under A1–A7, then V ∗∗∗ is merely the con-

vex hull of the set of probability/utility pairs that satisfy {Uv(Xn) ≥ Uv(Yn)}.
If the basis is finite, the construction of V ∗∗∗ can be carried out as follows.
First, form the convex polyhedron consisting of the intersection of the constraints
{Uv(Xn)≥Uv(Yn)}, v ∈ V +. Now take the intersection of this polyhedron with
the nonconvex surface consisting of all probability/utility pairs. (If the latter in-
tersection is empty, the preferences do not satisfy A1–A7: they are incoherent.)
Finally, take the convex hull of what remains: this is the set V ∗∗∗.

6 Discussion
It has been shown that, in order to obtain a convenient representation of incom-
plete preferences by sets of probability/utility pairs, it does not suffice merely to
delete the completeness axiom from the standard axiomatic framework of Anscombe
and Aumann. This finding is not due to technical problems with limits or null
events, but rather to a fundamental weakness of the traditional state-independence
axiom in the absence of completeness. Our approach is to introduce an additional
state-independence postulate (A7) that has “bite” in the absence of completeness.
SSK follow a different approach in their axiomatization of incomplete strict pref-
erences. Instead of directly strengthening the state-independence property, they
“fill in the missing preferences” by indirect reasoning, namely, they assume the
preference relation has the property that ¬(X �∼ Y)⇒ Y � X, where “¬” stands
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for “it is precluded that,” meaning that there is no extension of �∼ satisfying
the other axioms in which X �∼ Y (p. 2204 ff.). SSK’s assumption requires that
wherever a weak preference is precluded, the opposite strict preference must be
affirmed. In our framework, this property of �∼ is not implied by axioms A1–A6,
hence it amounts to an additional axiom of rationality. The lack of this property is
illustrated by the example of the preceding section, in which it is precluded that
Hu

�∼ X for any u < 0.5643...., yet it is not implied by A1–A6 that X � Hu for
any u > 0.5. If the “axiom” of indirect reasoning is added to A1–A6, in lieu of
A7, the representation of Theorem 4 follows immediately from Theorem 3.
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