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Abstract

In this paper we study two classes of imprecise previsions, which we termed
convex and centered convex previsions, in the framework of Walley’s the-
ory of imprecise previsions. We show that convex previsions are related with
a concept of convex natural estension, which is useful in correcting a large
class of inconsistent imprecise probability assessments. This class is char-
acterised by a condition of avoiding unbounded sure loss. Convexity further
provides a conceptual framework for some uncertainty models and devices,
like unnormalised supremum preserving functions. Centered convex previ-
sions are intermediate between coherent previsions and previsions avoiding
sure loss, and their not requiring positive homogeneity is a relevant feature
for potential applications. Finally, we show how these concepts can be ap-
plied in (financial) risk measurement.
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1 Introduction
Imprecise probability theory is developed by P. Walley in [14] in terms of two
major classes of (unconditional) imprecise previsions, relying upon reasonable
consistency requirements: avoiding sure loss and coherent previsions. The condi-
tion of avoiding sure loss is less restrictive than coherence but is often too weak.

Coherent imprecise previsions have been studied more extensively, while im-
precise previsions that avoid sure loss received less attention, and it is an interest-
ing problem to state whether some special class of previsions avoiding sure loss
can be identified, which is such that
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(a) its properties are not too far from those of coherent previsions;

(b) it gives further insight into the theory of imprecise previsions or generalises
some of its basic aspects;

(c) it may express beliefs which do not match with coherence but which are
useful in formalising and dependably modelling certain kinds of problems.

The main aim of this paper is to discuss the properties and some applications of
two classes of imprecise previsions, which we termed convex and centered convex
previsions and which let us provide some answers to points (a), (b), (c). The paper
partly summarises and complements [12], where proofs may be found for those
results which are stated without proof here.

After recalling some basic notions in Section 2, we study the larger class of
convex lower previsions in Section 3.1. Although our conclusion is that convex-
ity is an unsatisfactory consistency requirement – for instance, convex previsions
do not necessarily avoid sure loss – it is however important as far as (b) is con-
cerned. That is seen in Section 3.2, where a notion of convex natural extension is
discussed which formally parallels the basic concept of natural extension in [14].
We characterise lower previsions whose convex natural extension is finite as those
complying with the (mild) requirement of avoiding unbounded sure loss. In this
case the convex natural extension indicates a canonical (least-committal) way of
correcting them into a convex assessment. As discussed in Section 3.2.1, it is then
easy to make a further correction to achieve the stronger (and more satisfactory)
property of centered convexity.

Centered convex previsions are discussed in Section 3.3, together with gener-
alisations of the important envelope theorem. Centered convex lower previsions
are a special class of previsions avoiding sure loss, retaining several properties of
coherent imprecise previsions, and hence they appear to fulfil requirement (a).

Section 4 gives some answers to point (c). Here convex previsions provide a
conceptual framework for certain kinds of uncertainty models, as shown in Ex-
amples 1 (overly prudential assessments) and 2 (supremum preserving functions).
These models are sometimes employed in practice, although they cannot usually
be regarded as satisfactory. Centered convex previsions do not require the positive
homogeneity condition P(λX) = λP(X), ∀λ > 0, and hence seem appropriate to
capture risk aversion. In Section 4.1 we focus in particular on risk measurement
problems, showing that the results in Section 3 may be used to define convex risk
measures (centered or not) for an arbitrary set of random variables D. In particu-
lar, the definition of convex risk measure coincides, when D is a linear space, with
the concept of convex risk measure recently introduced in the literature to consider
liquidity risks [4, 5, 7]. It appears here that results from the risk measurement area
can profitably contribute to the development of imprecise probability theory and
viceversa. Section 5 concludes the paper.
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2 Preliminaries
Unless otherwise specified, in the sequel we shall denote with D an arbitrary set
of bounded random variables (or gambles, in the notation of [14]) and with L
(⊃ D) the set of all bounded random variables (on a possibility space). A lower
prevision P (an upper prevision P, a prevision P) on D is a real-valued function
with domain D. In particular, if D contains only indicator functions of events, P
(P, P) is termed lower probability (upper probability, probability).

Lower (and upper) previsions should satisfy some consistency requirements:
the condition of avoiding sure loss and the stronger coherence condition [14].

Definition 1 P : D → IR is a lower prevision on D that avoids sure loss iff, for
all n ∈ N+, ∀ X1, . . . ,Xn ∈ D, ∀ s1, . . . ,sn real and non-negative, defining G =

∑n
i=1 si(Xi−P(Xi)), supG≥ 0.

Definition 2 P : D → IR is a coherent lower prevision on D if and only if, for
all n ∈ N+, ∀ X0,X1, . . . ,Xn ∈ D, ∀ s0,s1, . . . ,sn real and non-negative, defining
G = ∑n

i=1 si(Xi−P(Xi))− s0(X0−P(X0)), supG≥ 0.

The condition of avoiding sure loss is too weak under many respects: for instance,
it does not require that P(X) ≥ infX , nor does it impose monotonicity. On the
other hand, it is simpler to assess and to check than coherence.

Behaviourally, a lower prevision assessment P(X) may be viewed as a supre-
mum buying price for X [14], and s(X −P(X)) represents an elementary gain
from a bet on X , with stake s. We shall say that the bet is in favour of X if s ≥ 0,
whilst −s(X −P(X)) (s≥ 0) is an elementary gain from a bet against X . Defini-
tions 1 and 2 both require that no admissible linear combination G of elementary
gains originates a sure loss bounded away from zero. The difference is that the
concept of avoiding sure loss considers only bets in favour of the Xi, while coher-
ence considers also (at most) one bet against a random variable in D.

We recall the following properties of coherent lower previsions, which hold
whenever the random variables involved are in D:

(a) P(λX) = λP(X), ∀λ > 0 (positive homogeneity)
(b) infX ≤ P(X)≤ supX (internality)
(c) P(X +Y )≥ P(X)+P(Y ) (superlinearity).

Coherent precise previsions may be defined by modifying Definition 2 to allow
n≥ 0 bets in favour of and m≥ 0 bets against random variables in D (m,n ∈ IN).
A coherent precise prevision P is necessarily linear and homogeneous: P(aX +
bY ) = aP(X)+bP(Y), ∀a,b ∈ IR. In particular P(0) = 0.

Coherent lower previsions may be characterised using precise previsions [14]:

Theorem 1 (Lower envelope theorem) A lower prevision P on D is coherent iff
P is the lower envelope of some set M of coherent precise previsions on D, i.e. iff

P(X) = inf
P∈M
{P(X)} ,∀X ∈D (inf is attained).
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Upper and lower previsions are customarily related by the conjugacy relation
P(X) =−P(−X). An upper prevision P(X) may be viewed as an infimum selling
price for X and an elementary gain from a bet concerning X is written as s(P(X)−
X). The definitions of coherence and of the condition of avoiding sure loss are
modified accordingly.

3 Convex Lower Previsions

3.1 Convex Previsions
Definition 3 P : D → IR is a convex lower prevision on D iff, for all n ∈ N+,
∀ X0,X1, . . . ,Xn ∈D, ∀ s1, . . . ,sn real and non-negative such that ∑n

i=1 si = 1 (con-
vexity condition), defining G = ∑n

i=1 si(Xi−P(Xi))− (X0−P(X0)), supG≥ 0.1

Any coherent lower prevision is convex, since Definition 3 is obtained from
Definition 2 adding the constraint ∑n

i=1 si = s0 = 1 (note that we would get a
definition equivalent to Definition 3 requiring only ∑n

i=1 si = s0 > 0). Conversely,
a convex lower prevision does not even necessarily avoid sure loss:

Proposition 1 Let P be a convex lower prevision on D and let 0 ∈ D. Then P
avoids sure loss iff P(0)≤ 0.

Convexity is characterised by a set of axioms if D has a special structure:

Theorem 2 Let P : D → IR.

(a) If D is a linear space containing real constants, P is a convex lower previ-
sion iff it satisfies the following axioms:2

(T) P(X + c) = P(X)+ c,∀X ∈D,∀c ∈ IR (translation invariance)

(M) ∀X ,Y ∈D, if Y ≤ X then P(Y )≤ P(X) (monotonicity)

(C) P(λX + (1− λ)Y ) ≥ λP(X) + (1− λ)P(Y ),∀X ,Y ∈ D,∀λ ∈ [0,1]
(concavity).

(b) If D is a convex cone, P is a convex lower prevision iff it satisfies (C) and

(M1) ∀µ ∈ IR, ∀X ,Y ∈D, if X ≥ Y +µ then P(X)≥ P(Y )+µ.

Proposition 2 Some properties of convex lower previsions.

1The term ‘convex’ in ‘convex prevision’ refers to the convexity condition ∑n
i=1 si = 1 (si ≥ 0),

which distinguishes convex lower (upper) previsions from coherent lower (upper) previsions (cf. Def-
initions 2, 3 and 7) and convex natural extensions from natural extensions (cf. Definition 4 and Sec-
tion 3.2.1). The term ‘convex prevision’ is therefore unrelated with convexity or concavity properties
of previsions as real functions.

2(T) and (M) can be replaced by P(X)−P(Y )≤ sup(X−Y ),∀X ,Y ∈D.
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(a) (Convergence theorem) Let {P j}+∞
j=1 be a sequence of lower previsions,

convex on D and such that ∀X ∈ D there exists lim j→+∞ P j(X) = P(X).
Then P is convex on D.

(b) (Convexity theorem) If P1 and P2 are convex lower previsions on D, so is
P(X) = λP1(X)+(1−λ)P2(X), ∀λ ∈ [0,1].

Let P be a convex lower prevision on D. The following properties hold (whenever
all random variables involved are in D):

(c) If P(0)≥ 0, P(λX)≥ λP(X), ∀λ ∈ [0,1] and P(λX)≤ λP(X), ∀λ > 1

(d) P(0)+ infX ≤ P(X)≤ P(0)+ supX

(e) ∀µ ∈ IR, P∗(X) = P(X)+µ is convex on D.

Properties (a) and (b), which are quite analogous to corresponding properties of
coherent previsions and previsions avoiding sure loss [14], point out ways of ob-
taining new convex lower previsions from given ones. Property (c) shows that
convexity is compatible with lack of positive homogeneity, but requires the con-
dition P(0)≥ 0. Property (d) highlights a sore point of convexity: P(X) need not
belong to the closed interval [infX ,supX ] (internality may fail).3

Property (d) suggests that internality could be restored imposing P(0) = 0, if
0 /∈ D; by (e), if 0 ∈ D and P(0) 6= 0, then P∗(X) = P(X)−P(0) is convex and
P∗(0) = 0. Requiring P(0) = 0 is also the only choice to make P avoid sure loss
(Proposition 1), while assuring that (c) holds.

Thinking of the meaning of a lower prevision, it appears extremely reasonable
to add condition P(0) = 0 to convexity: it would be at least weird to give an
estimate (even imprecise) of the non-random variable 0 which is other than zero.

3.2 Convex Natural Extension
Before considering the stronger class of centered convex previsions, we introduce
the notion of convex natural extension, which is strictly related to convexity.

Definition 4 Let P : D → IR be a lower prevision, Z an arbitrary (bounded) ran-
dom variable. Define gh = sh(Xh−P(Xh)), L = {α : Z−α ≥ ∑n

i=1 gi, for some
n≥ 1,Xi ∈ D,si ≥ 0, with ∑n

i=1 si = 1}. Ec(Z) = supL is termed convex natural
extension4 of P on Z.

It is clear that L is always non-empty (putting n = 1, s1 = 1, X1 = X ∈ D in its
definition, α ∈ L for α ≤ infZ− supX + P(X)), while Ec(Z) can in general be
infinite. This situation is characterised in the following Proposition 3.

3Non-internality cannot anyway be two-sided: if there exists X ∈ D such that P(X) > supX
(P(X) < infX), then P(Y) > infY (P(Y ) < supY ), ∀Y ∈D. This is easily seen applying Definition 3,
with n = 2, {X0,X1}= {X ,Y}.

4The reason why Ec is termed ‘extension’ appears from the later Theorem 3, especially (d).
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Definition 5 P : D → IR is a lower prevision that avoids unbounded sure loss on
D iff there exists k∈ IR such that, for all n∈N+, ∀ X1, . . . ,Xn ∈D, ∀ s1, . . . ,sn real
and non-negative with ∑n

i=1 si = 1, defining G = ∑n
i=1 si(Xi−P(Xi)), supG≥ k.

Remark 1 Definition 5 generalises Definition 1: P avoids unbounded sure loss
if and only if P + k avoids sure loss for some k ∈ IR, since the last inequality in
Definition 5 may be written as sup∑n

i=1 si(Xi−(P(Xi)+k))≥ 0 and the constraint
∑n

i=1 si = 1 is not restrictive for Definition 1. Note also that if P + k avoids sure
loss, then so does P+h, ∀h≤ k. Therefore, when P avoids unbounded sure loss,
defining k = sup{k ∈ IR : P+ k avoids sure loss}, P avoids sure loss too whenever
k≥ 0. As a further remark, it can be seen that the constraint ∑n

i=1 si = 1 is essential
in Definition 5: wiping it out would make Definition 5 equivalent to Definition 1.

Proposition 3 Ec(Z) is finite, whatever is Z, iff P avoids unbounded sure loss.

Proof. Suppose first that P avoids unbounded sure loss and for an arbitrary Z let
α∈ L. Then Z−α≥∑n

i=1 si(Xi−P(Xi)) for some X1, . . . ,Xn ∈D and s1, . . . ,sn≥ 0
with ∑n

i=1 si = 1, and hence supZ−α ≥ sup∑n
i=1 si(Xi−P(Xi)) ≥ k, using Defi-

nition 5 at the last inequality. Therefore Ec(Z)≤ supZ− k.
Conversely, suppose now that P does not avoid unbounded sure loss. There-

fore, for each k ∈ IR there are X1, . . . ,Xn ∈ D and s1, . . . ,sn ≥ 0 with ∑n
i=1 si = 1

such that ∑n
i=1 si(Xi −P(Xi)) < k ≤ Z − (−k + infZ). This implies, for any Z,

−k + infZ ∈ L and, by the arbitrariness of k, Ec(Z) = +∞. 2

The condition of avoiding unbounded sure loss is rather mild. For instance, it
clearly holds whenever D is finite. It is also implied by convexity, as shown by
the following proposition, while the converse implication is generally not true.

Proposition 4 If P : D → IR is convex, it avoids unbounded sure loss.

Proof. Choose arbitrarily X1, . . . ,Xn ∈ D and s1, . . . ,sn ≥ 0 such that
∑n

i=1 si = 1 in Definition 5. Given X0 ∈ D, use convexity to write 0 ≤
sup{∑n

i=1 si(Xi−P(Xi))− (X0−P(X0))} ≤ sup{∑n
i=1 si(Xi−P(Xi))}− (infX0−

P(X0)), and hence sup{∑n
i=1 si(Xi−P(Xi))} ≥ k = infX0−P(X0). 2

We state now some properties of the convex natural extension. An indirect char-
acterisation of the convex natural extension will be given in Theorem 5.

Theorem 3 Let P : D → IR be a lower prevision which avoids unbounded sure
loss and Ec its convex natural extension. Then

(a) Ec is a convex prevision on L and Ec(X)≥ P(X),∀X ∈D

(b) P is convex if and only if Ec = P on D

(c) If P∗ is a convex prevision on L such that P∗(X) ≥ P(X) ∀X ∈ D, then
P∗(Z)≥ Ec(Z),∀Z ∈ L
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(d) If P is convex, Ec is the minimal convex extension of P to L

(e) P avoids sure loss on D if and only if Ec avoids sure loss on L .

3.2.1 The Role of the Convex Natural Extension

The properties of Ec closely resemble those of the natural extension E [14] of a
lower prevision P, whose definition differs from that of Ec only for the lack of
the constraint ∑n

i=1 si = 1. In particular, as E characterises coherence of P (P is
coherent iff E coincides with P on D), Ec characterises convexity of P.

Property (d) lets us extend P to any D ′ ⊃D (maintaining convexity) by con-
sidering the restriction of Ec to D ′. Moreover, (e) guarantees that Ec inherits the
condition of avoiding sure loss when P satisfies it.

It is well known that the natural extension is finite iff P avoids sure loss,
and when finite it can correct P into a coherent assessment in a canonical way.
Analogously, the convex natural extension is finite iff P avoids unbounded sure
loss, and can be used to correct P into a convex assessment, although property (e)
warns us that Ec will still incur sure loss if P does so. This problem can be solved
using Proposition 2, (e): P∗(X) = Ec(X)−Ec(0) is a correction of P which avoids
sure loss by Proposition 1, as P∗(0) = 0. This also means that P∗ is a centered
convex prevision by Definition 6 in the next section.

Alternatively, the convex natural extension may be employed to correct an
assessment P which avoids unbounded sure loss (but not sure loss) into P′ , which
avoids sure loss but is not necessarily convex. In fact, P+h avoids sure loss ∀h≤
k < 0 (cf. Remark 1). Since it can be shown that k =−Ec(0), it ensues that Ec(0)
is the minimum k to be subtracted from P to make P′ = P− k avoid sure loss.

Hence, the convex natural extension points out ways of correcting an assess-
ment incurring (bounded) sure loss into one avoiding sure loss, a problem which
cannot be answered using the natural extension. These corrections can be applied
in several interesting situations, including, as already noted, the case of a finite D.

3.3 Centered Convex Previsions and Envelope Theorems
The considerations at the end of Section 3.1 lead us naturally to the following
stronger notion of centered convexity:

Definition 6 A lower prevision P on domain D (0 ∈ D) is centered convex (C-
convex, in short) iff it is convex and P(0) = 0.5

Proposition 5 Let P be a centered convex lower prevision on D. Then

(a) P has a convex natural extension (hence at least one centered convex exten-
sion) on any D ′ ⊃D

5As shown in [12], we obtain an equivalent definition of centered convex lower prevision by re-
quiring P(0) = 0 and relaxing the convexity condition ∑n

i=1 si = s0 > 0 to ∑n
i=1 si ≤ s0.
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(b) P(λX)≥ λP(X), ∀λ ∈ [0,1], P(λX)≤ λP(X), ∀λ ∈]−∞,0[ ∪ ]1,+∞[

(c) infX ≤ P(X)≤ supX, ∀X ∈D

(d) P avoids sure loss.

Besides, the convergence and convexity theorems hold for C-convex previsions too
(replacing ‘convex’ with ‘centered convex’ in Proposition 2, (a) and (b)).

Properties (a)÷(d) show that centered convexity is significantly closer to co-
herence than convexity: C-convex lower previsions are a special class of previ-
sions avoiding sure loss, retaining several properties of coherence and the exten-
sion property of convexity, but not requiring positive homogeneity.

A convex prevision P which is not centered may still be avoiding sure loss, if
P(0) < 0 (Proposition 1), but in general it is only warranted by Proposition 4 that
it avoids unbounded sure loss, a very weak consistency requirement.

Remark 2 (Convexity and n-coherence) The consistency notion of n-coherence
is discussed in [14], Appendix B, illustrating how it can be appropriate for certain
‘bounded rationality’ models. If the model does not require positive homogeneity,
n-coherence alone is inadequate: 1-coherence is too weak, being equivalent to the
internality condition (c) in Proposition 5, 2-coherence is too strong, as on linear
spaces it is equivalent to two axioms, one of which is positive homogeneity [14].
As a matter of fact, C-convex previsions are a special class of 1-coherent (but not
necessarily 2-coherent) previsions.

An indirect comparison among convexity, centered convexity and coherence is
given by their corresponding envelope theorems. We firstly recall that it was
proved in [14] that any lower envelope of coherent lower previsions is coherent.
Here is the parallel statement for convex lower previsions, while the generalisa-
tion of Theorem 1 (lower envelope theorem) comes next.

Proposition 6 Let P be a set of convex lower previsions all defined on D. If
P(X) = infQ∈P

{
Q(X)

}
is finite ∀X ∈D, P is convex on D.

Theorem 4 (Generalised envelope theorem) P is convex on D iff there exist a set
P of coherent precise previsions on D and a function α : P → IR such that:

(a) P(X) = infP∈P {P(X)+α(P)}, ∀X ∈D (inf is attained).

Moreover, P is centered convex iff (0∈D and) both (a) and the following (b) hold:

(b) infP∈P{α(P)}= 0 (inf is attained).

A result similar to Theorem 4 was proved in risk measurement theory [4], requir-
ing D to be a linear space. The proof of Theorem 4, given in [12] in the framework
of imprecise prevision theory, is simpler and imposes no structure on D.
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Remark 3 In particular, the constructive implication of the theorem (for convex
previsions) enables us to obtain convex previsions as lower envelopes of trans-
lated precise previsions. Its proof follows easily from Proposition 6 and Proposi-
tion 2, (e): every precise prevision P is convex and so is P + α(P), by Proposi-
tion 2, (e); infP∈P {P(X)+α(P)} is a convex prevision by Proposition 6.

Remark 4 Let P be a lower prevision and S the set of all coherent precise pre-
visions on L . Define also M (P) = {(Q,r) ∈ S × IR : Q(X)+ r≥ P(X),∀X ∈D}.
It ensues from Theorem 4 that convexity of P can be equivalently characterised by
the condition P(X) = inf

{
Q(X)+ r : (Q,r) ∈M (P)

}
∀X ∈ D; C-convexity can

be characterised by adding the constraint inf
{

r : ∃Q ∈ S : (Q,r) ∈M (P)
}

= 0
(cf. also the following Theorem 5, where the lower envelope concerns all X ∈ L).

The envelope theorem characterisations of convexity, centered convexity and
coherence differ about the role of function α, which is unconstrained with con-
vexity, non-negative and such that minα = 0 with centered convexity, identically
equal to zero with coherence (in this case Theorem 4 reduces to Theorem 1).

The result in the next theorem characterises the convex natural extension as
the lower envelope of a set of translated coherent precise previsions and can be
proved in a way similar to the natural extension theorem in [14], Section 3.4.

Theorem 5 Let P be a lower prevision on D which avoids unbounded sure loss
and define S and M (P) as in Remark 4. Then, M (P) = M (E c) and Ec(X) =
inf
{

Q(X)+ r : (Q,r) ∈M (P)
}

,∀X ∈ L .

4 Some Applications
We have seen so far that convexity may help in correcting several inconsistent
assessments. As noted in Section 3.2.1, its usefulness in this problem is essentially
instrumental: we may easily go further and arrive at a centered convex correction,
which guarantees a more satisfactory degree of consistency.

Turning to other problems, some uncertainty modelisations give rise to convex
previsions, as in the examples which follow. We emphasise that we do not main-
tain that these models are reasonable, but simply that they are sometimes adopted
in practice, and that convexity supplies a conceptual framework for them.

Example 1 (Overly prudential assessments) Persons or institutions which have
to evaluate the random variables in a set D are often unfamiliar with uncer-
tainty theories. In this case, a solution is to gather n experts and ask each of
them to formulate a precise prevision (or an expectation) for all X ∈D. Choosing
P(X) = mini=1,...,n Pi(X),∀X (where Pi is expert i’s evaluation) as one’s own opin-
ion is an already prudential way of pooling the experts’opinions, and originates a
coherent lower prevision. Some more caution or lack of confidence toward some
experts may lead to replacing every Pi with P∗i = Pi−αi before performing the
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minimum, where αi ≥ 0 measures in some way the final assessor’s personal cau-
tion or his/her (partially) distrusting expert i. By Theorem 4, P∗ = mini=1,...,n P∗i is
convex (cf. Remark 3). More generally, P∗ is of course convex also when the sign
of the αi is unconstrained (αi < 0 if, for instance, expert i’s opinion is believed to
be biased and below the ‘real’ prevision). It is interesting to observe that if αi ≥ 0
for at least one i, P∗ avoids sure loss too (since then Ec(0) ≤ 0 by Theorem 5,
hence Ec avoids sure loss by Proposition 1, and so does P∗ by Theorem 3, (e)).
In particular, the following situation may be not unusual with an unexperienced
assessor: αi > 0 for some i, and 0 /∈D, because the assessor thinks that no expert
is needed to evaluate 0, he himself can assign, of course, P∗(0) = 0. If such is
the case, the extension of P∗ on D ∪{0} keeps on avoiding sure loss, as is eas-
ily seen, but is generally not convex (to see this with a simple example, suppose
X ∈D, P∗(X) < infX and use the result in footnote 3 to obtain that P∗(0) < 0 is
then necessary for convexity).

In the following example and in Section 4.1 we shall refer to upper previsions, to
which the theory developed so far extends with mirror-image modifications. We
report the conjugates of Definition 3 and Theorem 4.

Definition 7 P : D → IR is a convex upper prevision on D iff, for all n ∈ N+,
∀ X0,X1, . . . ,Xn ∈D, ∀ s1, . . . ,sn real and non-negative such that ∑n

i=1 si = 1 (con-
vexity condition), defining G = ∑n

i=1 si(P(Xi)−Xi)− (P(X0)−X0), supG≥ 0.

Theorem 6 P is convex on its domain D iff there exist a set P of coherent precise
previsions (all defined on D) and a function α : P → IR such that:

(a) P(X) = supP∈P {P(X)+α(P)}, ∀X ∈D (sup is attained).

Moreover, P is centered convex iff (0∈D and) both (a) and the following (b) hold:

(b) supP∈P{α(P)}= 0 (sup is attained).

Example 2 (Supremum preserving functions) Let IP = {ωi}i∈I be a (not neces-
sarily finite) set of exhaustive non-impossible elementary events or atoms, i.e.
ωi 6= ∅ ∀i ∈ I, ∪i∈Iωi = Ω, ωi∩ω j = ∅ if i 6= j. Given a function π : IP→ [0,1],
define Π : 2IP−{∅}→ [0,1] (2IP is the powerset of IP) by

Π(A) = sup
ωi∈A
{π(ωi)} ,∀A ∈ 2IP−{∅} . (1)

As well-known, if π is normalised (i.e., supπ = 1) and extended to ∅ putting
π(∅)(= Π(∅)) = 0, Π is a normalised possibility measure, a special case of co-
herent upper probability [3]. Without these additional assumptions, Π is a convex
upper probability. To see this, define for i ∈ I, Pi(ωi) = 1, Pi(ω j) = 0 ∀ j 6= i,
αi = π(ωi)− 1, and extend (trivially) each Pi to 2IP. It is not difficult to see that
Π(A) = supi∈I {Pi(A)+αi} , ∀A ∈ 2IP and therefore Π is convex by Theorem 6. If
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supπ < 1, Π has the unpleasant property that Π(Ω) < 1, and also Π(∅) < 0 (this
means that Π incurs sure loss and is not C-convex). Functions similar to these
kinds of unnormalised possibilities were considered in the literature relating pos-
sibility and fuzzy set theories, and their unsatisfactory properties were already
pointed out (see e.g. [9], Section 2.6 and the references quoted therein).

4.1 Convex Risk Measures
Further applications of convex imprecise previsions are suggested by the fact that
they do not necessarily require positive homogeneity, as appears from Proposi-
tion 5, (b). Considering the well-known behavioural interpretation of lower (and
upper) previsions [14], it is intuitively clear that applications could be generally
related to situations of risk aversion, because of which an agent’s supremum buy-
ing price for the random quantity λX might be less than λ times his/her supremum
buying price for X , when λ > 1.

In this section we shall discuss an application to (financial) risk measurement.
The literature on risk measures is quite large, as this topic is very important in
many financial, banking or insurance applications. Formally, a risk measure is a
mapping ρ from a set D of random variables into IR. Therefore ρ associates a
real number ρ(X) to every X ∈D, which should determine how ‘risky’ X is, and
whether it is acceptable to buy or hold X . Intuitively, X should be acceptable (not
acceptable) if ρ(X)≤ 0 (if ρ(X) > 0), and ρ(X) should determine the maximum
amount of money which could be subtracted from X , keeping it acceptable (the
minimum amount of money to be added to X to make it acceptable).

Traditional risk measures, like Value-at-Risk (VaR) – probably the most wide-
spread – require assessing (at least) a distribution function for each X ∈D; often,
a joint normal distribution is assumed [8]. Quite recently, other risk measures
were introduced, which do not require assessing exactly one precise probability
distribution for each X ∈D, and are therefore appropriate also in situations where
conflicting or insufficient information is available. Precisely, coherent risk mea-
sures were defined in a series of papers (including [1, 2]) using a set of axioms
(among these positive homogeneity), and assuming that D is a linear space. In
these papers, coherent risk measures were not related with imprecise previsions
theory, while this was done in [11, 13]; see also [10] for a general approach to
these and other theories. Convex risk measures were introduced in [4, 5, 7] as
a generalisation of coherent risk measures which does not require the positive
homogeneity axiom. We report the definition in [5]:

Definition 8 Let V be a linear space of random variables which contains real
constants. ρ : V → IR is a convex risk measure iff it satisfies the following axioms:

(T1) ∀ X ∈ V , ∀ α ∈ IR, ρ(X +α) = ρ(X)−α (translation invariance)

(M2) ∀ X ,Y ∈ V , if X ≤ Y then ρ(Y )≤ ρ(X) (monotonicity)
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(C1) ρ(λX +(1−λ)Y)≤ λρ(X)+(1−λ)ρ(Y) ∀X ,Y ∈V ,λ∈ [0,1] (convexity).

Convex risk measures are also discussed in [6] and their potential capability of
capturing risk aversion is pointed out in [5]. In a risk measurement environment,
a motivation for not assuming positive homogeneity is that ρ(λX) may be larger
than λρ(X) for λ > 1 also because of liquidity risks: if we were to sell immedi-
ately a large amount λX of a financial investment, we might be forced to accept a
smaller reward than λ times the current selling price for X .

It was shown in [11] that risk measures can be encompassed into the theory of
imprecise previsions, because a risk measure for X can be interpreted as an upper
prevision for −X :6

ρ(X) = P(−X). (2)

This fact was used in [11, 13] to generalise the notion of coherent risk measures
to an arbitrary domain D. An analogue generalisation can be done for convex risk
measures [12], as we shall now illustrate.

Definition 9 ρ : D → IR is a convex risk measure on D if and only if for all n ∈
N+, ∀ X0,X1, . . . ,Xn ∈D, ∀ s1, . . . ,sn real and non-negative such that ∑n

i=1 si = 1,
defining G = ∑n

i=1 si(Xi +ρ(Xi))− (X0 +ρ(X0)), supG≥ 0.

Note that Definition 9 may be obtained from Definition 7 referring to −X rather
than X , for all X ∈D.

If D is a linear space containing real constants, the notion in Definition 9
reduces to that in [4, 5], by the next theorem (cf. also Theorem 2, (a)):

Theorem 7 Let V be a linear space of bounded random variables containing
real constants. A mapping ρ from V into IR is a convex risk measure according to
Definition 9 iff it is a convex risk measures according to Definition 8.

Definition 9 applies to any set D of random variables, unlike Definition 8, which,
if D is arbitrary, requires embedding it in a larger linear space.

Results specular to those presented in Section 3 apply to convex risk measures.
In particular, the convergence and convexity theorems (Proposition 2, (a) and (b))
hold; convex risk measures can be extended on any D ′ ⊃D, preserving convexity;
they avoid sure loss iff ρ(0)≥ 0 (we say that ρ avoids sure loss on D iff P(−X) =
ρ(X) avoids sure loss on D− = {−X : X ∈D}).

Like the general case in Section 3, it appears quite appropriate to put ρ(0) = 0,
and hence to use centered convex risk measures: 0 is the unquestionably reason-
able selling or buying price for X = 0.

Definition 10 A mapping ρ from D (0 ∈ D) into IR is a centered convex risk
measure on D iff ρ is convex and ρ(0) = 0.

6We assume that the time gap between the buying and selling time of X is negligible (if not, we
should introduce a discounting factor in (2)). This simplifies the sequel, without substantially altering
the conclusions.
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Centered convex risk measures have further nice additional properties, corre-
sponding to those of centered convex lower previsions: they always avoid sure
loss, and are such that −supX ≤ ρ(X)≤− infX ,∀X ∈D.

This condition corresponds to internality ((c) of Proposition 5), and is a ra-
tionality requirement for risk measures: for instance, ρ(X) >− infX would mean
that to make X acceptable we require adding to it a sure number (ρ(X)) higher
than the maximum loss X may cause.

A centered convex risk measures ρ is not necessarily positively homogeneous:

ρ(λX)≥ λρ(X),∀λ≥ 1. (3)

A notion of convex natural extension may also be given for centered convex (or
convex) risk measures and its properties correspond to those listed in Theorem 3.
When finite, it gives in particular a standard way of ‘correcting’ other kinds of
risk measures into convex risk measures.7

The generalised envelope theorem is obtained from the statement of Theo-
rem 6 replacing P(X) and P(X) with, respectively, ρ(X) and P(−X).

Examples of convex risk measures may be found in [4, 5, 12].

5 Conclusions
In this paper we studied convex and centered convex previsions in the framework
of Walley’s theory of imprecise previsions. Convex previsions do not necessarily
satisfy minimal consistency requirements, but are useful in generalising natural
extension-like methods of correcting inconsistent assessments and in providing a
conceptual framework for some uncertainty models. Centered convex previsions
are in a sense intermediate between avoiding sure loss and coherence: their prop-
erties are closer to coherence than those of a generic prevision that avoids sure
loss, but are also compatible with lack of positive homogeneity. Because of this,
they are potentially useful at least in models which incorporate some forms of risk
aversion. We outlined a risk measurement application, where they lead to defining
convex risk measures, and believe that several applications of convex imprecise
previsions are still to be explored. It might also be interesting to investigate if and
how convex previsions can be generalised in a conditional environment, or when
allowing unbounded random variables.
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