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Abstract

The finite element method is widely used for solving various problems in
geotechnical engineering practice. The input parameters required for the cal-
culations are generally imprecise. The paper is devoted to a comparison of
probabilistic, stochastic and fuzzy set method for reliability analysis with re-
spect to its applicability for practical problems in geotechnical engineering.
Emphasis will be given by comparing the effects of modelling uncertainty
using different methods, with special reference to the role of spatial correla-
tion. After introducing some basic notions about the approaches, this article
shows that the results obtained with the fuzzy set method for a simple bearing
capacity problem agree with the outcomes by a probabilistic and a stochas-
tic method. Advantages and shortcomings of either approach with respect to
practical applications will be discussed.

Keywords

finite element method, probabilistic, fuzzy set, stochastic modelling, random field, spatial
correlation

1 Introduction
It is well known that material parameters of geomaterials may scatter within a
considerable range. Thus, a high degree of uncertainty may be introduced in any
type of analysis if material parameters are treated as deterministic values. There
is no agreement about what method should be used, to account for these uncer-
tainties especially in practical geotechnical problems where usually not sufficient
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information is available for a rigorous stochastic analysis, because site investiga-
tion and laboratory testing are restricted due to financial und time constraints.

It is still possible to use probabilistic methods in these problems by making
suitable assumptions on the statistics of the uncertainties, at least to some extent,
by combining different sources of information via Bayes’ theorem. However, the
numerical values obtained by probabilistic analysis (e.g. probability of failure) are
quite sensitive to changes in the input distribution parameters ([1, 13]), but play
an important rule in comparative and qualitative studies [14]. On the other hand,
Fuzzy set methods provide an appropriate mathematical model which can be used
for quantitative assessment.

In the developed methodology point estimate methods (PEM) for probabilis-
tic analyses and fuzzy set method for possibilistic analyses together with a finite
element model is used. Emphasis will be given to comparison with methods em-
ploying a stochastic model, which means that the parameters are described by spa-
tial random fields (e.g. [7]). This stochastic approach employs the Monte-Carlo
method and is used in this paper as a reference.

Both variability and spatial correlation lengths of material properties can af-
fect the reliability of geotechnical systems. In this article, elasto-plastic finite el-
ement analysis has been combined with theories mentioned above to investigate
the influence of material variability and spatial correlation lengths on the com-
putation of the bearing capacity of a smooth rigid strip footing on a weightless
soil with shear strength parameters c and ϕ under plane strain conditions [14].
The soil stratum is compressed by incrementally displacing the top surface verti-
cally downwards. Geometry and boundary conditions of the problem are shown
in figure 1.

Figure 1: Geometry and boundary conditions
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In the simulations, the mean cohesion (µc) and mean angle of friction (µϕ)
have been held constant at 100 kN/m2 and 25◦ while the coefficient of variation,
(COV=σc/µc), and the spatial correlation length, (Θ), are varied systematically.
For this investigation, it is assumed that when the variability in the cohesion is
large, the variability in the friction angle will also be large. The material param-
eters required for the model used are: Young’s modulus (E), Poisson’s ratio (ν),
dilatancy angle (ψ), cohesion (c), and friction angle (ϕ). In the present study, E,
ν and ψ are held constant (at 100.000 kN/m2, 0.3, and 0, respectively) while c
and ϕ are basic variables. It has to be pointed out that the interaction and cross-
correlation between the shear strength parameters is neglected in this study.

The question is how the variability of the shear strength parameters c and
ϕ affects the response given by the dimensionless bearing capacity factor, N c,
and consequently the reliability of the structure. The bearing capacity factor is
traditionally defined by Nc = q f / c where q f is the computed bearing capacity
and c is the cohesion of the soil. The theoretical bearing capacity factor, Nc, for a
spatially constant friction angle is given by Sokolovski [19]:

Nc =
1

tanϕ

[
eπ tanϕ tan2

(
45+

ϕ
2

)
−1
]

2 Spatial variability of soil properties
In principle, the spatial variation of a soil layer can be characterized in detail, but
only if a large number of tests can be performed. Thus, for geotechnical purposes
a simplification is introduced in which spatial variability is subdivided into two
parts, i.e. a linear trend, and a residual variability (stochastic description) about
that trend [15]. Figure 2 depicts the value of the soil property, u, at a boring loca-
tion as a function of depth, z, where µu(z) describes the trend which is represented
by a depth-dependent mean value. The stochastic description of the soil prop-
erty, u(z), consists of the standard deviation, σu(z), and the scale of fluctuation or
autocorrelation length, Θu, of u(z).

The spatial correlation length measures the distance within which the prop-
erty shows relatively strong correlation from point to point. The soil is modelled
as a random field ([21, 16]), which is a stochastic process defined by three co-
ordinates in space. This means that the properties of the soil in a specific point are
described as a random variable. Rather than a characterization of soil properties
at every point, data are used to estimate a smooth trend, and remaining variations
are described statistically because of the lack of data.

2.1 Spatial averaging
The mean of large volumes remains the same as the mean of small volumes, but
the standard deviation of the average property from one large volume to the next
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Figure 2: Spatial variability of a soil layer

is smaller than the standard deviation of the average property from one small
volume to the next [21]. The extent of averaging of soil properties, u(z), within
a large volume depends on the structure of spatial variation. More precisely, the
extent of averaging depends on the standard deviation of properties, σu, from point
to point and on the autocorrelation function. Similarly, the standard deviations
of the spatial averages, u∆z and uV, are σu∆z and σuV , respectively. Therefore, the
larger the length ∆z or the volume V over which the property is averaged, the more
variations of u tends to produce a reduction in the process of spatial averaging.
This tends to originate a reduction in standard deviation as the size of the averaged
length or volume increases. The so-called reduction factor Γu(V) is defined as the
dimensionless ratio between σuV and σu (Γu(V) = σuV / σu).

The square of the reduction factor, Γ2
u, will be called the variance function,

whereas for the two-dimensional case it will take the form: Γ2
u(∆z) = Θu / ∆z

for ∆z ≥ Θu. This relationship in fact defines the scale Θu, and provides a basis
for estimating this parameter of u(z) (figure 2). A useful interpretation of this
relationship is that Θu is the elementary distance that can be used to measure
∆z. Other assumptions for the determination of this variance reduction factor are
presented in e.g. [10, 22].

3 Probabilistic approach

3.1 The point estimate method
An alternative approach for calculating the statistical moments of the limit state
function, denoted by G(X), where X is the collection of random input variables, is
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the point estimate method (PEM). The method is essentially a weighted average
method similar to numerical integration formulas involving sampling points and
weighting parameters. The method seeks to replace a given continuous proba-
bility density function, with a discrete function having the same first three central
moments (mean value µ, standard deviation σ and skewness ν). The point estimate
method is able to account for up to three moments.

The most common point estimate method was developed by Rosenblueth [17].
In addition to Rosenblueth’s method, there are many other PEMs developed by
various researchers, including the methods of Evans [6], Zhou and Nowak [24],
Harr [9] and of Li [11]. In the present study the point estimate methods by Rosen-
blueth, Harr and Zhou and Nowak are used to obtain the statistical moments of
the bearing capacity factor Nc. A brief description of the methods is given below.

PEM by Rosenblueth: Rosenblueth [17] developed a point estimate method
which concentrates the probability density of a continuous random variable X into
two estimate points. If G(X) is a function of n basic variables whose skewness is
zero but which may be correlated, 2n points are chosen to include all possible
combinations so that the value of each variable is one standard deviation above or
below its mean value.

PEM by Harr: In particular the point estimate method by Harr [9] extends
Rosenblueth’s PEM. Harr proposed an alternative method which starts from the
correlation matrix of the data. This matrix is a real symmetric matrix of order
n, the number of random variables which can be diagonalized by an orthogonal
eigenvector matrix. The correlation matrix can be represented by a hypersphere of
radius

√
n centered at the corresponding expected values of xn in the standardized

coordinate system. The eigenvector starts from the origin of expected values in
their respective directions and each eigenvector intersects the sphere at two points.
These points of intersections provide the 2n point estimates for calculating the
statistical moments of G(X).

PEM by Zhou and Nowak: In the approach proposed by Zhou and Nowak [24]
predetermined points in the standard normal space are used to compute the statisti-
cal parameters of a function of multiple random variables X. These points must be
transformed in the typically correlated and non standard normal distributed space.
The integration of G(X) can be achieved using a non-product formula. Zhou and
Nowak provide a set of numerical integration formulas. In this work the 2n2+1
formula (ZN III) is used which leads to 2n2+1 realizations of G(X).

3.2 Stochastic modelling of soil properties
The finite element code [2] used in the proposed approach to calculate the bearing
capacity q f , require the soil profile to be modelled using homogeneous layers with
constant soil properties. For this reason soil properties have to be defined not only
for a certain point in space, but also for the entire domain which is used in the
calculation process. Due to the fact of spatial averaging of soil properties the
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coefficient of variation is reduced significantly as described above. In this study,
the variance reduction factor Γ by Vanmarcke [22] is used and can be obtained by

Γ2 =

[
Θ
Lu

(
1− Θ

4Lu

)]

for Θ/Lu ≤ 2, where Θ is the autocorrelation length and Lu is the length of the
potential failure surface. For µϕ = 25◦ the length of the failure surface Lu yields a
value of approximately 10.5 m.

4 Stochastic approach
The model of Fenton and Griffiths [7] combines random field theory with an
elasto-plastic finite element algorithm in a Monte-Carlo framework (RFEM). The
spatially varying and cross-correlated random fields are generated using the so-
called Local Average Subdivision (LAS) method which produces local arithmetic
averages of the lognormally distributed random field over each element. Thus,
each element is assigned a random value of ln c (c is the soil cohesion) as a local
average, over the element size, of the continuously varying random field having
point statistics. The element values thus correctly reflect the variance reduction
due to arithmetic averaging over the element as well as the cross-correlation struc-
ture dictated by spatial correlation length, Θln c. For the correlation structure of the
underlying generated fields an exponentially decaying isotropic correlation func-
tion is assumed, ρ(τ) = exp(-2τ / Θln c) where τ is the absolute distance between
any two points in the field. A typical deformed finite element mesh at failure is
shown in figure 3. Lighter regions in the illustration indicate stronger material
and darker regions indicate weaker material, which have triggered quite irregular
failure mechanisms.

The soil cohesion, c, is assumed to be lognormally distributed with mean µc,
standard deviation σc, and spatial correlation length Θln c. For the friction angle,
ϕ, a bounded distribution is selected. For each set of statistical properties given in
Table 1 according to [7], Monte-Carlo simulations have been performed, which
involves 1000 repetitions of the soil property random fields and the subsequent
finite element analysis. A different value for the bearing capacity, and after nor-
malization by the mean cohesion µc, a different value for the bearing capacity
factor, Nci, is obtained for each of the n Monte-Carlo simulations by Nci = q f i /
µc, i = 1,2,...,n. These values are then analysed statistically leading to an expected
value E[Nc], and standard deviation, s[Nc].
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Figure 3: Typical deformed finite element mesh at failure from [7]

5 Fuzzy set approach
Zadeh [23] used the theory of fuzzy sets as a basis for possibility to model un-
certainties. Although possibility distributions seem to be similar to probability
distributions, possibility calculus, which is used to derive the membership func-
tion of the performance of a system from the membership functions of the un-
certain variables, is fundamentally different than probability calculus. The main
difference between the axioms of possibility and probability measures is that the
possibility of a union of events (disjoint or not) is equal to the maximum of the
possibilities of the individual events, whereas the probability of a union of disjoint
events is equal to the sum of the probabilities of these events (see e.g. discussion
in [4]). Therefore, fuzzy set approach is an alternative to probability.

5.1 Fuzzy numbers
F(X) denotes the collection of fuzzy subsets of a set X. A fuzzy set A ∈ F(X) is
characterized by (and can be identified with) its membership function mA(x), 0 ≤
mA(x) ≤ 1, describing the degree of possibility that the variable A takes the value
x of X. The fuzzy sets [A]α = x ∈ X : mA(x) ≥ α are the so-called α-level sets of
A, i.e. the variable A fluctuates in the range [A]α with possibility degree α. Given
a function f : X→ Y, the extension principles by Zadeh [23] allows to extend it to
a function f :F(X)→ F(Y) by m f (A)(y) = sup{mA(x),x ∈ f−1(y)}.

A ∈ F
(
Rd) is called a fuzzy vector, if each of its α-level sets is convex and

compact (0 < α < 1), and [A]1 contains exactly one point. In the case of d = 1, A
is referred to as a fuzzy number. If f : Rd→ R is continuous and A a fuzzy vector,
the function value f (A) is a fuzzy number, whose level sets are computed by set
theoretic evaluation: [f (A)]α = f ([A]α).
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5.2 Fuzzification Method
Dubois and Prade [5] have proposed methods, which are based on judgement
and/or on statistical data but there is no commonly accepted procedure for es-
timating the possibility distribution of a variable. To compare probabilistic and
fuzzy set-based methods, we first construct a fuzzy set of an uncertain variable
on the basis of a given probability distribution by means of the least conservative
principle [12]. In this way, we ensure that both models are constructed using the
same data. In this paper, the principle is applied to construct a fuzzy set on the
basis of a given lognormal probability distribution in such a way that the range
between the 5% and the 95%-fractile represents the support (the upper and lower
bound value corresponds to α = 0) of the triangular fuzzy number where the ulti-
mate value, the core, respectively is at the modal value, which is the most frequent
value (figure 4 and 5). Since the data is based on the lognormal distributions ac-
cording to section 3.3, it has to be pointed out that autocorrelation is considered
already.

Figure 4: Fuzzy input parameter c, for a) COV of 0.2 and b) COV of 0.5

5.3 Fuzzy finite element analysis
When the input variables are defined as fuzzy numbers, the computation of the
fuzzy response quantity has to be performed. This is achieved by constructing
a possibility distribution for the response quantity which is based on the exten-
sion principle mentioned above. The principle relates the possibility distribution
of fuzzy input variables to the possibility distribution of the fuzzy response func-
tion, whereas the α-level concept is used to numerically implement the extension
principle. In this approach, the fuzzy function is a finite element model that trans-
forms input fuzzy data to a desired fuzzy output quantity. By replacing the fuzzy
numbers in the solution model with intervals, the fuzzy computation reduces to a
series of interval analyses, where the minimum and the maximum of the 2n values
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Figure 5: Fuzzy input parameter ϕ, for a) COV of 0.2 and b) COV of 0.5

define the resulting interval (n is the number of fuzzy input variables). Repeating
this process for all selected α-levels, a set of resulting intervals corresponding to
the selected α-levels is obtained and define the final output, the response mem-
bership function of the dimensionless bearing capacity factor, Nc (figure 6). The
higher the number of α-levels under consideration, the greater the accuracy of the
possibility distribution of the response. The total number of finite element runs
that is involved is N·2n, where N is the number of α-levels.

Figure 6: Possibility distribution of the bearing capacity factor, Nc, for a) COV of
0.2 and b) COV of 0.5

5.4 Defuzzification Method
For defuzzification a method based on weighted possibilistic mean and variance
of fuzzy numbers is used in this paper. Carlsson and Fuller [3] suggested the
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notations of weighted possibilistic mean value and variance of fuzzy numbers,
which are consistent with the extension principle. Furthermore, they showed that
the weighted variance of linear combinations of fuzzy numbers can be computed
in a similar manner as in probability theory:

E [X r] =
N

∑
i=1

αi.xr
αi

N

with xr
αi

= 1/2 ( xr
αi,L

+ xr
αi,U

), where E[Xr] represents the level-weighted rth mo-
ment of all α-level sets. αi denotes the α-level, N the number of α-levels con-
sidered and xr

αi
the arithmetic means of all α-level sets, that is, the weight of the

arithmetic mean of xr
αi,L

and xαi,U is just α.

6 Results and discussion
Figure 7 depicts the influence of Θ and COVc on the sample coefficient of vari-
ation of the estimated bearing capacity factor, COVNc = sNc /E[Nc] computed by
the random field model (RFEM) and by using the probabilistic and the fuzzy set
approach.

Figure 7: Coefficient of variation of Nc, a) Θ=0.5 and b) Θ=4.0

To have an assessment on the performance of all the approaches, the results
from the fuzzy solution are also included in those plots. The figure shows how
the bearing capacity factor varies with soil variability, and the spatial correlation
length. The plots indicate that COVNc is positively correlated with both COVc
and Θ, i.e. the variability in E[Nc] increases with the variability in the soil (the
higher the spatial correlation length the higher the increase). The results compare
well with the COVNc by the random field method, which represents a more so-
phisticated method. The PEM methods as well as the fuzzy set method capture
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the overall behaviour of the analysed ratio and is fairly accurate for moderate
magnitudes of the variability in the soil, i.e. COV<0.5.

Dubois and Prade [5] have shown that a possibility distribution (fuzzy set A)
constructed starting from few statistical data may be used to represent a wide
class of probability distributions (compatible with the available information) and
to consistently define upper and lower probability distributions, FL(x) and FU (x).
These bounds may be rewritten in terms of the membership function of the fuzzy
set A as FL(x) = sup{mA(x),x ≤ ω} and FU (x) = inf{1-mA(x),x > ω}, where ω
describes the value x with the degree of possibility, mA(x)=1 [8].

Figure 8: Cumulative distribution functions of E[Nc] assumed as lognormally dis-
tributed and membership function of Nc, for a) COV of 0.2 and b) COV of 0.5

Figure 8 shows the possibility and probability of the bearing capacity factor
Nc. It can be seen that the possibility is always greater than the probability. Also
note that, for this case, the possibility is 1.0 when the probability is 0.5. These
results are in line with other studies, e.g. Smith et al. [18] showed that if the fuzzy
membership function for a random variable is based on the mean and standard
deviation of a probabilistic random variable, the possibility of failure is one when
the probability of failure is fifty-percent. Therefore, fuzzy set theory may be used
to obtain conservative bounds for probability [13].

From a practical point of view, it would be of interest to estimate the proba-
bility of design failure [7], defined here as occurring when the computed bearing
capacity factor, Nc, is less than the deterministic value based on the mean angle
of friction divided by a factor of safety F, i.e. 20.7/F (the mean angle of friction ϕ
= µϕ = 25 degrees, then the deterministic value of Nc yields approximately 20.7).

With the obtained mean value and standard deviation of the performance func-
tion based on the PEM assuming a lognormal distribution the probability of design
failure (P[Nc<20.7/F]) can be evaluated. For the case where Θ=4.0 figure 9 com-
pares the probability of design failure for two different factors of safety F obtained
by probabilistic methods and random field method [14]. The results indicate that
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the higher the variability (COV) the higher the probability of design failure and
show that the proposed method predicts the basic behaviour of relatively simple
functions of random variables, but the accuracy is significantly reduced for large
coefficients of variation of the input variables.

Figure 9: Probabilistic and stochastic approach with Θ=4.0: Influence of factor of
safety for a) F=2 and b) F=4

In order to determine a possibility of design failure the membership functions
for the response bearing capacity factor, Nc, are compared with the allowable re-
sponses, i.e. 20.7/F as already mentioned. Figure 10 illustrates how the possibility
of design failure varies as a function of COVNc and the ratio of the target value
20.7/F. The fuzzy set method also captures the basic behaviour in terms of the
possibility of design failure for the given problem. The outcomes show that the
higher the variability (COV) the higher the possibility of design failure. Similar
observations can be made about the relations between possibility and probability
as described by figure 8, i.e. that the possibility of failure is one when the prob-
ability of failure is fifty-percent. However, Stroud et al. [20] reported that even
though the possibility of failure was always greater than the probability of failure
for a particular problem with two failure modes, the assumption that possibilis-
tic design is conservative is not a valid assumption when there are many failure
modes.

7 Concluding remarks
The general objective of this paper is to study the differences between probabilis-
tic, stochastic and fuzzy set methods for modelling uncertainties with respect to a
simple practical problem for geotechnical engineering. It is argued that the uncer-
tainties associated with material and model parameters are covered in a rational
way in the probabilistic and fuzzy set approach. The true probability distributions
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Figure 10: Fuzzy set approach: Influence of factor of safety for a) F=2 and b) F=4

of the uncertain soil parameters, c (cohesion), and, ϕ (friction angle), are used
as the scale to compare the probabilistic and fuzzy set based methods. Generally
speaking the outcome of point estimate methods and the fuzzy set method agreed
reasonably well with the results obtained by the random field method. An advan-
tage of the fuzzy set approach, from a practical point of view, is the determination
of an upper and lower bound to the probability in an efficient way. The results
are in line with other studies, even for membership functions as simple as the tri-
angular functions employed here. For the given system and the given data about
uncertainties, probabilistic and stochastic analysis yields the probability of failure
and fuzzy set analysis yields the possibility of failure, which also varies between
zero and one. However, the two measures are not directly comparable, but the
results considered were intended to be of easy comprehension and to allow the
establishment of a comparison and a correspondence between the methods.

It is acknowledged that the comparisons presented are not rigorous in a math-
ematical sense and the authors are aware of the discussion on whether the assump-
tions made in these methods allow a comparison at all. However, from a practical
point of view this type of uncertainty can be accepted, because it is a significant
step forward to be able to account for uncertainties in material parameters using
high level numerical methods and keeping the computational effort acceptable. In
practice there will always be a trade off between mathematical rigour and prac-
tical benefits achievable, which is true in particular in geotechnical engineering.
The work presented here should be seen as a step towards a more realistic mod-
elling in geotechnical engineering by demonstrating the applicability of various
approaches and should not be seen as a recommendation for one or the other
method, at least not at the present stage of developments.
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