
Inference in Credal Networks with
Branch-and-Bound Algorithms∗

JOSÉ CARLOS FERREIRA DA ROCHA
Escola Politécnica, Universidade de São Paulo
Universidade Estadual de Ponta Grossa, Brazil

FABIO GAGLIARDI COZMAN
Escola Politécnica, Universidade de São Paulo, Brazil

Abstract

A credal network associates sets of probability distributions with directed
acyclic graphs. Under strong independence assumptions, inference with credal
networks is equivalent to a signomial program under linear constraints, a
problem that is NP-hard even for categorical variables and polytree mod-
els. We describe an approach for inference with polytrees that is based on
branch-and-bound optimization/search algorithms. We use bounds gener-
ated by Tessem’s A/R algorithm, and consider various branch-and-bound
schemes.

Keywords

credal networks, strong independence, probability intervals, inference, branch-and-bound
algorithms

1 Introduction
A credal network provides a representation for imprecise probabilistic knowledge
through direct acyclic graphs (DAGs) [1]. In this formalism, each node in a DAG
represents a random variable, and each variable is associated with convex sets of
probability distributions. The structure of the graph indicates relations of proba-
bilistic independence between variables. In this paper we interpret independence
relations as statements of strong independence [1, 2].

A credal network can be viewed as a Bayesian network [3] with relaxed
numerical statements. Credal networks can be used to study the robustness of
∗The first author is supported in part by CAPES. The work has received substantial support from

HP Labs through “Convênio Redes Bayesianas para Aprendizado.”

482

Rocha & Cozman: Inference in Credal Nets 483

Bayesian networks [4], or to represent vague or incomplete probability state-
ments.

An inference with a credal network is the computation of upper and lower
probability values for each category of a query variable. This computation is NP-
hard even for polytrees [5], and it can be viewed as a signomial program under
linear constraints [6]. Exact and approximate inference algorithms have been pro-
posed in the literature, but no algorithm can handle large credal networks exactly.

In this article we propose new algorithms for inferences in polytrees. The idea
is to use branch-and-bound search/optimization techniques to produce inferences.
We explore Tessem’s A/R algorithm [7] as a bound generation mechanism. We
show how this approach can generate exact and approximate inferences, illustrat-
ing the main ideas with of examples.

The organization of the text is as follows. Sections 2 and 3 present a sum-
mary of credal networks and branch-and-bound techniques. Section 4 describes
how exact and approximate inference can be performed with branch-and-bound
techniques and the A/R algorithm. Section 5 shows how exact and approximate
techniques can be combined through decomposition of networks. Section 6 dis-
cusses the proposed algorithms and results.

2 Credal sets, credal networks and inference
A convex set of probability distributions is called a credal set [8].1 Denote the
probability density of a categorical random variable X by p(X). A credal set for
X is denoted by K(X); we assume that every credal set has a finite number of
vertices. We can represent such a set just enumerating its vertices. A conditional
credal set is a set of conditional distributions. We obtain a conditional credal set
applying Bayes rule to each distribution in a joint credal set.

Given a number of marginal and conditional credal sets, an extension of these
sets is a joint credal set with the given marginal and conditional credal sets. A col-
lection of marginal and conditional credal sets can have more than one extension.
In this paper we are always interested in computing the largest possible extension
for a given collection of marginal and conditional credal sets.

Credal networks associate credal sets with a direct acyclic graph. In analogy
to Bayesian networks, in a credal network every node of a directed acyclic graph
is associated with a variable,2 and every variable is associated with a collection of
local credal sets K(X |pa(X)), where pa(X) denotes the parents of variable X in
the graph. That is, a node stores the credal sets

{K(X |pa(X) = π1) , . . . ,K(X |pa(X) = πm)},
1We deal only with convex sets.
2To simplify the text, we represent a node and its variable with the same symbol.

484 ISIPTA ’03

where {π1, . . . ,πm} are the instances of pa(X). A root node has only one credal
set associated with it.

The sets K(X |pa(X)) are called separately specified when there is no relation-
ship between them for different values of pa(X). In this paper we assume that
local credal sets are always separately specified.

The basic assumption in a credal network is that every variable is independent
of its nondescendants nonparents given its parents. Obviously the import of such
a condition depends on which concept of independence for credal sets is adopted
[1, 2, 9]. In this paper we adopt the concept of strong independence: two variables
X and Y are strongly independent when every extreme point of K(X ,Y) satisfies
stochastic independence of X and Y (that is, each vertex p(X ,Y) ∈ K(X ,Y) sat-
isfies p(X |Y) = p(X) and p(Y |X) = p(Y) for all possible conditioning values)
[10].

The strong extension of a credal network is the largest joint credal set such that
every variable is strongly independent of its nondescendants nonparents given
its parents. The strong extension of a credal network is the joint credal set that
contains every possible combination of vertices for all credal sets in the network,
such that the vertices are combined as follows [1]:

p(X1, . . . ,Xn) = ∏
i

p(Xi|pa(Xi)) . (1)

Figure 1 shows the structure of a credal network that is latter used in examples.

A

B C

D

E

F G

H

I

J K

M

L
R- -R

�
-

R

U

-

6

?
-

Figure 1: A polytree credal network.

An inference in a credal network is the computation of tight bounds for prob-
ability values in an extension of the network. These bounds are called upper and
lower probabilities. If Xq is a query variable and XE represents a set of observed
variables, then an inference is the computation of tight bounds for p(Xq|XE) for
one or more values of Xq.

Algorithms for exact inference in strong extensions can be found in [1, 5,
11, 12]. The only known polynomial algorithm for strong extensions is the 2U
algorithm, which processes polytrees with binary variables [13]. In general, ex-
act inference in credal networks is a NP-hard problem (even for polytrees), so

Rocha & Cozman: Inference in Credal Nets 485

approximate algorithms are a natural solution. We distinguish outer approxima-
tions from inner ones; the former are produced when the correct interval between
lower and upper probabilities is enclosed in the approximate interval; the latter
approximations are produced when the correct interval encloses the approximate
interval. Outer approximations can be found in [7, 14, 15], and inner approximate
algorithms can be found in [4, 16, 17]. Generally speaking, inner algorithms are
obtained by local optimization methods.

In this paper we are interested in inferences with strong extensions. The diffi-
culty faced by inference algorithms is the potentially enormous number of vertices
that a strong extension can have — even a relatively small network can dwarf the
best exact algorithms. Consider the following example, taken from [5]:

Example 1 Consider a network with four variables X, Y , Z and W; W is the sole
child of X, Y and Z, and there are no other arrows in the network. Suppose that all
variables have three values and that every local credal set has only three vertices.
The vertices of the strong extension K(X ,Y,Z,W) factorize as p(W,X ,Y,Z) =
p(W |X ,Y,Z) p(X) p(Y) p(Z). Now, W is associated with 27 credal sets; therefore
there are 327 ways to combine the vertices of these credal sets. These 327 vertices
must be combined with every combination of vertices of K(X), K(Y) and K(Z).
So, the potential number of vertices in K(X ,Y,Z,W) is 330.

We note that inference in credal networks is an optimization problem. Con-
sider the computation of an upper probability:

• The goal is to find a distribution p(Xi|pa(Xi)) in K(Xi|pa(Xi)), for each
variable Xi, so as to maximize the probability value p(Xq|XE).

• The objective function p(Xq|XE) is a fraction of multilinear expressions:

p(Xq|XE) =
∑X1,...,Xn\{Xq,XE}∏i p(Xi|pa(Xi))

∑X1,...,Xn\XE ∏i p(Xi|pa(Xi))
.

• The maximization is subject to linear constraints, given our assumption of
credal sets with finitely many vertices.

This maximization problem belongs to the field of signomial programming [6], as
observed independently by [4, 12, 18]. Signomial programs are generally solved
dividing the feasible set (“branching” on various subsets) and obtaining outer ap-
proximations (“bounding” the objective function in each subset) [6, 19]. That
is, signomial programming is solved by branch-and-bound procedures. The great
advantage of signomial programming over more general optimization problems
is that it is possible to obtain bounds for signomial programs using geometric
programming — a well establish field that can be tackled efficiently through con-
vex programming [20]. However, direct application of geometric programming

486 ISIPTA ’03

bounds to strong extensions seems to face difficulties. First, the inference prob-
lem is an “implicit” signomial programming, as the objective function is encoded
in the graph through Expression (1); each combination of variables in the credal
network would be a maximizer in the geometric program. Second, and perhaps
more importantly, the “degree of difficulty” of a geometric program depends on
the number of polynomial terms in the program — note that Expression (1) sum-
marizes a large number of terms.

In this paper we adopt the basic idea of branching and bounding to compute
lower and upper probabilities, but instead of relying on properties of geometric
programming, we use bounds that have been specifically developed for strong
extensions.

3 Branch-and-bound search and optimization
Branch-and-bound techniques appear in artificial intelligence, optimization and
constraint satisfaction [21, 22]. The basic purpose of a branch-and-bound algo-
rithm is to optimize a function. For example, take a problem P stated as:

(P) max f (w)

s.t. g(w)≤ 0,w ∈W,

where W⊆ℜn, f is a real valued function, and the image of g is contained in ℜm.
A branch-and-bound technique is suitable for P whenever it is possible to divide P
in sub-instances that are easier to solve or approximate than P itself, and such that
the solution for P is present in one of these sub-instances [23, 24]. Additionally, a
branch-and-bound technique requires a bound r (overestimation) for the solution
of P. This upper bound is usually obtained from a relaxed version of P, indicated
by R. Obviously, R must be easier and faster to solve than P, and must give a good
approximation for P. The relaxed bound for P is denoted by r(P).

In our implementation we use the following version of branch-and-bound
[25]; several variants exist for it [23].

Algorithm 1 - Depth-first branch-and-bound

• Input: a problem P.

• Output: the value of max f (w), denoted by p̄.

1. Initialize p̂ with a small value (necessarily smaller than p̄).

2. If W contains a single value w then: update p̂ with f (w) when f (w) > p̂;

3. else:

Rocha & Cozman: Inference in Credal Nets 487

(a) using decomposition, obtain a list L of sub-instances of P; each sub-
instance is denoted by Ph and has feasible region Wh.

(b) for each Ph do

i. if Wh is feasible in the original problem and r(Ph) > p̂, call re-
cursively depth-first branch-and-bound over Ph.

4. Take the last p̂ as p̄.

This algorithm can be viewed as a search in a tree where the root node con-
tains P and descendant nodes contain sub-instances of P. The leaf nodes contain
problems that can be exactly solved. When a leaf node l is reached, the value for
f at l is computed; if this value is the largest one up to that moment, it is retained.
Non-leaf nodes are processed by relaxing the original problem and producing
bounds. Every non-leaf node is expanded by decomposition into sub-instances, as
long as its bound is larger than the current best value.

4 Branch-and-bound inference in strong extensions
This section contains the central ideas in this paper. We use a branch-and-bound
procedure where

• branching occurs at every vertex of credal sets, and

• bounding is achieved by Tessem’s A/R algorithm [7].

Given a query variable X and a credal network N , a single run of the branch-
and-bound procedure computes the lower or upper probability for a single state
of X , denoted by x.

The first step is to discard variables that are not used to compute the inference;
this can be done using d-separation [26]. The resulting network is denoted by N0.

4.1 Branching
The root node in the branch-and-bound search tree is N0. The root node N0 is then
divided into several simpler credal networks {N01, . . . ,N0q}. Each one of these
networks is obtained as follows. We select one credal set in N0, and produce as
many networks as there are vertices in this credal set — each network is associated
with a single vertex of the selected credal set. This decomposition procedure is
then applied recursively, following the branch-and-bound algorithm. At each step,
a credal set is “expanded”. Using this decomposition strategy, a leaf node contains
a Bayesian network, obtained by a particular selection of vertices in all credal
sets in the credal network. When a leaf node is reached, a variable elimination
algorithm is used to perform inference in the Bayesian network defined by the

488 ISIPTA ’03

leaf [27]. Such an algorithm produces a probability value p(x|XE); if p(x|XE) is
greater than the current maximum probability, the latter value is updated.

We always select the non-expanded credal set nearest to the queried variable,
but we always keep the query variable to be processed at last (a similar criterion
is used in [28] to deal with partial evaluation of belief nets). We have tried several
criteria for the selection of the credal sets that are expanded, and we found that
the procedure just described is quite appropriate.

4.2 Bounding
For non-leaf nodes in the search tree, we run the A/R algorithm as a relaxation of
exact inference [7], because this algorithm produces outer bounds rather quickly.
The A/R algorithm focuses on polytrees, even though it can be modified to handle
more general networks [14].

The A/R algorithm assumes that every credal set is approximated by a collec-
tion of probability intervals. So we must convert the credal network to an interval-
based Bayesian network (conditional probability tables contain intervals). Obvi-
ously the replacement of credal sets by probability intervals introduces potential
inaccuracies into the process.

The A/R algorithm mimics the dynamics of Pearl’s belief propagation algo-
rithm [3]. The functions λ, π and the messages used in BP are still defined with
identical purposes, but they are now interval-valued functions. The idea is to ma-
nipulate these intervals using interval arithmetic and two additional techniques
called by Tessem annihilation and reinforcement.

We can understand the basic ideas in the A/R algorithm by looking at the
computation of the interval-valued message π(X) — this message is computed
at a node X with parents Y0, . . . ,Yk. Consider then the computation of π∗(x j), the
lower bound of π(x j) for a particular value x j:

1. Construct a interval-valued function β(Y0, . . . ,Yk) by interval-multiplication
of the messages πX(Yi) received by X (these messages are also interval-
valued).

2. Construct a distribution p(Y0, . . . ,Yk) that is consistent with the intervals in
β(Y0, . . . ,Yk), such that p(Y0, . . . ,Yk) minimizes the sum

∑
Y0,...,Yk

p(x j|Y0, . . . ,Yk) p(Y0, . . . ,Yk) ,

where p(x j|Y0, . . . ,Yk) is the lower value for p(x j|Y0, . . . ,Yk); the minimum
of the sum is π∗(x j).

These operations are efficient because it is not hard to find p(Y0, . . . ,Yk) in step 2:
sort p(x j|Y0, . . . ,Yk) in increasing order, and distribute probability mass (consis-
tently with β(Y0, . . . ,Yk)) from the smallest to the largest value of p(x j|Y0, . . . ,Yk).
The same operations can be adapted to compute the upper bound π∗(x j).

Rocha & Cozman: Inference in Credal Nets 489

U

?
V

p(v0) = p̂ = 0.45

1
p̂ =−∞
r = 0.45

	
a0

R
a1

2
p̂ =−∞
r = 0.45

	
b0

R
b1

7
p̂ = 0.45
r = 0.43

3
p̂ =−∞
r = 0.45

	
b2

R
b3

6
p̂ = 0.45
r = 0.35

4
p̂ = 0.45
r = 0.45

5
p̂ = 0.45
r = 0.35

Figure 2: An example of branch-and-bound based inference. Left: a simple credal
network, where K(U) is the convex hull of {a0,a1}, with a0 = (0.5,0.5) and
a1 = (0.3,0.7); K(V |u0) is the convex hull of {b0,b1}, with b0 = (0.5,0.5) and
b1 = (0.3;0.7); K(V |u1) is the convex hull of {b2,b3}, with b2 = (0.4,0.6) and
b3 = (0.2,0.8). Right: Search tree for computation of p(v0).

The A/R algorithm prescribes similar operations for computation of λX(Yi)
and πZi(X) (where Zi is a child of X). The function λ(X) is obtained by direct
interval multiplication. Finally, the algorithm uses annihilation or reinforcement
operations to “normalize” the functions λX(Yi), πZi(X), and the product π(X)λ(X)
— “normalization” means simply computing bounds that take into account the
fact that probability distributions add up to one.

In our branch-and-bound procedure, the deeper a node is in the search tree,
the more point probabilities are manipulated by the A/R algorithm.

Example 2 Figure 2 shows a very simple network and the the basic steps of our
branch-and-boundalgorithm when computing p(v0). Nodes in the search tree rep-
resent credal networks; the numbering inside nodes indicates the order in which
nodes are visited. The value r is obtained by the A/R algorithm. Close to each
arc in the search tree we indicate which vertex (and for which credal set) was
expanded.

4.3 Experiments
We have implemented the branch-and-bound scheme in a Java program, using
Pentium IV machines to run tests. We ran experiments with networks containing

490 ISIPTA ’03

Table 1: Cost for exact inference for E in the network of Figure 1.

states # vertices Potential size Visited nodes Samples
per per credal of the strong (mean) (networks)

variable sets extension
03 02 221 5499 35
03 03 321 284912 10
04 02 235 559255 10

variables with three and four states. Each configuration was tested against several
randomly generated credal nets [29]. Experiments discussed in this section have
no evidence (XE = /0); this restriction simplifies the presentation with no loss in
generality.

We have observed that the size of the search tree explored by branch-and-
bound is usually a small fraction of the potential vertices of the strong extension.
As an example, consider the network in Figure 1. Table 1 shows relevant results
for query variable E, indicating the number of states for variables, the number of
vertices for each credal set in the network, and the potential number of vertices of
the strong extension. The table indicates how many networks of each type were
tested, and the mean number of visited nodes during branch-and-bound. Note the
enormous difference between the potential number of vertices and the number of
effectively expanded nodes.

As another instructive example, we applied the branch-and-bound scheme to
the network described in Example 1. We tested thirty randomly generated credal
networks with the same structure and different credal sets; in each one of them
we computed the lower and upper probabilities for w0. These sample networks
had ternary variables and three distributions in each credal set. The branch-and-
bound search was always able to quickly compute the exact inference, on average
exploring 243 nodes per inference.

Consider another example. We took the polytree structure of the well-known
Bayesian network called “Car Starts”3 and set all of its variables as ternary. We
assumed that in practice it would be unusual to have credal sets associated to
all variables in a credal network — some distributions could be obtained with
greater precision, and in any case the specification of dozens of credal sets is not
an easy matter. We therefore introduced credal sets in all root nodes and in the
node called BatteryState, using ε-contaminated models with ε = 0.2 [30]. The
resulting strong extension has 318 potential vertices (about 387 million potential
vertices). We ran branch-and-bound inference for all states of the variable Starts
and obtained exact values after evaluating 1,139,717 nodes (less than 0.3% of

3Microsof Research: http://www.research.microsoft.com/research/dtg/bnformat/autoxml.html.

Rocha & Cozman: Inference in Credal Nets 491

Table 2: The probability error in underestimated approximate reasoning for E in
the network of Figure 1.

states # vertices Fixed number Mean
per variable per credal set of visited nodes relative error

03 03 150000 0.0013
03 03 30000 0.0067
04 02 200000 0.0061
04 02 50000 0.0097

the number of potential vertices were explored). An interesting test was made
with the branching strategy. We ran the same inference using a “reverse ordering”
for branching; that is, we first expanded the credal sets that were farthest away
from the query node. Using this strategy, the branch-and-bound algorithm found
the exact values after expanding 4,546,943 nodes. This simple test reinforces the
intuition that the most relevant probability values in an inference are the values
that are “close” to the query variable.

It is also possible to look at the branch-and-bound scheme not only as an exact
algorithm, but also as an algorithm that can be stopped at any time to generate ap-
proximate results. We tested this idea by running the branch-and-bound algorithm
with a fixed number of nodes. Table 2 shows the mean relative error in inferences
(each row is the mean of ten random networks). The relative error is computed
using the approximate and the exact values for P(E = e0).

5 Inference with network fragments
If the credal network N is large, it may not be possible to run the branch-and-
bound algorithm to optimality. In this section we propose strategies to handle
such problems. The basic idea is to divide the credal network in parts and to run
branch-and-bound in these sub-networks, in some suitable order. We illustrate this
idea through an example.

Consider the network in Figure 1, with ternary variables and two vertices in
each credal set. Suppose that we want to compute exact lower and upper proba-
bilities for variable G and that our space and time constraints allow us to perform
an exact inference just for E, but not for G. We then run branch-and-bound and
obtain lower and upper probabilities for E. In a particular instance of the network
shown in Figure 1, we obtained p(e0) ∈ [0.199;0.587], p(e1) ∈ [0.084;0.375] and
p(e2) ∈ [0.212;0.604]. We can easily generate the largest credal set that is consis-
tent with these intervals. We obtain K(E) defined by the vertices

{(0.413;0.375;0.212),(0.312;0.084;0.604),(0.587;0.084;0.329),

492 ISIPTA ’03

(0.199;0.197;0.604),(0.587;0.201;0.212),(0.199;0.375;0.426)}.
Now we can remove E and its antecedents from the network, and replace E by
a new node E ′ that has the marginal credal set of E as its marginal credal set.
The transformed network is displayed in Figure 3. We then run exact branch-
and-bound based inference for G, obtaining the intervals p(g0) ∈ [0.091;0.447],
p(g1) ∈ [0.157;0.564] and p(g2) ∈ [0.208;0.591]. Incidentally, we computed the
same inferences with an exhautive algorithm in the JavaBayes system4 and got
the same values.

E ′

F G

H

I

J K

L
�

-
R

U

-

6

-

Figure 3: Transformed polytree credal network.

If inferences in the transformed credal network are still unfeasible, we can run
an approximate inference algorithm in the transformed credal network. Consider
running Tessem’s algorithm in the network in Figure 3. We obtain the intervals
p(g0) ∈ [0.053,0.502], p(g1) ∈ [0.116,0.663] and p(g2) ∈ [0.128,0.644].

In closing, we note that Tessem’s algorithm alone in the complete example
network produced the intervals p(g0) ∈ [0.040,0.524], p(g1) ∈ [0.106,0.698] and
p(g2) ∈ [0.097,0.667].

6 Discussion
Any branch-and-boundalgorithm is highly dependent on the quality of the bounds
it employs. We have found that Tessem’s bounds, while fast to compute and rea-
sonably accurate, are quite wide — usually the search tree is expanded to a large
depth before some of its branches are discarded. To give an example, in the com-
putation of inferences for variable E in our samples with ternary variables and
three vertices, the branch-and-bound algorithm explored the search tree almost
completely down to levels 12 or 13 (the complete search tree has 21 levels).

As an aside, we have also implemented a breadth-first version of branch-and-
bound [22], but we have found that the need to store the expanded frontier in
such algorithms makes them unfeasible. Breadth-first branch-and-bound will only
become a reality if better bounds than Tessem’s are found.

4Free software, site http://www.cs.cmu.edu/ javabayes.

Rocha & Cozman: Inference in Credal Nets 493

Generally speaking, we can say that the branch-and-bound algorithm needs to
explore a tiny fraction of potential vertices of the strong extension, and is faster
than the best existing exact algorithms [5]. For really small credal networks (with
a few thousand potential vertices in the strong extension), the overhead of branch-
ing and bounding can be significant, and in those cases enumeration algorithms
may be faster.

Clearly, the branch-and-bound algorithm with Tessem bounds cannot cope
with arbitrarily large problems, and it can face difficulties even in seemingly sim-
ple situations. In the network in Figure 1, inferences for variable L could not be
found exactly, even after extensive tests.

7 Conclusion
This paper can be best understood as proposing a family of solutions for inference
in strong extensions, using branch-and-bound algorithms as a unifying idea in
such solutions. We have restricted ourselves to polytrees, but branch-and-bound
techniques can be used for general inference; we have stressed the use of Tessem
bounds, but any bounding scheme can be used.

We believe that our ideas are the first explicit formulation and implementa-
tion of inference in credal networks as a search procedure that runs to optimality.
Branch-and-bound techniques are rather suitable for this purpose; the experiments
show that inference with branch-and-bound and Tessem bounds is a definite im-
provement over existing algorithms.

We also would like to emphasize the possibility that a network is processed
in pieces, using different levels of accuracy in each one of the partial inferences.
Such a strategy seems to be appropriate for large networks. Our future research
will be focused on developing and implementing general algorithms for decom-
posing networks and processing fragments with different strategies.

References
[1] Cozman, F.G.: Credal Networks. Artificial Intelligence 120 (2000) 199–233

[2] Couso, I. Moral, S., Walley, P.: Examples of Independence for Imprecise
Probabilities. Proc. of the 1st ISIPTA, Ghent Belgium (1999) 121–130

[3] Pearl, J.: Probabilistic Reasoning in Intelligent Systems. Networks of Plau-
sible Inference. Morgan Kaufmann Publishers, San Mateo CA (1988)

[4] Cozman, F.G.: Robustness Analysis of Bayesian Networks with Local Con-
vex Sets of Distributions. Proc. of the 13th Annual Conference on Un-
certainty in Artificial Intelligence, Morgan Kaufmann, San Francisco, CA,
(1997) 393-405

494 ISIPTA ’03

[5] Rocha, J.C.F.; Cozman, F.G.: Inference with Separately Specified Sets of
Probabilities in Credal Networks. Proc. of the 18th Annual Confence on Un-
certainty in Artificial Intelligence, Morgan Kaufmann, San Francisco, CA ,
(2002) 430-437

[6] Avriel, M.: Advances in Geometric Programming, Plenum Press, New York,
1980.

[7] Tessem, B.: Interval Probability Propagation. Int. Journal of Approximate
Reasoning 7, (1992) 95–120

[8] Levi, I. The Enterprise of Knowledge. MIT Press, Cambridge, Mass, (1980)

[9] Campos, L. M. de, Moral, S.: Independence Concepts for Convex Sets of
Probabilities. Proc. of the XI Conference on Artificial Intelligence, Morgan
Kaufmann, San Francisco, CA, (1995) 108–115

[10] Walley, P.: Statistical Reasoning with Imprecise Probabilities. Chapman and
Hall, London, (1991)

[11] Cano, J.E., Delgado, M., Moral, S.: An Axiomatic Framework for the Prop-
agation of Uncertainty in Directed Acyclic Networks. Int. Journal of Ap-
proximate Reasoning 8, (1993) 253–280.

[12] Zaffalon, M.: Inferenze e Decisioni in Condizioni di Incertezza con Modelli
Grafici Orientati. Ph.D. Thesis, Università di Milano, Milan, Italy, (1997)
(in Italian)

[13] Fagiuoli, E., Zaffalon, M. (1998).: 2U - An Exact Interval Propagation Al-
gorithm for Polytrees with Binary Variables. Artificial Intelligence 106(1),
77-107

[14] Ha, V.A. et al: Geometric Foundations for Interval-Based Probabilities. An-
nals of Mathematics and Artificial Intelligence, Vol.24, 1-4 (1998) 1–21

[15] Cano, A., Moral, S.: Using Probabilistic Trees to Compute Marginals with
Imprecise Probabilities. TR-DECSAI-00-02-14, University of Granada,
(2000)

[16] Cano, A., Moral, S.: A Genetic Algorithm to Approximate Convex Sets of
Probabilities. 7th Int. Conf. IPMU-96, (Paris, France, July, 1994), (1994) pp
859–864

[17] Cano, A., Moral, S.: Convex Sets of Probabilities Propagation by Simulated
Annealing. 5th Int. Conf. IPMU-94, (Paris, France, July, 1994), (1994) pp
4–8

Rocha & Cozman: Inference in Credal Nets 495

[18] Andersen, K.A., Hooker, J.N.: Bayesian Logic. Decision Support Systems
11, (1994) 191-210.

[19] Duffin R.J., Peterson, E.L.: Geometric Programming with Signomials. Jour-
nal of Optimization Theory and Applications, 11(1), (1973) 3–35”

[20] Duffin, R.J., Peterson, E.L., Zener, C.: Geometric Programming, Theory and
Application. John Willey and Sons, New York, (1967)

[21] Norvig, P., Russell, S.: Artificial Intelligence: a Modern Approach. Prentice
Hall, Englewoods, (1995)

[22] Bertsekas, D.P.: Dynamic Programming, Deterministic and Stochastic Mod-
els. Prentice Hall, Englewoods, (1987)

[23] Papadimitriou, C., Steiglitz, I.: Combinatorial Optimization, Algorithms and
Complexity. Prentice-Hall, Englewood Cliffs, New Jersey, (1982)

[24] Sahinidis, N.V.: BARON, Branch and Reduce Optimization Navigator,
User’s manual 4.0. University of Illinois at Urbana-Champaign, (2000)

[25] Preiss, B.R.: Data Structures and Algorithms with Object-Oriented Design
Patterns in Java. Wiley, New York, (2000)

[26] Cozman, F.G.: Irrelevance and Independence in Quasi-Bayesian Networks.
Proc. XIV Conference on Uncertainty in Artificial Intelligence, Morgan
Kaufmann, San Francisco, CA, (1998) 86–96

[27] Cozman, F.G.: Generalizing Variable Elimination in Bayesian Networks.
Workshop on Probabilistic Reasoning in Artificial Intelligence, Editora Tec
Art, São Paulo, (2000) 27–32

[28] Draper, D.L., Hanks, S.: Localized Partial Evaluation of Belief Networks.
XV Conference on UAI, (1995) 170-177

[29] Ide, J.S., Cozman, F.G.: Random Generation of Bayesian Networks. Proc. of
the XVI Braziliam Symposium on Artificial Intelligence, Springer-Verlag,
(2002)

[30] Berger, J.O.: Statistical Decision Theory and Bayesian Analysis. Springer,
Berlin, (1985)

José Carlos Ferreira da Rocha is a PhD student at the Engineering School (Escola
Politécnica), University of São Paulo, and a teaching assistant at UEPG, Deinfo, Ponta
Grossa, PR, Brasil, CEP 84030-900 E-mail: jrocha@uepg.br

Fabio Gagliardi Cozman is with the Engineering School (Escola Politécnica), University
of São Paulo, São Paulo, SP, Brazil, CEP 05508-900. E-mail: fgcozman@usp.br

