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Abstract

We contrast three decision rules that extend Expected Utility to contexts
where a convex set of probabilities is used to depict uncertainty: Γ-Maximin,
Maximality, and E-admissibility. The rules extend Expected Utility theory
as they require that an option is inadmissible if there is another that carries
greater expected utility for each probability in a (closed) convex set. If the
convex set is a singleton, then each rule agrees with maximizing expected
utility. We show that, even when the option set is convex, this pairwise com-
parison between acts may fail to identify those acts which are Bayes for some
probability in a convex set that is not closed. This limitation affects two of
the decision rules but not E-admissibility, which is not a pairwise decision
rule. E-admissibility can be used to distinguish between two convex sets of
probabilities that intersect all the same supporting hyperplanes.

1 Introduction
This paper offers a comparison among three decision rules for use when uncer-
tainty is depicted by a non-trivial, convex set of probability functions P . This
setting for uncertainty is different from the canonical Bayesian decision theory
of expected utility, which uses a singleton set, just one probability function, to
represent a decision maker’s uncertainty. Justifications for using a non-trivial set
of probabilities to depict uncertainty date back at least a half century [4] and a
∗The research of the first three authors is supported by NSF grant DMS-0139911
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foreshadowing of that idea can be found even in [7], where he allows that not all
hypotheses may be comparable by qualitative probability – in accord with, e.g.,
the situation where the respective intervals of probabilities for two events merely
overlap with no further (joint) constraints, so that neither of the two events is
more, or less, or equally probable compared with the other.

We study decision rules that are extensions of canonical Subjective Expected
Utility [SEU] theory, using sets of probabilities, in the following sense. The deci-
sion rules we consider all satisfy the following pairwise comparison between two
options.

Criterion 1 For a pair of options f and g, if for each probability P ∈ P , f has
greater expected utility than g, then g is inadmissible whenever f is available.

This pairwise comparison itself creates a strict partial order. It (or a similar
relation) has been the subject of representation theorems by, e.g., [3, 14, 15].
Note that when P is a singleton set, then the partial order is a weak order that
satisfies SEU theory. In this sense, a decision rule that embeds this partial order
extends SEU theory.

Here, we avail ourselves of four simplifying assumptions:

1. The decision maker’s values for outcomes are determinate and are depicted
by a (cardinal) utility function.

Reason: We use circumstances under which convexity of P is not con-
troversial. 1

2. The algebra of uncertainty is finite, with finite state space Ω = {ω1,ω2, ...,ωk}.
Reason: We avoid the controversies surrounding countable versus fi-

nite additivity, which arise with infinite algebras.

3. Acts (or options) are gambles, i.e. functions from states to utilities, f :
Ω−→ IR.

Reason: This assumption is commonplace and affords us an opportu-
nity to contrast a variety of decision rules.

4. Each decision problem presents the decision maker a uniformly bounded
choice set A of gambles.

Reason: We avoid complications with unbounded utilities. Moreover,
by considering the convex hull of a family of such gambles, we are as-
sured of achieving the infimum and supremum operations with respect to
expected utilities calculated with respect to the set P .

1The issue of convexity of P is controversial. See [14] for a representation of partially ordered strict
preferences that does not require convexity unless the decision maker has a determinate (cardinal)
utility for outcomes. Rebuttal is presented in Section 7 of [11].
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Of the three decision rules we discuss, perhaps the most familiar one is Γ-
Maximin2. This rule requires that the decision maker ranks a gamble by its lower
expected value, taken with respect to a closed, convex set of probabilities, P , and
then to choose an option from A whose lower expected value is maximum. This
decision rule (as simplified by the assumptions, above) was given a representation
in terms of a binary preference relation over Anscombe-Aumann horse lotteries
[2], has been discussed by, e.g., Section 4.7.6 of [1] and recently by [5], who de-
fend it as a form of Robust Bayesian decision theory. The Γ-Maximin decision
rule creates a preference ranking of options independent of the alternatives avail-
able in A : it is context independent in that sense. But Γ-Maximin corresponds to
a preference ranking that fails the so-called (von Neumann-Morgenstern’s) “In-
dependence” or (Savage’s) “Sure-thing” postulate of SEU theory. In Section 2 of
[15], we note that such theories suffer from sequential incoherence in particular
sequential decision problems.

The second decision rule that we consider, called E-admissibility (‘E’ for
“expectation”), was formulated in [8, 9]. E-admissibility constrains the decision
maker’s admissible choices to those gambles in A that are Bayes for at least one
probability P ∈ P . That is, given a choice set A , the gamble f is E-admissible
on the condition that, for at least one P ∈ P , f maximizes subjective expected
utility with respect to the options in A .3 Section 7.2 of [12]4 defends a precursor
to this decision rule in connection with cooperative group decision making. E-
admissibility does not support an ordering of options, real-valued or otherwise,
so that it is inappropriate to characterize E-admissibility by a ranking of gambles
independent of the set A of feasible options. However, the distinction between
options that are and are not E-admissible does support the “Independence” pos-
tulate. For example, if neither option f nor g is E-admissible in a given decision
problem A , then the convex combination, the mixed option h = α f ⊕ (1-α)g (0
≤ α ≤ 1) likewise is E-inadmissible when added to A . This is evident from the
basic SEU property: the expected utility of a convex combination of two gambles
is the corresponding weighted average of their separate expected utilities; hence,
for a given P ∈ P the expected utility of the mixture of two gambles is bounded
above by the maximum of the two expected utilities. The assumption that neither
of two gambles is E-admissible entails that their mixture has P-expected utility
less than some E-admissible option in A .

The third decision rule we consider is called Maximality by Walley in [17]5,

2When outcomes are cast in terms of a (statistical) loss function, the rule is then Γ-Minimax:
rank options by their maximum expected risk and choose an option whose maximum expected risk is
minimum.

3Levi’s decision theory is lexicographic, in which the first consideration is E-admissibility, fol-
lowed by other considerations, e.g. what he calls a Security index. Here, we attend solely to E-
admissibility.

4Savage’s analysis of the decision problem depicted by his Figure 1, p. 123, and his rejection of
option b, p. 124 is the key point.

5There is, for our discussion here, a minor difference with Walley’s formulation of Maximality
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who appears to endorse it (p. 166). Maximality uses the strict partial order (above)
to fix the admissible gambles from A to be those that are not strictly preferred by
any other member of A . That is, f is a Maximal choice from A provided that
there is no other element g ∈ A that, for each P ∈ P , carries greater expected
utility than f does. Maximality (under different names) has been studied, for
example, in [6, 8, 10, 13, 16]. Evidently, the E-admissible gambles in a decision
problem are a subset of the Maximally admissible ones.

The three rules have different sets of admissible options. Here is a heuristic
illustration of that difference.

Example 1 Consider a binary-state decision problem, Ω = {ω1, ω2}, with three
feasible options. Option f yields an outcome worth 1 utile if state ω1 obtains and
an outcome worth 0 utiles if ω2 obtains. Option g is the mirror image of f and
yields an outcome worth 1 utile if ω2 obtains and an outcomes worth 0 utiles if
ω1 obtains. Option h is constant in value, yielding an outcome worth 0.4 utiles
regardless whether ω1 or ω2 obtains. Figure 1 graphs the expected utilities for
these three acts. Let P = {P: 0.25 6P(ω1) 60.75}. The surface of Bayes solutions
is highlighted. The expected utility for options f and g each has the interval of
values [0.25, 0.75], whereas h of course has constant expected utility of 0.4. From
the choice set of these three options A = { f , g, h} the Γ-Maximin decision rule
determines that h is (uniquely) best, assigning it a value of 0.4, whereas f and g
each has a Γ-Maximin value of 0.25. By contrast, under E-admissibility, only the
option h is E-inadmissible from the trio. Either of f or g is E-admissible. And, as
no option is strictly preferred to any other by expectations with respect to P , all
three gambles are admissible under Maximality.

What normative considerations can be offered to distinguish among these
three rules? For example, all three rules are immune to a Dutch Book, in the
following sense:

Definition 1 Call an option favorable if it is uniquely admissible in a pairwise
choice against the status-quo of “no bet,” which we represent as the constant 0.

Proposition 1 For each of the three decision rules above, no finite combination
of favorable options can result in a Dutch Book, i.e., a sure loss.

Proof. Reason indirectly. Suppose that the sum of a finite set of favorable gam-
bles is negative in each state ω. Choose an element P from P . The probability
P is a convex combination of the extreme (0-1) probabilities, corresponding to a
convex combination of the finite partition by states. The expectation of a convex

involving null-events. Walley’s notion of Maximality requires, also, that an admissible gamble be
classically admissible, i.e., not weakly dominated with respect to state-payoffs. This means that, e.g.,
our Theorem 1(i) is slightly different in content from Walley’s corresponding result.
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Figure 1: Expected utilities for three acts in Example 1. The thicker line indicates
the surface of Bayes solutions.

combination of probabilities is the convex combination of the individual expec-
tations. This makes the P-expectation of the sum of the finite set of favorable
options negative. But the P-expectation of the sum cannot be negative unless at
least one of the finitely many gambles has a negative P-expectation. Then that
gamble cannot be favorable under any of the three decision rules. Thus, none of
these three decision rules is subject to sure loss. 2

In this paper, we develop an additional criterion for contrasting these deci-
sion rules. In Section 2 we address the question of what operational content the
rules give to distinguishing among different (convex) sets of probabilities. That is,
we are concerned to understand which convex sets of probabilities are treated as
equivalent under a given decision rule. When do two convex sets of probabilities
lead to all the same admissible options for a given decision rule? Γ-Maximin and
Maximality are based solely on pairwise comparisons. Not so for E-admissibility.
Even when the choice set A of feasible options is convex (e.g., closed under mixed
strategies), these rules have distinct classes of admissible options.
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2 Gambles and pairwise choice rules
It is evident that for Γ-Maximin generally to satisfy Criterion 1, the convex set of
probabilities P must be closed. For an illustration why, if Example 1 is modified
so that P ′ = {P : 0.4 < P(ω1) 6 0.75} then, even though f and h both have
the same infimum, 0.4, of expectations with respect to P ′, for each P ∈ P ′ f has
greater expected utility than does h. Thus, from the perspective of operational
content, the Γ-Maximin rule fails to distinguish between different convex sets of
probabilities that differ with respect to Criterion 1, although each of Maximality
and E-admissibility does distinguish the two sets P and P ′.

In order to contrast Maximality and E-admissibility, first we ask when do they
lead to the same choices? Walley’s Theorem 3.9.5 of [17] shows that, when the
option space A is convex and the convex set of probabilities P is closed, the two
rules are equivalent, i.e. both E-admissibility and Maximality reduce to a pairwise
comparison of options according to Criterion 1. In this circumstance, an option
is admissible, under either rule, just in case there is no other option that makes it
inadmissible under Criterion 1. Then, with decision problems using convex sets
of options, the two rules are capable of distinguishing between any two closed
convex sets of probabilities, since distinct closed convex sets have distinct sets of
supporting hyperplanes.

In Corollary 1 we re-establish Walley’s result, and we extend the equivalence
to decision problems in which P is open and A is finitely generated. The example
following Theorem 1 establishes that for part (ii), the restriction to a finite (or
finitely generated) option set, A , is necessary. More important, however, we think
is the second example following Theorem 1. That example is of a finite decision
problem with a convex set of probabilities P (neither closed nor open) where,
even though the option set is made convex, some Maximal options are not Bayes
with respect to P . Hence, even when the option space is convex, E-admissibility
does not in general reduce to pairwise comparisons.

We preface Theorem 1 with a restatement of the structural assumptions for
decision problems that we use in this paper. Let Ω be a finite state space with k
states. Let A be a uniformly bounded collection of acts or gambles (real-valued
functions from Ω). Let C be the convex hull of A . For each probability vector P
= (p1, . . . , pk) ∈ P and each f ∈ C there is a point (p1, . . . , pk−1,Ep( f )) ∈ IRk,
where Ep( f ) = ∑k

j=1 p j f (ω j). For each f ∈ C there is a hyperplane that contains
all of the points of the form (p1, . . . , pk−1,Ep( f )). For each f ∈ C , the halfspace
at or above its corresponding hyperplane is

{x ∈ IRk : α>f x≥ c f },

where
α f = ( f (ωk)− f (ω1), . . . , f (ωk)− f (ωk−1),1),

and c f = f (ωk).
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Definition 2 Let P be a convex set of probability vectors. We say that f ∈ A is
Bayes with respect to P if there exists p ∈ P such that Ep( f ) ≥ Ep(g) for all
g ∈ A .

Theorem 1 Let B be the set of all f ∈ A such that f is Bayes with respect to P .
Suppose that g ∈ A \B . Assume either

(i) that P is closed, or

(ii) that A is finite and that P is open. That is,

{(p1, . . . , pk−1) : (p1, . . . , pk) ∈ P}

is an open subset of IRk−1.

Then there exists h in the convex hull of B such that Ep(h) > Ep(g) for all p ∈ P .

Corollary 1 Assume that A is closed and convex. Let B be the set of all f ∈ A
such that f is Bayes with respect to P . Suppose that g ∈ A \B is not Bayes with
respect to P . Assume either

(i) that P is closed, or

(ii) that A is the convex hull of finitely many acts and that P is open.

Then there exists h ∈ B such that Ep(h) > Ep(g) for all p ∈ P .

The proofs of Theorem 1 and Corollary 1 rely on a series of results about convex
sets and are given in Appendix A.

Example 2 The following example illustrates that Theorem 1(ii) does not hold
if A is allowed to be infinite. Let Ω have only k = 2 states. Let A consist of the
gambles { fθ : 0≤ θ≤ π/4} where

fθ = (0.4+0.8tan(θ)−0.2sec(θ),0.4−0.2tan(θ)−0.2sec(θ)) .

Notice that f0 = (0.2,0.2). Let

P = {(p1, p2) : p1 > 0.2}.

For each p1 ∈ (0.2,0.3), the act fθ is Bayes with respect to P when θ = 0.5sin−1(10[p1−
0.2]). For p1 ≥ 0.3, fπ/4 is Bayes with respect to P . Let g = f0, which is not Bayes
with respect to P . Notice that, for every θ,

Ep( fθ) = (p1−0.2) tan(θ)+0.4−0.2sec(θ).

So, Ep( fθ) < 0.2 when p1 = 0.2. Since Ep( fθ) is a continuous function of p,
Ep( fθ) < 0.2 for p in an open set around (0.2,0.8), which includes part of P .
It follows that every convex combination h of fθ’s has Ep(h) < 0.2 somewhere
inside of P .
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Example 3 This example illustrates why we assume that P is closed in Theo-
rem 1(i). Let Ω consist of three states. Let

P = {(p1, p2, p3) : p2 < 2p1 for p1 ≤ 0.2}
∪{(p1, p2, p3) : p2 ≤ 2p1 for 0.2 < p1 ≤ 1/3}.

The set of acts A contains only the following three acts (each expressed as a
vector of its payoffs in the three states):

f1 = (0.2,0.2,0.2),

f2 = (1,0,0),

g = (−1.8,1.2, .2).

Notice that Ep( f2) is the highest of the three whenever p1 ≥ 0.2, Ep( f1) is the
highest whenever p1 ≤ 0.2, and Ep(g) is never the highest. So, B = { f1, f2} and
g is not Bayes with respect to A . For each 0≤ α≤ 1, we compute

Ep(α f1 +(1−α) f2) = p1(1−α)+0.2α,

Ep(g) = −2p1 + p2 +0.2.

Notice that Ep(α f1 +(1−α) f2) is strictly greater than Ep(g) if and only if p2 <
(3−α)p1−0.2(1−α). There is no α such that this inequality holds for all p∈ P .

Remark 1 Note that is it irrelevant to this example that p2 = 0 for some p ∈ P .

Definition 3 Say that two convex sets intersect all the same supporting hyper-
planes if they have the same closure and a supporting hyperplane intersects one
convex set if and only if it intersects the other.

In addition to showing that E-admissibility does not reduce to pairwise com-
parisons even when the option set is convex, this example also brings out the
important point the E-admissibility (but not Maximality) can distinguish between
some convex sets that intersect all the same supporting hyperplanes. As we noted
some years ago (Section III of [15]), the strict preference relation induced by Cri-
terion 1 cannot distinguish between pairs of convex sets that intersect all the same
supporting hyperplanes. Of course, Γ-Maximin does even worse than Maximality,
as it cannot distinguish open convex sets from their closure.

Figure 2 illustrates Example 3 and that the presence or absence of probability
point D = (0.2,0.2,0.4) determines whether or not act g is Bayes from the choice
set A = { f1, f2,g}. The closure of the convex set P is the triangle with extreme
points A = (1/3,0,2/3), B = (1/3,2/3,0), and C = (0,0,1). In Example 3, set
P is the result of removing the closed line segment [C,D] from the left face [B,C]
of the triangle ABC, leaving the half-open line segment [B,D) along that face.
The convex set P ∗ is the set of probabilities that results by adding point D to
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Figure 2: Illustration for Example 3. The set of (p1, p2) such that (p1, p2,1− p1−
p2)∈ P is the diagonally shaded set inside the probability triangle at the bottom of
the figure with the points A, B, C, and D that are discussed in the text labeled. The
diagonally shaded surface is the surface of Bayes solutions for all probabilities
(not just those in P ). The solid shaded set is {(p1, p2,Ep(g)) : p ∈ P}. The points
(0.2,0.4), (0,0), and (0.2,0.4,Ep(g)) are indicated by open circles.

set P . Point D then is an extreme but not exposed point in P ∗. Evidently, P and
P ∗ intersect all the same supporting hyperplanes. Next, we indicate how to use
E-admissibility to distinguish between these two convex sets of probabilities.

For this exercise, we bypass the details of what can easily be done with pair-
wise comparisons to fix the common boundaries of P and P ∗. Specifically, binary
comparisons suffice to fix the closed interval [A,B] belongs to both sets, as the up-
per probability P(ω1) = 1/3; they suffice to fix that point C does not belong to
either set, as the lower probability P(ω1) > 0; they suffice to fix the half-open
interval [A,C) belongs to both sets, as the lower probability P(ω2) = 0, and they
suffice to fix the half open interval [B,C) as a boundary for both sets, as the upper
called-off (conditional) odds ratio P(ω1|{ω1,ω2}) > 1/3. But pairwise compar-
isons according to Criterion 1, alone, cannot determine how much of the half-open
interval [B,C) belongs to either set P or P ∗. For that, we use non-binary choice
problems and E-admissibility.

In order to establish that the half open line segment [C, D) does not belong to
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either set P or P ∗, consider the family of decision problems defined by the three-
way choices: A−ε = { f1, f2,g−ε}, where g−ε is the act with payoffs (1.8,1.2−
ε,0.2). For each ε > 0, only the pair { f1, f2} is E-admissible from such a three-
way choice, with respect to each of the two convex sets of probabilities.

Likewise, in order to establish that the half-open line segment (D,B] belongs
to both sets, P and P ∗, consider the family of decision problems defined by
the three-way choices: A+ε = { f1, f2,g+ε}, where g+ε is the act with payoffs
(1.8,1.2 + ε, .2). For each ε > 0, all three options are E-admissible with respect
to each of the two convex sets of probabilities.

However, in the decision problem with options A = { f1, f2,g}, as shown
above, only the pair { f1, f2} is E-admissible with respect to the convex set P ,
whereas all three options are E-admissible with respect to the convex set P ∗.

By contrast, given a choice set, Maximality makes the same ruling about
which options are admissible from that choice set, regardless whether convex set
P or convex set P ∗ is used. That is, Maximality cannot distinguish between these
two convex sets of probabilities in terms of admissibility of choices, as the two
convex sets of probabilities intersect all the same supporting hyperplanes.

3 Summary
The discussion here contrasts three decision rules that extend Expected Utility
and which apply when uncertainty is represented by a convex set of probabilities,
P , rather than when uncertainty is represented only by a single probability distri-
bution. The decision rules are: Γ-Maximin, Maximality, and E-admissibility. We
show that these decision rules have different operational content in terms of their
ability to distinguish different convex sets of probabilities. When do the admis-
sible choices differ for different convex sets of probabilities? Γ-Maximin is least
sensitive among the three in this regard. We show that, even when the option set
is convex, one decision rule (E-admissibility) distinguishes among more convex
sets than the other two. This is because it alone among these three is not based on
pairwise comparisons among options. The upshot it that it, but neither of the other
two rules, can distinguish between two convex sets of probabilities that intersect
all the same supporting hyperplanes.

A Proofs of Theorem 1 and Corollary 1
The proofs rely on some lemmas about convex sets.

Lemma 1 Let k be a positive integer. Let C be a closed convex subset of IRk that
contains the origin. There exists a unique closed convex subset D of IRk+1 with
the following properties:
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• C = {x ∈ IRk : α>x≥ c, for all (α,c) ∈ D}.
• (α,c) ∈ D implies (aα,ac) ∈ D for all a≥ 0,

• (α,c) ∈ D implies (α,c−a) ∈ D for all a > 0,

Also, for each (α,c) ∈ D, c≤ 0.

Proof. To see that (α,c)∈D implies c≤ 0, let 0 be the origin. Then α>0 = 0≥ c.
Define the following set

D0 = {(α,c) : α>x≥ c, for all x ∈C}. (1)

To see that D0 is convex, let (γ1,d1) and (γ2,d2) be in D0 and 0 ≤ β ≤ 1. Then,
for all x ∈C,

(βγ1 +[1−β]γ1)
>x≥ βd1 +(1−β)d2.

This means that β(γ1,d1)+ [1−β](γ2,d2) ∈ D0, and D0 is convex. To see that D0
is closed, notice that D0 =

T

x∈C Dx, where Dx = {(α,c) : α>c ≥ c} and each Dx
is closed. It is clear that D0 has the last two properties in the itemized list. For
the first condition, let E be the set defined in the first condition. It is clear that
C ⊆ E. Suppose that there is x0 ∈ E such that x0 6∈C. Then there is a hyperplane
that separates {x0} from C. That is, there is γ ∈ IRk and d such that γ>x≥ d for all
x ∈C and γ>x0 < d. It follows that (γ,d) ∈ D0, but then x0 6∈ E, a contradiction.

To see that the set that satisfies the conditions is unique, suppose that D and F
are both sets satisfying the listed conditions. If F 6= D, then there is (α,c) either
in D\F or in F \D. We will show, by way of contradiction, that neither of these
cases can occur. The two cases are handled the same way. We will do only the
first. In the first case, there is a hyperplane separating {(α,c)} from F. That is,
there is (γ,d, f ) with γ ∈ IRk and d, f ∈ IR such that

γ>δ+dg≥ f , for all (δ,g) ∈ F , (2)

and γ>α+dc < f . It follows that aγ>δ+da(g−b)≥ f for all (δ,g) ∈ F and all
a,b > 0. As a→ 0, we see that f ≤ 0 is required. As b→ ∞, we see that d ≤ 0
is required. As a→ ∞ we see that γ>δ + dg≥ 0 for all (δ,g) ∈ F , hence we can
assume that f = 0. Because d,c≤ 0 and γ>α+dc < 0 it follows that γ>α < 0 and
there exists d0 < 0 such that γ>α+d0c < 0. Because g≤ 0 for all (δ,g) ∈ F , we
see that, even if d = 0, γ>δ+d0g≥ 0 for all (δ,g)∈ F . Hence, we can assume that
the separating hyperplane has the form (γ,d0,0) with d0 < 0. Define γ0 = γ/(−d0).
It follows from (2) that δ>γ0 ≥ g for all (δ,g) ∈ F and so γ0 ∈C. Hence α>γ0 ≥ c
which contradicts γ>α+d0c < 0. 2

Lemma 2 Let V be a closed convex subset of IRk+1, and express elements of V as
(α,d) where α ∈ IRk and d is real. Define

A = {x ∈ IRk : α>x≥ d, for all (α,d) ∈V}.
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Assume that A is nonempty. Define D to be the set of all vectors in IRk+1 of the
form (aα,ad−b) with a,b≥ 0 and (α,d) ∈V. Then D = {(α,d) ∈ IRk+1 : α>x≥
d, for all x ∈ A}.

Proof. Let x0 ∈ A, and define

C = {x− x0 : x ∈ A},
V ′ = {(α,d−α>x0) : (α,d) ∈V}.

It follows that

C = {x ∈ IRk : α>x≥ c, for all (α,c) ∈V ′}, (3)

and C contains the origin and is a closed convex set. Define D1 = {(α,d−α>x0) :
(α,d) ∈ D}. In other words, D1 is the convex closed convex set of all vectors in
IRk+1 of the form (aα,ac−b) with a,b≥ 0 and (α,c) ∈ V ′. The definitions of D
and D1 were rigged so that D1 satisfies all the conditions required of the set called
D in Lemma 1 except possibly the first condition in the itemized list. To verify
this condition, define

C′ = {x ∈ IRk : α>x≥ c, for all (α,c) ∈ D1}.

To see that C ⊆ C′, let x ∈ C. Then aα>x ≥ ac− b for all (α,c) ∈ V ′ and all
a,b≥ 0. Hence, α>x≥ c for all (α,c) ∈ D1. To see that C′ ⊆C, let x ∈C′. Since
(α,c) ∈ V ′ implies (α,c) ∈ D1, we have α>x≥ c for all (α,c) ∈ D1 and x ∈C. It
follows from Lemma 1 that D1 is the set D0 defined in (1) and D is the claimed
set as well. 2

Proof of Theorem 1. (i) Let

U =

{
x ∈ IRk :

(
x1, . . . ,xk−1,1−

k−1

∑
j=1

x j

)
∈ P

}
.

Let C ′ be the convex hull of B . Let V consist of all points of the form (α f ,c f )
where f ∈ C ′. Let A be as defined in the statement of Lemma 2. Since g is not
Bayes with respect to P , the set Hg = {x ∈ U : α>g x = cg} does not intersect
A. Now, notice that Hg and A are disjoint closed convex sets, hence there is a
separating hyperplane. That is, there exists a nonzero γ ∈ IRk and c such that
γ>x ≥ c for all x ∈ A and γ>y < c for all y ∈ Hg. Because γ>x ≥ c for all x ∈ A,
it follows from Lemma 2 that (γ,c) is in the set D defined in the statement of
Lemma 2. Hence, γ = aα and c = ad−b for some (α,c) ∈V and some a,b≥ 0.
Because γ is nonzero, we have a > 0 and we can assume without loss of generality
that a = 1 and (γ,d−b) ∈V . So, γ = αh for some h ∈ C ′ and c = ch−b, and we
can assume without loss of generality that b = 0 and c = ch. Now, for all real t,

α>h (p1, . . . , pk−1, t) = h(ωk)−Ep(h)+ t = ch−Ep(h)+ t.
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So, for all x ∈ Hg,
ch > α>h x = ch−Ep(h)+Ep(g).

It follows that, for all p ∈ P , Ep(h) > Ep(g).
(ii) Define U , C ′, V , A, and Hg exactly as in the proof of part (i). It is

still true that Hg and A are convex, that A is closed, and that Hg does not intersect
A. But Hg is now relatively open. That is, it is the intersection of the hyperplane
H ′g = {x : α>g x = cg}with an open set. For this reason, H ′g is the unique hyperplane
that contains Hg. Of course, if the closure of Hg fails to intersect A, the rest of the
proof of part (i) continues to work. So, suppose that the closure Hg of Hg intersects
A. Even so, there is a weakly separating hyperplane (γ,c), i.e., there is a γ ∈ IRk

and c such that γ>x ≥ c for all x ∈ A and γ>y ≤ c for all y ∈ Hg. We need to
show that among all such separating hyperplanes, there is at least one such that
the second inequality is strict, i.e., at least one of the separating hyperplanes fails
to intersect Hg. Then the rest of the proof of part (i) will finish the proof.

Because A is finite, A is the intersection of finitely many closed halfspaces,
and each of these halfspaces is of the form {x : α>f x≥ c f } for some f ∈ B . Now,
Hg intersects A in some convex subset of the union of the hyperplanes that de-
termine these halfspaces. No subset of the union of finitely many distinct hyper-
planes can be convex unless it is contained in the intersection of one or more of
the hyperplanes. (Just check that αx +(1−α)y is in the same hyperplane with x
if and only if y is as well.) Hence, A∩Hg is a subset of the intersection of one or
more of the hyperplanes of the form H ′f = {x : α>f x = c f } for some f ∈ B . Define

W = { f ∈ B : A∩Hg ⊂ H ′f }.

If W = B , then Hg ⊂ A, a contradiction. Let f0 ∈ B \W be such that H ′f0 is closest
to A∩Hg. Such f0 exists because B is finite. Let ε be one-half of the distance from
H ′f0 to A∩Hg, and define

O = {x : ‖x−A∩Hg‖< ε}.

Then

T = O∩
(

\

f∈W

{x : α>f x≥ c f }
)
⊂ A.

For each f ∈W , define M f = {x ∈ Hg : α>f x ≥ c f }. If at least one M f = /0, then
H ′f fails to intersect Hg, and the proof is complete. So assume, to the contrary,
that every M f 6= /0. Then for each f , the closure M f of M f contains A∩Hg. It fol-
lows that each M f contains points in every neighborhood of A∩Hg, including O.
Hence, for each f , there exists x ∈ T ∩M f . Each such x ∈Hg∩A, a contradiction.
2

Proof of Corollary 1. Let C be the convex hull of B . Either assumption (i) or
(ii) is strong enough to imply that Theorem 1 applies, hence there is h′ ∈ C such
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that Ep(h′) > Ep(g) for all p ∈ P . If h′ 6∈ B let h1 = h′, and apply Theorem 1
repeatedly in a transfinite induction as follows. At each successor ordinal γ + 1,
find hγ+1 ∈ C such that Ep(hγ+1) > Ep(hγ) for all p ∈ P . At a countable limit
ordinal γ choose any countable sequence {γn}∞

n=1 of ordinals that is cofinal with
γ. By the induction hypothesis, Ep(hγi) < Ep(hγ j ) for all p ∈ P if i < j. The
sequence {hγn}∞

n=1 belongs to the closed bounded set A , hence it has a limit hγ
and

Ep(hγ) = lim
n→∞

Ep(hγn) = sup
n

Ep(hγn),

for all p, and hence does not depend on which limit point we take. Also, supn Ep(hγ) >
Ep(hα) for all α < γ, so we continue to satisfy the induction hypothesis. Since A
is bounded, there cannot exist an uncountable increasing sequence of Ep(hγ) val-
ues, hence the transfinite induction terminates at some countable ordinal γ0 with
hγ0 ∈ B .
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