
Products of Capacities Derived from
Additive Measures

Extended abstract

DAMJAN ŠKULJ
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Abstract

A new approach to define a product of capacities is presented. It works for
capacities that are in a certain relation with additive measures, most often this
means that they are somehow derived from additive measures. The product
obtained is not unique, but rather, lower and upper bound are given.
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1 Introduction
It is a well known fact that there is no straightforward unique way to generalize
the product of additive measures to the non-additive case. Several approaches to
define a product for a specific family of non-additive measures, also called capac-
ities, have already been proposed (see [3, 4, 6]). In this paper a new approach is
presented to define a product for a family of capacities related to additive mea-
sures. The product of capacities defined here is in a close relation with the product
of the corresponding additive measures.

Let us first explain the terminology used in this paper. Let S be a nonempty set
and A a σ-algebra of its subsets. A capacity is a monotone function v : A → R,
such that v( /0) = 0 and v(S) < ∞. Additive measures used here are assumed to
be finite and defined on the same algebras as the capacities. We will also use the
standard terminology for the products in additive case. So µ×λ will be the usual
additive product of two additive measures µ and λ, and A ×B will be the usual
product algebra.

A product of capacities u and v on σ-algebras A and B respectively, is any
capacity w : A×B→ R such that

w(A×B) = u(A)v(B). (1)
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In additive measure theory the above condition uniquely determines the product
of measures. Uniqueness crucially depends on additivity, moreover, without addi-
tivity requirement uniqueness of product can in general not be achieved. However,
there always exist product capacities that satisfy (1), as shown in [4] where the
lower and the upper bound are also given. But the set of all products if mono-
tonicity of the product alone is required is far too big and their values differ too
much on non-rectangular sets.

In order to reduce the set of all possible product capacities, the products are
sought within some class of capacities with some additional properties that are
preserved by multiplication. In [4] Hendon et al. define a product of belief func-
tions using the idea of Möbius representation of capacities. Another definition of
a product was proposed by Koshevoy in [6] using triangulation of geometrical
realizations of distributive lattices. Denneberg in [3] joins both ideas to obtain a
definition of a product for general monotone capacities which coincides with the
Möbius product for the class of belief functions.

Instead of restricting to a special class of capacities Ghirardato in [5] re-
stricts to a special class of functions for which the Fubini theorem for capaci-
ties holds. This class contains characteristic functions for a family of sets that he
calls comonotonic sets. For these sets the double integral of their characteristic
functions is a natural definition of a product of the capacities.

Although the existing definitions of products cover a very general class of
capacities, most of them are still limited to discrete capacities. In this paper I
present a definition of a product of capacities that seems to work better for con-
tinuous capacities, however, the results are valid for discrete case as well. The
class of capacities it covers is rather restricted, but I think there are ways open to
generalize this idea.

2 Increasing Capacities
The product of capacities defined here works for a family of capacities that are
in a certain way related to additive measures. Before defining this relation, we
will observe it in the case of a supermodular distorted measure. A capacity v is
a distorted measure if it can be expressed as a composite f ◦ µ, where µ is an
additive measure and the distortion f is an increasing real function with f (0) = 0.
It is well known that a distorted measure is submodular or supermodular if the
distortion is concave or convex respectively (see [2]). Suppose now that v is a
supermodular distorted measure with distortion f applied to measure µ. Since f
is a convex function, graph of a linear function intersects its graph in at most
two different points. Using this fact, one can easily observe that for each pair of
subsets A⊆ B, v(A)/µ(A)≤ v(B)/µ(B) holds. This leads to the next definition.

Definition 1 Let µ be an additive measure on a σ-algebra A and v a capacity on
the same algebra. The capacity v is increasing with respect to µ if the following
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is true: If A⊆ B and µ(A) > 0 then v(A)/µ(A)≤ v(B)/µ(B) and if µ(A) = 0 then
also v(A) = 0.

If µ : A → R is an additive measure, I (µ) will denote the set of all increasing
capacities with respect to µ.

Further, we define quotient mv(A) := v(A)/µ(A), where mv(A) = 0 for all A

with v(A) = µ(A) = 0, and for each t ∈ R, Av,t :=
{

A
∣∣ t ≤ v(A)

µ(A)

}
. According to

Definition 1, mv : A→R is an increasing set function and it will be used to define
the product of capacities. Thus, the product of two increasing capacities u and v
will be defined by defining the corresponding mu×v.

We will also generalize the concept of comonotonicity for the case of increas-
ing capacities. (For definition of comonotonicity for real functions see e.g. [2]).
If v1 and v2 are capacities on a σ-algebra A , increasing with respect to an addi-
tive measure µ, then we say v1 and v2 are comonotonic if the union {Av1,t |t ∈ R}
∪{Av2,s|s ∈ R} forms a chain of subsets of A . Equivalently, capacities v1 and v2
are comonotonic exactly when mv1 and mv2 are comonotonic as real functions on
A in the usual sense.

3 Products of Increasing Capacities
Given a set C ∈A×B , we will first define two Borel measurable sets in R2 whose
Lebesgue measures are the minimum and the maximum value for the function
mu×v. These sets can be considered as some kind of products of mu and mv.

Definition 2 Let u and v be increasing capacities with respect to measures µ and
λ respectively and defined on σ-algebras A and B . Let A ×B be the algebra of
all measurable sets with respect to the product measure µ× λ. Define functions
ϕ

u,v
and ϕu,v : A×B→ 2R

2
with

(x,y) ∈ ϕ
u,v

(C) ⇐⇒ If there exist A ∈ Au,x and B ∈ Bv,y

such that A×B⊆C,x > 0,y > 0
(x,y) ∈ ϕu,v(C) ⇐⇒ If for all A ∈ A and B ∈ B such that A×B⊇C

A ∈ Au,x and B ∈ Bv,y holds, x > 0,y > 0

It is easy to see that ϕ
u,v

(C) and ϕu,v(C) are Borel measurable sets in R2

for all C ∈ A ×B . However, there is a substantial asymmetry between both sets.
While ϕu,v(C) is only a rectangle that represents the smallest rectangular set (with
respect to mu and mv) that contains C, ϕ

u,v
(C) is a union of rectangles representing

the family of the largest rectangular sets that are contained in C. Clearly, the latter
set therefore characterizes C much more precisely, in general, than the former one.

The definition of the lower and the upper bound for a product follows.
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Definition 3 Let u and v be increasing capacities with respect to measures µ and
λ. We define the lower product of u and v as

(u× v)(C) = µ
R2

(
ϕ

u,v
(C)
)

(µ×λ)(C)

and their upper product as

(u× v)(C) = µ
R2
(
ϕu,v(C)

)
(µ×λ)(C).

The products u× v and u× v turn out to be the lower and the upper bound for
a product of capacities under some additional natural assumptions. But first we
state some properties of the products just defined.

Proposition 1 The following statements hold for u,u′,ui ∈ I (µ) and v ∈ I (λ).

(i) If u≤ u′ then u× v≤ u′× v.

(ii) (u+u′)× v≤ u× v+u′× v, equality holds if u and u′ are comonotonic.

(iii) If ui↗ u then ui× v↗ u× v.

and

(i)’ If u≤ u′ then u× v≤ u′× v.

(ii)’ (u+u′)× v = u× v+u′× v

(iii)’ If ui↗ u then ui× v↗ u× v.

Because of symmetry of the product all of the above properties also hold for the
second term.

The above properties also show that the upper and the lower product are not
symmetric, as one might expect. While the upper product is additive, the lower is
only comonotonically additive.

In order to prove that the lower and the upper product are indeed lower and up-
per bound in a family of product operators, we define operators Φ and Φ : I (µ)×
I (λ)→ I (µ×λ) with Φ(u,v) = u× v and Φ(u,v) = u× v.

Proposition 1 implies that the operators Φ and Φ are monotonic and contin-
uous from below (in the sense of [2]) in both terms. The upper product operator
Φ is also biadditive, while the lower product operator Φ is subadditive in both
terms, however, when applied to sum of comonotonic capacities it is additive as
well. Usually such operators are said to be comonotonically additive.

The following two theorems are the main results of this paper.
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Theorem 1 Let µ and λ be positive measures on σ-algebras A and B respec-
tively. Let Φ : I (µ)× I (λ)→ I (µ× λ) be an operator that is comonotonically
additive, positively homogeneous and continuous in both terms and such that

Φ(u,v)(A×B) = u(A)v(B),

for all A ∈ A and B ∈ B . Then Φ≤Φ≤Φ holds.

Proof Sketch. To prove this and also the next theorem, we define a family of
simple increasing capacities that we call cut measures. Let A ′ ⊆A be a family of
sets such that for each pair of sets A⊆ B, A ∈ A ′ implies B ∈ A ′. Then we define
cut measure µ|A ′ by

µ|A ′(A) :=

{
µ(A) if A ∈ A ′

0 otherwise

The first step of proof is to verify that u× v and u× v are the smallest and
the greatest product measures in case where u and v are cut measures, say
u = µ|A ′ and v = λ|B ′ . It turns out that cut measures (µ× λ)|C ′ and (µ× λ)|C ′′
are their smallest and largest product capacities increasing with respect to µ×
λ, where C ′ = {C| there exist A ∈ A and B ∈ B such that A×B⊆C} and C ′′ =
{C| if for all A×B⊇C, A ∈ A and B ∈ B holds}. These two cut measures turn
out to be equal to u× v and u× v respectively.

The second step is to show that an increasing capacity can be uniformly ap-
proximated by sums of comonotonic cut measures. Using first step, comonotonic
additivity and continuity of Φ we get the desired inequality. 2

Next important property that a product should have is associativity.

Theorem 2 Let u,v and w be increasing capacities, with respect to µ,λ and η.
Then the following equalities hold:

u× v×w = u× v×w =: u× v×w

and
u× v×w = u× v×w =: u× v×w.

The proof of this theorem also consists of two steps, the first being proof that
it holds for the case of cut measures and the second one is extension to general
case, using comonotonic additivity and continuity of Φ.

4 Conclusion
The results presented here, should be extended to more general families of ca-
pacities. One idea is to extend the product to differences of increasing measures.
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That is, if capacities u and v can be written as u = u1−u2 and v = v1− v2, where
u1,u2,v1,v2 are increasing with respect to some additive measure µ and λ re-
spectively, an obvious way to extend present definition of the product would be,
to define the lower product u× v = u1× v1 + u2× v2− u1× v2− u2× v1. Such a
definition unfortunately does not provide uniqueness of the product. A topic of
further study is therefore searching for alternative generalizations.

The main disadvantage of the product defined here is, that it depends on the
underlying additive measure. If we, on the other hand, modified the definition to
allow all additive measures and apply minimum or maximum on it, we would
probably obtain a trivial result. A compromise would be, to consider a proper
family of additive measures. Such a family could depend on the type of considered
capacities.
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