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Abstract

A second-order hierarchical uncertainty model of a system of independent
random variables is studied in the paper. It is shown that the complex non-
linear optimization problem for reducing the second-order model to the first-
order one can be represented as a finite set of simple linear programming
problems with a finite number of constraints. The stress-strength reliability
analysis by unreliable information about statistical parameters of the stress
and strength exemplifies the model. Numerical examples illustrate the pro-
posed algorithm for computing the stress-strength reliability.
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1 Introduction
By processing unreliable information, much attention have been focused on the
second-order uncertainty models (hierarchical uncertainty models) due to their
quite commonality. These models describe the uncertainty of a random quantity
by means of two levels. Various second-order models and their applications can
be found in the literature [4, 6, 7, 12, 13, 22], and a comprehensive review of
hierarchical models is given in [5], where it is argued that the most common hi-
erarchical model is the Bayesian one [2, 8, 14]. At the same time, the Bayesian
hierarchical model is unrealistic in problems where there is available only partial
information about the system behavior.

The main shortcoming of most proposed second-order hierarchical models
(from the informational point of view) is the necessity to assume the certain type
of the second-order probability or possibility distributions defined on the first-
order level. This information is usually absent in many applications and additional

532



Utkin: Uncertainty Model of Independent Random Variables 533

assumptions may lead to some inaccuracy in results. The study of some tasks re-
lated to homogeneous second-order models without any assumptions about prob-
ability distributions has been illustrated by Kozine and Utkin [10]. However, these
models are of limited use due to the homogeneity of gambles considered on the
first-order level, i.e., the initial information is restricted by previsions of identical
gambles. A new hierarchical uncertainty model for combining different types of
evidence was proposed by Utkin [17, 16], where the second-order probabilities
can be regarded as confidence weights and the first-order uncertainty is modelled
by lower and upper previsions of different gambles [21]. However, the proposed
model [17, 16] supposes that initial information is given only for one random vari-
able. At the same time, many applications use a set of random variables described
by a second-order uncertainty model, and it is necessary to find a model for some
function of these variables. For example, reliability analysis demands to compute
the reliability of a system under uncertain information about its components. An
imprecise hierarchical model of a number of random variables has been studied
by Utkin [18], but this model supposes that there is no information about indepen-
dence of random variables. It should be noted that the condition of independence
takes place in many applications. This condition makes the natural extension to
be non-linear and, as a result, the corresponding hierarchical model becomes very
complex.

An efficient approach to solve this problem is proposed in the paper. In order
to show the practical relevance of the proposed approach, it is applied to the stress-
strength reliability analysis by the independent stress and strength.

2 Imprecise Stress-Strength Reliability
A probabilistic model of structural reliability can be formulated as follows. Let Y
represent a random variable describing the strength of a system and let X represent
a random variable describing the stress or load placed on the system. System
failure occurs when the stress on the system exceeds the strength of the system.
Then the reliability of the system is determined as R = Pr{X ≤ Y}. A general
approach to the structural reliability analysis based on the imprecise probability
theory [11, 21, 23] was proposed in [19, 20]. Let us briefly consider this approach.
Suppose that available information about the random stress X and the random
strength Y is given as a set of n lower Ehi and upper Ehi previsions of gambles
hi(X ,Y ) (unbounded gambles are considered in [15]) such that

Ehi ≤ Ep(x,y)hi(X ,Y )≤ Ehi, i = 1, ...,n.

Here p(x,y) is a joint density of the stress and strength. It is assumed that there
exist a set of density functions such that linear previsions Ep(x,y)hi can be regarded
as expectations of hi. Taking into account that

R = Pr{X ≤ Y}= Ep(x,y)I[0,∞)(Y −X), (1)
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we can write the following optimization problems (natural extension) for comput-
ing the lower R and upper R stress-strength reliability as follows:

R
〈
R
〉

= inf
p

〈
sup

p

〉
Z

R
2
+

I[0,∞)(y− x)p(x,y)dxdy, (2)

subject to

Ehi ≤
Z

R
2
+

hi(x,y)p(x,y)dxdy≤ Ehi, i = 1, ...,n. (3)

Here the infimum and supremum are taken over the set of all possible densities
{p(x,y)} satisfying conditions (3), I[0,∞)(Y −X) is the indicator function taking
the value 1 if Y ≥X and 0 otherwise. If random variables X and Y are independent,
then the constraint p(x,y) = pX (x)pY (y) is added to constraints (3), where pX and
pY are densities of X and Y , respectively.

The natural extension is a powerful tool for analyzing the reliability on the ba-
sis of available partial information. However, it has a shortcoming. Let us imagine
that two experts provide the following judgements about the stress: (i) mean value
of the stress is not greater than 10; (ii) mean value of the stress is not less than 10
hours. The natural extension produces the resulting mean value [0,10]∩ [10,∞) =
10. In other words, the absolutely precise measure is obtained from too imprecise
initial data. This is unrealistic in practice of reliability analysis. The reason of
such results is that probabilities of judgements are assumed to be 1. If we assign
some different probabilities to judgements, then we obtain more realistic assess-
ments. For example, if the belief to each judgement is 0.5, then, according to [9],
the resulting mean value is greater than 5 hours. Therefore, in order to obtain the
accurate and realistic reliability assessments, it is necessary to take into account
some vagueness of information about characteristics of the stress and strength.

3 Second-Order Model. Problem Statement
Suppose that there exist n judgements about the stress X :

E f j(X) ∈ Tj = [t j, t j], j = 1, ...,n,

and l judgements about the strength Y :

Eh j(Y ) ∈ S j = [s j,s j], j = 1, ..., l.

Here f j and h j are gambles corresponding to the available judgements about X
and Y . Moreover, it is known that

α j ≤ Pr
{
E f j ∈ Tj

}
≤ α j, j = 1, ...,n,

β
j
≤ Pr

{
Eh j ∈ S j

}
≤ β j, j = 1, ..., l.
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The second-order probabilities [α j,α j] and [β
j
,β j] are interpreted as a model for

uncertainty about “correct” values of partially known measures of X and Y . Let
us briefly discuss the sense of beliefs to the expert judgements. If we know that
an expert provides 100 ·α% of “correct” judgements, this means that, by giving
finitely many intervals, say n, for an unknown parameter, approximately nα inter-
vals cover some “correct” value of the parameter. But if we have only the (n+1)-st
interval and do not know anything about previous n intervals, then we can only say
that the “correct” value of the parameter lies in this interval with probability α and
outside this interval with probability 1−α. If we would have all aforementioned
n intervals, some probability distribution of the parameter could be constructed
and well-known Bayesian methods could be used. In this case, there is no need to
apply imprecise probabilities.

The term “expert information” may be used in a more general sense. In partic-
ular, confidence intervals of parameters elicited as a result of statistical inference
with corresponding confidence probabilities may be regarded as “beliefs to ex-
perts”. For example, if we have one confidence interval for the expectation of a
probability distribution, then we can only assert, that the “correct” value of the
expectation is in the interval with the confidence interval probability [α,1] and
outside the confidence interval with the probability [0,1−α].

How to find average values of R and R, i.e., to reduce the second-order model
to the first-order one? Roughly speaking, if we have second-order probabilities
defined for different intervals of E f j and Eh j, then there exist a set of second-
order distributions of E f j , Eh j, and EI[0,∞)(Y −X) produced an interval of lower
and upper expectations of EI[0,∞)(Y −X), i.e., R and R. We will call this interval
”average” to distinguish expectations (previsions) on the first and second levels
of the considered second-order uncertainty model. In fact, the ”average” interval
allows us to get rid of the more complex second-order model and to deal with the
first-order model. This problem is especially difficult if the stress and strength are
independent. At that, a special type of independence called by the free product
[11] is studied in the paper. This type of independence is like to the epistemic
irrelevance [3] and, generally, is asymmetric.

In order to give the reader the essence of the subject analyzed and make all
the formulas more readable, we will mainly consider only the lower bound R.

Let vi = E fi and wi = Ehi be values of random variables Vi and Wi defined on
sample spaces Ωi and Λi, respectively. Let V = (V1, ...,Vn), W = (W1, ...,Wn) and
V = (v1, ...,vn), W = (w1, ...,wl) be the vectors of random variables Vi, Wi and
their values, respectively. Denote N = {1, ...,n} and L = {1, ..., l}. Then the natu-
ral extension for computing R can be written as a sequence of lower expectations:

R = EW
{

EV|W (EI[0,∞)(Y −X)
)}

by given lower and upper previsions

EITi(vi) = αi, EITi(vi) = αi, EISi(wi) = β
i
, EISi(wi) = βi. (4)
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By introducing a random variable Z having values z(V,W) = EI[0,∞)(Y −X)
and assuming that there exists a set of densities ϕ(V) and ψ(W) of vectors V and
W , respectively, we can write

R = inf
ψ

Z

Λ

(
inf
ϕ

Z

Ω
z(V,W)ϕ(V)dV

)
ψ(W)dW, (5)

subject to

αi ≤
Z

Ω
ITi(vi)ϕ(V)dV≤αi, i ∈ N, β

i
≤

Z

Λ
ISi(wi)ψ(W)dW≤βi, i ∈ L. (6)

Here Ω = Ω1× · · · ×Ωn, Λ = Λ1× · · · ×Λl. The sample spaces Ωi and Λ j are
determined by sets of values E fi and Eh j, i.e.,

Ωi = [infE fi,supE fi], Λ j = [infEh j,supEh j].

A dual optimization problem can not be written as it has been made in [18] be-
cause the initial problem is non-linear. Our aim is to find R, i.e., to solve (5)-(6).

4 Solution of Problem (5)-(6)

4.1 A Set of Linear Programming Problems
Let W∗ = (w∗1, ...,w

∗
n) ∈ Λ be a realization of the vector W. Denote R(W∗) =

Eϕz(V,W∗). Problem (5)-(6) can be represented as follows:

R = inf
ψ

Z

Λ

(
inf
ϕ

Z

Ω
z(V,W)ϕ(V)dV

)
ψ(W)dW

= inf
ψ

Z

Ω
inf
ϕ

R(W∗)ψ(W)dW = inf
ψ

Z

Ω
R(W∗)ψ(W)dW, (7)

subject to
β

i
≤ EψISi(wi)≤βi, i ∈ L. (8)

Here
R(W∗) = inf

ϕ
Eϕz(V,W∗), (9)

subject to
αi ≤ EϕITi(vi)≤αi, i = 1, ...,n. (10)

Problems (7)-(8) and (9)-(10) are linear and dual optimization problems can
be written, i.e., we have a set of the following problems for each W∗ ∈ Λ:

R(W∗) = sup

(
c0 + ∑

i∈N
(ciαi−diαi)

)
, (11)
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subject to ci,di ∈ R+, c0 ∈ R, i ∈ N, and ∀V ∈Ω,

c0 + ∑
i∈N

(ci−di) ITi(vi)≤ z(V,W∗), (12)

and one linear programming problem

R = sup

(
c0 + ∑

i∈L

(
ciβi
−diβi

))
, (13)

subject to ci,di ∈ R+, c0 ∈ R, i ∈ L, and ∀W∗ ∈ Λ,

c0 + ∑
i∈L

(ci−di) ISi(wi)≤ R(W∗). (14)

The dual problems have been introduced in order to get rid of densities ϕ(V)
and ψ(W).

4.2 Solution of Problem (11)-(12)
An algorithm and an approach to solving a problem similar to (11)-(12) are given
in [16, 17]. But problem (11)-(12) has some difference. To solve this problem, it
is necessary to define what z(V,W∗) is.

Let J be a set of indices and J⊆N. Introduce the following sets of constraints:

TJ = {Ti, i ∈ J} , T c
J = {T c

i , i ∈ J} , T c
i = Ωi\Ti.

Then constraints (12) can be rewritten as

c0 +
n

∑
i=1

(ci−di) ITi(EpX fi)≤ z(V,W∗), pX ∈ P . (15)

Here P is the set of all densities {pX}. Let us consider these constraints in detail
and define z(V,W∗). Note that

z(V,W∗) = EpX pY I[0,∞)(Y −X). (16)

However, we fixed the vector W∗ = (E∗h1, ...,E∗hl). This means that the set of
probability densities pY (y) is restricted as follows:

E∗pY
h1 = w∗1, ...,E

∗
pY

hl = w∗l . (17)

So, z(V,W∗) can be found by solving the optimization problem with objective
function (16), constraints (17), and constraints for pX , which will be considered
below.

In order to compute the indicator functions in (15), it is necessary to substitute
different functions pX from P and to calculate the corresponding values of EpX fi
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and ITi(EpX fi). Moreover, it is necessary to solve problem (16)-(17) for each pX ∈
P . Obviously, this task can not be practically solved. Therefore, another way for
solving the optimization problem is proposed.

We call the set T c
N\J ∪TJ consistent if there is at least one density pX such that

EpX fi ∈ Ti, i ∈ J, EpX f j ∈ T c
j , j ∈ N\J. Now we can see that if the set TJ ∪T c

N\J
is consistent, then ITi (EpX fi) = 1 if i ∈ J, and ITi (EpX fi) = 0 if i ∈ N\J. In other
words, if the set T c

N\J ∪TJ is consistent, then there exists at least one density pX

such that all linear previsions EpX fi, i ∈ J, are in intervals Ti and their indicator
functions are equal to 1, all linear previsions EpX f j, j ∈ N\J, do not belong to
intervals Ti and their indicator functions are equal to 0. In this case, we will say
that pX belongs to a set PJ . So, to simplify constraints (15), it is necessary to look
over all consistent sets T c

N\J ∪TJ . Then constraints (15) can be rewritten for all
J ⊆ N, such that T c

N\J ∪TJ are consistent, as follows:

c0 +∑
i∈J

(ci−di)≤ z(V,W∗). (18)

If T c
N\J ∪TJ is inconsistent, then corresponding inequality (18) is excluded from

the list of all constraints.
But how to determine the consistency of sets T c

N\J ∪TJ? The set T c
N\J ∪TJ is

consistent if an optimization problem with constraints produced by T c
N\J ∪TJ has

any solution. At that, the objective function may be arbitrary. In other words, for
determining the consistency of T c

N\J ∪ TJ , it is necessary to solve the following
optimization problem:

inf
pX

(
sup
pX

)
EpX u(x),

subject to EpX fi ∈ Ti, i ∈ J, EpX f j ∈ T c
j , j ∈ N\J. Here u is an arbitrary function.

Let p(1)
X ∈ PJ and p(2)

X ∈ PJ . Then

ITi(Ep(1)
X

fi) = ITi(Ep(2)
X

fi).

Let

z(2)(V,W∗) = E
p(2)

X pY
I[0,∞)(Y −X)≤ E

p(1)
X pY

I[0,∞)(Y −X) = z(1)(V,W∗).

Then the constraint

c0 + ∑
i∈N

(ci−di) ITi(Ep(1)
X

fi)≤ z(1)(V,W∗)

follows from the constraint

c0 + ∑
i∈N

(ci−di) ITi(Ep(2)
X

fi)≤ z(2)(V,W∗)
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and can be removed. This implies that (15) is equivalent to

c0 +∑
i∈J

(ci−di)≤ inf
PJ

z(V,W∗), (19)

where
inf
PJ

z(V,W∗) = inf
pX ,pY

EpX pY I[0,∞)(Y −X), (20)

subject to

EpX fi ∈
{

Ti, i ∈ J
T c

i , i ∈ N\J , i ∈ N, (21)

EpY hi = w∗i , i ∈ L. (22)

So, an infinite number of constraints has been reduced to at most 2n constraints
(19). Since the function u is arbitrary, then infPJ z(V,W∗) may be used in place of
u. There exist exact analytical solutions to problem (20)-(22) for various types of
initial information [19].

4.3 Solution of Problem (13)-(14)
Now we have the values of R(W∗) for each W∗ ∈ Λ. Let us introduce the sets

SK = {Si, i ∈ K} , S c
K = {Sc

i , i ∈ K} , K ⊆ L = {1,2, ..., l}.

For solving problem (13)-(14), we apply an algorithm which is similar to the
considered one in the previous subsection, i.e.,

R = sup

(
c0 + ∑

i∈L

(
ciβi
−diβi

))
, (23)

subject to ci,di ∈ R+, c0 ∈ R, i ∈ L, and ∀K ⊆ L, ∀W∗ ∈ Λ,

c0 + ∑
i∈K

(ci−di)≤ inf
W∗∈S c

L\K∪SK
R(W∗). (24)

This is a simple linear programming problem with at most 2l constraints.

5 Exact Bounds for the Reliability
It can be seen from results of the previous section that complex non-linear opti-
mization problem (5)-(6) is reduced to a set of linear programming problems with
finitely many constraints and non-linear problems (20)-(22) which can be numer-
ically solved or have exact solutions [19] for the most important types of initial
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information (points of probability distribution functions of X and Y , moments of
X and Y , probabilities defined on nested intervals). However, these optimization
problems have to be solved for all values of W∗ ∈ Λ whose number may be infi-
nite. This leads only to the approximate solution and makes the task to be rather
difficult from the computational point of view even by a small number of initial
judgements. It turns out that optimization problem (5)-(6) can be exactly solved.
Therefore, an interesting and efficient solution of the problem is proposed in this
section.

Let us consider constraints (24). Suppose that R(W∗) achieves its minimum
at W∗ = W∗

o(K) ∈ S c
L\K ∪ SK . Then all vectors W∗ ∈ S c

L\K ∪ SK except W∗
o(K)

are not used in constraints to problem (23)-(24). This implies that we do not need
to look over all possible vectors W∗. By returning to problem (11)-(12), it is
necessary to solve it only for W∗

o(K), K ⊆ L. This implies that the number of
solved optimization problems is finite and depends on numbers n and l of initial
judgements about X and Y . Moreover, we can obtain exact bounds for the stress-
strength reliability in this case. However, we do not know points W∗

o(K) before
solving problem (11)-(12). Let us show how to overcome this difficulty.

It follows from (11)-(12) that R(W∗) decreases as z(V,W∗) decreases. More-
over, the left sides of constraints (19) and (24) do not depend on special values
of W∗ and are determined only by the set S c

L\K ∪SK . This implies that we do not
need to know an optimal value of the vector W∗ = W∗

o(K). It is enough to know
that this value belongs to the set S c

L\K ∪ SK (this allows us to construct the K-th
constraint in (24)) and makes z(V,W∗) and R(W∗) to be minimal for at least one
W∗ ∈ S c

L\K ∪SK . Therefore, constraints (22) have to be replaced by constraints

EpY hi(Y ) ∈
{

Si, i ∈ K
Sc

i , i ∈ L\K , i ∈ L, (25)

where intervals Si, Sc
i are defined by the set S c

L\K ∪SK .
Indeed, infW∗∈S c

L\K∪SK R(W∗) corresponds to infW∗∈S c
L\K∪SK infPJ z(V,W∗). At

the same time, this is equivalent to the problem infPJ z(V,K) subject to

EpX fi ∈
{

Ti, i ∈ J
T c

i , i ∈ N\J , i ∈ N, EpY hi =

{
Si, i ∈ K
Sc

i , i ∈ L\K , i ∈ L,

because constraints (25) contain all points W∗ ∈ S c
L\K ∪SK and infPJ z(V,W∗) is

achieved at pY satisfying one of the values W∗.
So, z(V,W∗) and R(W∗) can be replaced by z(J,K) and R(K). This means that

values of V and W are taken from the sets T c
N\J ∪TJ and S c

L\K ∪SK , respectively.
It is worth noticing that this subtle technique allows us to solve a problem

of consistency of judgements (22). It is obvious that constraints (22) may be in-
consistent by some values of w∗i , and it is not clear what to do in this case. After
introducing constraints (25), the inconsistency means that the corresponding con-
straint in (24) is removed from the list of constraints to problem (23)-(24).
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6 Algorithm for Computing R

Let us write a final algorithm for computing R.
Step 1. Choosing a set S c

L\Ki
∪SKi from the possible sets S c

L\K ∪SK , K ⊆ L.
Step 2. Choosing a set T c

N\J j
∪TJ j from the possible sets T c

N\J ∪TJ , J ⊆ N.
Step 3. Solving the optimization problem with objective function (20) and

constraints (21) and (25) by Ti and Si taken from sets T c
N\Ji
∪TJi and S c

L\Ki
∪ SKi

defined on Steps 1 and 2, respectively. The result of this step is the value z(J j,Ki).
If z(J,Ki) are obtained for all possible J ⊆ N, then go to Step 4, else go to Step 2.

Step 4. Solving linear programming problem (11)-(12) by using the consistent
values of z(J,Ki) computed on Step 3. The result of this step is the value R(K). If
R(K) are obtained for all possible K ⊆ L, then go to Step 5, else go to Step 1.

Step 5. Solving linear programming problem (23)-(24) by using the consistent
values of R(K) computed on Step 4. The result of this step is R.

According to the algorithm, it is necessary to solve 2l +1 linear programming
problems (Steps 4 and 5) and 2nl non-linear optimization problems (Step 3). Step
3 can be realized by means of results given in [19]. For solving this non-linear
problem in a case of arbitrary judgements, a software program has been devel-
oped.

7 Numerical Example 1
Suppose that two experts provide probabilities of events concerning the stress and
strength. The first expert: 0.9 and 1 are bounds for the probability that the stress
is less than x1 = 18. The second expert: 0 and 0.2 are bounds for the probability
that the strength is less than y1 = 14; 0.75 and 1 are bounds for the probability
that the strength is less than y2 = 20. The beliefs to experts are 0.9 and [0.6,0.8],
respectively. The beliefs [a,b] mean that the expert provides between a% and b%
of true judgements. This information can be formally represented as

Pr{0.9≤ EI[0,18](X)≤ 1}= 0.9,

Pr{0≤ EI[0,14](Y )≤ 0.2} ∈ [0.6,0.8],

Pr{0.75≤ EI[0,20](Y )≤ 1} ∈ [0.6,0.8].

Here N = {1}, L = {1,2}. Let us find R = EEI[0,∞)(Y −X). Define sets

K = {1,2}, S c
L\K ∪SK = {S1,S2}= {[0,0.2], [0.75,1]},

K = {1}, S c
L\K ∪SK = {S1,Sc

2}= {[0,0.2], [0,0.75]},
K = {2}, S c

L\K ∪SK = {Sc
1,S2}= {[0.2,1], [0.75,1]},

K = {∅}, S c
L\K ∪SK = {Sc

1,S
c
2}= {[0.2,1], [0,0.75]}.
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and

J = {1}, T c
N\J ∪TJ = {T1}= {[0.9,1]} ,

J = {∅}, T c
N\J ∪TJ = {T c

1 }= {[0,0.9]} .

Let us compute z(J,K) for each K and J. According to [19], there holds

z = t1(1− s j(1)), j(i) = min{ j : xi ≤ y j}.

Hence j(1) = 2, and the following hold for J = {1} ⊆ {1}

K = {1,2}, z(J,K) = 0,

K = {1}, z(J,K) = 0.225,

K = {2}, z(J,K) = 0,

K = {∅}, z(J,K) = 0.225.

If J = {∅}, then z(J,K) = 0 for all K ⊆ {1,2} because infT c
1 = 0. Let us solve

problem (11)-(12) for each K ⊆ L. For example, if K = {1}, then

R({1}) = sup(c0 +0.9c1−0.9d1) ,

subject to c1,d1 ∈ R+, c0 ∈ R, c0 +(c1−d1)≤ 0.225, c0 ≤ 0.
Hence R({1}) = 0.2025. Similarly, we can get R({1,2}) = 0, R({2}) = 0,

R({∅}) = 0.2025. Let us solve problem (23)-(24)

R = sup(c0 +0.6c1−0.8d1 +0.6c2−0.8d2) ,

subject to c1,d1,c2,d2 ∈ R+, c0 ∈ R,

c0 +(c1−d1)+(c2−d2)≤ 0,

c0 +(c1−d1)≤ 0.2025,

c0 +(c2−d2)≤ 0, c0 ≤ 0.2025.

Hence R = 0.0405. The upper stress-strength reliability R = 0.9996 can be com-
puted in the same way by taking into account that there holds z = 1− s1(1− t1).

How to use the obtained interval? This depends on a decision maker and the
system purposes (consequences of failures). The values 0.0405 and 0.9996 can be
interpreted as pessimistic and optimistic assessments of the stress-strength relia-
bility, respectively. If consequences of the system failure are catastrophic (trans-
port systems, nuclear power plants), then the lower bound (pessimistic decision)
for the system reliability has to be determinative and is compared with a required
level of the system reliability. If the system failure does not imply major con-
sequences, then the upper bound (optimistic decision) can be used. Generally,
the decision maker may use a caution parameter η [1] on the basis of his (her)
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own experience, various conditions of the system functioning, etc. In this case,
the precise value of the system reliability is determined as the linear combina-
tion ηR + (1−η)R. At the same time, it can be seen from the example that the
obtained interval [R,R] is very wide and the results are too imprecise to make a
useful decision concerning the reliability.

8 Numerical Example 2
Suppose that information about the stress and strength is represented as the fol-
lowing set of confidence intervals for two moments: the first and second moments
of the stress are in intervals [7,8] and [40,50], respectively, with the confidence
probability 0.95; the first and second moments of the strength are in intervals
[12,13] and [150,160], respectively, with the confidence probability 0.9. By as-
suming that all values of the stress and strength are in the interval [0,50] (the
sample space), this information can be formally represented as

Pr{7≤ EX ≤ 8} ∈ [0.95,1], Pr{40≤ EX 2 ≤ 50} ∈ [0.95,1],

Pr{12≤ EY ≤ 13} ∈ [0.9,1], Pr{150≤ EY 2 ≤ 160} ∈ [0.9,1].

Here N = {1,2}, L = {1,2}. Results of computing z(J,K) for each K and J are
shown in Table 1.

Table 1: Values of z(J,K)
K = {1,2} K = {1} K = {2} K = {∅}

J = {1,2} 0.62 0.122 0.04 0
J = {1} 0.265 0.085 0.03 0
J = {2} 0.5 0.12 0.042 0
J = {∅} 0 0 0 0

Let us solve (11)-(12) for each K ⊆ L. For example, if K = {1,2}, then

R({1,2}) = sup(c0 +0.95c1−1d1 +0.95c1−1d1) ,

subject to c1,d1,c2,d2 ∈ R+, c0 ∈ R,

c0 +(c1−d1)+(c2−d2)≤ 0.62,

c0 +(c1−d1)≤ 0.265,

c0 +(c2−d2)≤ 0.5, c0 ≤ 0.

Hence R({1,2}) = 0.589. Similarly, we can get R({1}) = 0.116, R({2}) = 0.038,
R({∅}) = 0. Let us solve problem (23)-(24)

R = sup(c0 +0.9c1−1d1 +0.9c2−1d2) ,
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subject to c1,d1,c2,d2 ∈ R+, c0 ∈ R,

c0 +(c1−d1)+(c2−d2)≤ 0.589,

c0 +(c1−d1)≤ 0.116,

c0 +(c2−d2)≤ 0.038, c0 ≤ 0.

Hence R = 0.487. The upper bound is R = 1. If we assume that the intervals for
moments of the stress and strength have probabilities 1 (the first-order model),
then lower and upper bounds for the stress-strength reliability are 0.62 and 1,
respectively.

9 Conclusion
The efficient algorithm for computing the stress-strength reliability by the second-
order initial information about the stress and strength has been proposed in the pa-
per. This algorithm uses the imprecise stress-strength reliability models obtained
in [19]. Its main virtue is that complex non-linear optimization problem (5)-(6) is
reduced to a finite set of simple problems whose solution presents no difficulty.
Therefore, this approach might be a basis for developing similar algorithms for
reliability analysis of various systems where random variables describing the sys-
tem reliability behavior are independent. The upper bound for the stress-strength
reliability can be similarly computed. In this case, the “inf” is replaced by “sup”
in optimization problems and vice versa.

It should be noted also a shortcoming of the algorithm. The joint judgements
about the stress and strength can not be used because optimization problem (5)-
(6) in this case can not be decomposed into a set of linear programming problems.
Therefore, further study is needed to develop methods and efficient algorithms for
processing the second-order imprecise probabilities by this type of initial infor-
mation.
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