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Abstract

Independence models induced by some uncertainty measures (e.g. condi-
tional probability, possibility) do not obey the usual graphoid properties,
since they do not satisfy the symmetry property. They are efficiently rep-
resentable through directed acyclic l-graphs by using L-separation criterion.

In this paper, we show that in general there is not a l-graph which de-
scribes completely all the independence statements of a given model; hence
we introduce in this context the notion of minimal I-map and we show how
to build it, given an ordering on the variables. In addition, we prove that, for
any ordering, there exists an I-map for any asymmetric graphoid structure.
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1 Introduction
The use of graphs to describe conditional independence structures (the set of con-
ditional independence statements “X is independent of Y given Z”) induced by
probability distributions has a long and rich tradition; one can distinguish three
main classic approaches based on undirected graphs [12], directed acyclic graphs
[14], or chain graphs [15]. These graphical structure obey graphoid properties
(symmetry, decomposition, weak union, contraction, intersection). On the other
hand, the independence models based on the classic definition of stochastic in-
dependence in the usual probabilistic setting, have semi-graphoid structure (they
satisfy all graphoid properties except intersection). However, if the probability
distribution is strictly positive, the independence model has a graphoid structure.
Hence, the lack of intersection property is due to zero probability on some of
the possible events. Actually, it is well-known (see, for example, [4, 6]) that the
classic definition of stochastic independence presents counter-intuitive situations
when zero or one probability events are involved: for example, a possible event
with zero or one probability is independent of itself.
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We stress that zero probability values are interesting not only from a merely
theoretical point of view, but they are met in many real problems, for example in
medical diagnosis [7] , statistical mechanics, physics, etc. [11].

The counter-intuitive situations cannot be avoided within the usual framework
of conditional probability. In the more general framework (de Finetti [8], Du-
bins [9]), a definition of stochastic independence (called cs-independence), which
avoids these critical situations, has been introduced in [4] and the main properties
have been studied. We recall that the aforementioned definition agrees with the
classic one when the probabilities of the relevant events are different from 0 and 1.

The main properties connected with graphoid structures were proved in [16]:
these independence models generally are not closed with respect to the symmetry
property. Hence, the classic separation criterion are not apt to represent asym-
metric independence statements, so in [17] a new separation criterion (called L-
separation) for directed acyclic l-graphs has been introduced. It has been shown
also that L-separation criterion satisfy asymmetric graphoid properties (graphoid
properties except symmetry).

In this paper we deepen the problem of representing such cs-independence
model, together with the logical constraints, using L-separation criterion in di-
rected acyclic l-graphs. In particular, Example 1 shows that cs-independence struc-
tures are richer than the graphical ones, i.e. for some independence model there
is no graph able to describe all the independence statements. Hence, in Section 5
we define in this context (analogously to [14, 10]) the notion of minimal I-map
for a given independence model M : a directed acyclic l-graph such that every
statement represented by it is in M , while the graph obtained by removing any
arrow from it would represent an independence statement not in M .

Moreover, in Section 5 we show how to build such minimal I-maps underling
the differences arising from the lack of symmetry property, and, in addition, we
prove that any ordering on the variables gives rise to an I-map for any indepen-
dence model M obeying to asymmetric graphoid properties.

On the other hand, the ordering has a crucial role: in fact, if a perfect I-map
(able to describe all the independence statements) exists, it can be built using only
some specific ordering on the variables.

2 Independence in a coherent probability setting
It is well known that the classic definition of stochastic independence of two
events

P(A∧B) = P(A)P(B) (1)

gives rise to counter-intuitive situations when one of the events has probability 0
or 1. For instance an event A with P(A) = 0 is stochastically independent of itself,
while it is natural (due to the intuitive meaning of independence) to require for any
event to be dependent on itself. Other classic formulations are P(A|B) = P(A) and
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P(A|B) = P(A|Bc), that are equivalent to (1) for events such that the probability
of B is different from 0 and 1, but in that “extreme” cases (without positivity
assumption) they may even lack meaning in the Kolmogorovian approach.

Anyway, some critical situations related to logical dependence continue to
exist (see [16]) also considering the last stronger formulation in the more general
framework of de Finetti [8]:

Definition 1 Given a Boolean algebra A , a conditional probability on A ×A 0

(with A0 = A \ { /0}) is a function P(·|·) into [0,1], which satisfies the following
conditions:
(i) P(·|H) is a finitely additive probability on A for any H ∈ A 0

(ii) P(H|H) = 1 for every H ∈ A0

(iii) P(E ∧A|H) = P(E|H)P(A|E ∧H), whenever E,A ∈ A and H,E ∧H ∈ A0

Note that (iii) reduces, when H = Ω (where Ω is the certain event), to the classic
“chain rule” for probability P(E ∧A) = P(E)P(A|E). In the case P0(·) = P(·|Ω)
is strictly positive on A0, any conditional probability can be derived as a ratio
(Kolmogorov’s definition) by this unique “unconditional” probability P0.

As proved in [6], in all other cases to get a similar representation we need to
resort to a finite family P = {P0, . . . ,Pk} of unconditional probabilities:
- every Pα is defined on a proper set of events (taking A0 = A)

Aα = {E ∈ Aα−1 : Pα−1(E) = 0}
- for each event B∈A0 there exists an unique α such that Pα(B) > 0 and for every
conditional event E|H one has P(E|H) = Pα(E∧H)

Pα(H) with Pα(H) > 0.
The class of probabilities P = {P0, . . . ,Pk} is said to agree with the condi-

tional probability P(·|·).
Such theory of conditional probability allows to handle also partial probabil-

ity assessment on an arbitrary set of conditional events F = {E1|H1, . . . ,En|Hn}
through the concept of coherence: an assessment is coherent if it is the restriction
of a conditional probability defined on A×A0, where A is the algebra generated
by {E1,H1, . . . ,En,Hn}. A characterization of coherence was proven in [3]:

Theorem 1 Let F be an arbitrary finite family of conditional events and C denote
the set of atoms Cr generated by the events E1,H1, . . . ,En,Hn. For a real function
P on F the following two statements are equivalent:
(i) P is a coherent conditional probability on F ;
(ii) there exists a class of unconditional probabilities {P0, . . . Pk}, with P0 de-
fined on A0 and Pα (α > 0) being defined on Aα = {E ∈ Aα−1 : Pα−1(E) = 0},
such that for any Ei|Hi ∈ F there is a unique Pα, with Pα(Hi) > 0 , and

P(Ei|Hi) =

∑
Cr⊆Ei∧Hi

Pα(Cr)

∑
Cr⊆Hi

Pα(Cr)
.
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The class of probabilities P = {P0, . . . ,Pk} agreeing with the given coherent as-
sessment P is not unique. But, given one class P = {P0, . . . ,Pk}, for each event H
there is a unique α such that Pα(H) > 0 and α is said zero-layer of H according
to P , and it is denoted by the symbol ◦(H). In particular, for every probability we
have ◦(Ω) = 0, while we define ◦( /0) = ∞. The zero-layer of a conditional event
E|H is defined (see [4]) as

◦(E|H) = ◦(E ∧H)−◦(H).

In the sequel, to avoid cumbersome notation, the conjunction symbol ∧ among
events is omitted.

In this framework the following definition of stochastic independence has
been proposed in [4] and extended to conditional independence in [16]:

Definition 2 Given a coherent conditional probability P, defined on a family F
containing D = {A|BC,A|BcC,Ac|BC,Ac|BcC,B|AC,B|AcC,Bc|AC,Bc|AcC}, A is
conditionally independent of B given C with respect to P (in symbol A⊥⊥csB|C) if
both the following conditions hold:

(i) P(A|BC) = P(A|BcC) ;
(ii) there exists a class {Pα} of probabilities agreeing with the restriction of P

to the family D, such that
◦(A|BC) = ◦(A|BcC) and ◦ (Ac|BC) = ◦(Ac|BcC) .

Note that if 0 < P(A|BC) = P(A|BcC) < 1 (so 0 < P(Ac|BC) = P(Ac|BcC) < 1),
then both equalities in condition (ii) are trivially satisfied

◦(A|BC) = 0 = ◦(A|BcC) and ◦ (Ac|BC) = 0 = ◦(Ac|BcC).

Hence, in this case condition (i) completely characterizes conditional cs-indepen-
dence, and, in addition, this definition coincides with the classic formulations
when also P(B|C) and P(C) are in (0,1). However, in the other cases (when
P(A|BC) is 0 or 1) condition (i) needs to be “reinforced” by the requirement that
also their zero-layers must be equal, otherwise we can meet critical situations
(see, e.g. [6]).

Observation 1 Even if different agreeing classes generated by the restriction of
P on D may give rise to different zero-layers, it has been proved in [5, 6] that
condition (ii) of Definition 2 either holds for all the agreeing classes of P or for
none of them.

Notice that for every event A this notion of stochastic independence is always
irreflexive (also when the probability of A is 0 or 1) because ◦(A|A) = 0, while
◦(A|Ac) = ∞. Moreover, conditional independence of two possible events A and B
imply the logical independence of A and B, i.e. all the events of the kind A∗∧B∗

is possible, with A∗ - analogously B∗ - is either A or Ac. (see [4]).
In [4, 16] theorems characterizing stochastic and conditional independence of

two logically independent events A and B in terms of probabilities P(B|C),P(B|AC)
and P(B|AcC) is given, giving up any direct reference to the zero-layers.
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Theorem 2 Let A,B be two events logically independent with respect to the event
C. If P is a coherent conditional probability such that P(A|BC) = P(A|BcC), then
A⊥⊥csB |C if and only if one of the following conditions holds:

(a) 0 < P(A|BC) < 1;
(b) P(A|BC) = 0 and the extension of P to B|C and B|AC satisfies one of the

following conditions
1. P(B|C) = 0, P(B|AC) = 0,
2. P(B|C) = 1, P(B|AC) = 1,
3. 0 < P(B|C) < 1, 0 < P(B|AC) < 1;

(c) P(A|BC) = 1 and the extension of P to B|C and B|AcC satisfies one of the
following conditions

1. P(B|C) = 0, P(B|AcC) = 0,
2. P(B|C) = 1, P(B|AcC) = 1,
3. 0 < P(B|C) < 1, 0 < P(B|AcC) < 1.

Indeed, in [16] the definition of cs-independence has been extended to the case of
finite sets of events and to finite random variables.

Definition 3 Let E1,E2,E3 be three different partitions of Ω such that E2 is not
trivial. The partition E1 is stochastically independent of E2 given E3 with re-
spect to a coherent conditional probability P (in symbols E1⊥⊥csE2|E3 [P]) iff
Ci1⊥⊥csCi2 |Ci3 [P] for every Ci1 ∈ E1,Ci2 ∈ E2, Ci3 ∈ E3 such that Ci2 ∧Ci3 6= /0.

Let X = (X1, . . . ,Xn) be a random vector with values in RX ⊆ IRn. The partition E
of the sure event Ω generated by X is denoted by EX = {X = x : x ∈ RX}.

Definition 4 Let (X ,Y,Z) be a finite discrete random vector with values in R ⊆
RX ×RY ×RZ and EX , EY , EZ be the partitions generated by X ,Y and Z, respec-
tively. Let P be a coherent conditional probability on F containing {A|BC : A ∈
EX , B ∈ EY , C ∈ EZ}: then X is stochastically cs-independent of Y given Z with
respect to P (in symbol X⊥⊥csY |Z [P]) iff EX⊥⊥csEY |EZ [P].

Note that in Definition 4 it is not required that the domain of the random vector
(X ,Y,Z) must be R = RX ×RY ×RZ , so logical constraints among the variables
can be considered.

The set MP of cs-independence statements induced by a coherent conditional
probability P of the form XI⊥⊥csXJ |XK , where I, J and K are three disjoint subsets,
is called cs-independence model.

Every cs-independence model induced by P is closed with respect to the fol-
lowing properties (for the proof see [16]):

Decomposition property

XI⊥⊥cs[XJ ,XK ]|XW [P] =⇒ XI⊥⊥csXJ |XW [P];
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Reverse decomposition property

[XI ,XJ ]⊥⊥csXW |XK [P]⇒ XI⊥⊥csXW |XK [P];

Weak union property

XI⊥⊥cs[XJ ,XK ]|XW [P]⇒ XI⊥⊥csXJ |[XW ,XK ] [P];

Contraction property

XI⊥⊥csXW |[XJ ,XK ] [P]&XI⊥⊥csXJ |XK [P]⇒ XI⊥⊥cs[XJ ,XW ]|[XK ] [P];

Reverse contraction property

XI⊥⊥csXW |[XJ ,XK ] [P]&XJ⊥⊥csXW |XK [P] ⇒ [XI ,XJ ]⊥⊥csXW |[XK ] [P];

Intersection property

XI⊥⊥csXJ |[XW ,XK ] [P] &XI⊥⊥csXW |[XJ ,XK ] [P] ⇒ XI⊥⊥cs[XJ ,XW ]|[XK ] [P];

Reverse intersection property

XI⊥⊥csXW |[XJ ,XK ] [P]&XJ⊥⊥csXW |[XI ,XK ] [P]⇒ [XI ,XJ ]⊥⊥csXW |[XK ] [P].

Hence, these models satisfy all graphoid properties (see [14],[15]) except the
symmetry property

XI⊥⊥csXJ |XK [P]⇒ XJ⊥⊥csXI |XK [P]

and reverse weak union property

[XJ ,XW ]⊥⊥csXI |[XK ] [P]⇒ XJ⊥⊥csXI |[XW ,XK ] [P].

In [16] the models closed with respect to reverse weak union property, but not
necessarily with respect to symmetry, (called a-graphoid) were classified. The
possible lack of symmetry is not counterintuitive (see [4, 6]). Obviously, when
the probability P is strictly positive on possible events, the cs-independence model
induced by P is closed with respect to graphoid properties.

3 Basic graphical concepts
A l-graph G is a triplet (V,E,B), where V is a finite set of vertices, E is a set of
edges (i.e. a subset of ordered pairs of distinct vertices of V ×V \{(v,v) : v ∈V})
and B is a family (possibly empty) of subsets of vertices. The elements of the fam-
ily B = {B , B⊆V} are represented graphically by boxes enclosing the vertices
in B. If B is empty, then the l-graph is a graph.

The attention in the sequel will be focused on directed acyclic l-graphs, and
to introduce this kind of l-graphs we need to recall some basic notion from graph
theory. A directed l-graph is a l-graph whose set of vertices E satisfies the follow-
ing property: (u,v) ∈ E⇒ (v,u) 6∈ E. A directed edge (u,v) ∈ E is represented by
an arrow pointing from u to v, u→ v. We say that u is a parent of v and v a child
of u. The set of parents of v is denoted by pa(v) and the set of children of u by
ch(u).
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A path from u to v is a sequence of distinct vertices u = u1, . . . ,un = v, n≥ 1
such that either ui→ ui+1 or ui+1→ ui for i = 1, . . . ,n−1. A directed path from
u to v is a sequence u = u1, . . . ,un = v of distinct vertices such that ui → ui+1
for all i = 1, . . . ,n− 1. If there is a directed path from u to v, we say that u is an
ancestor of v or v a descendant of u and we write u 7→ v. The symbols an(v) and
ds(u) denote the set of ancestors of v and the set of descendants of u (vertices
that u ∈ an(v) and v ∈ ds(u)), respectively. Note that, according to our definition,
a sequence consisting of one vertex is a directed path of length 0, and therefore
every vertex is its own descendent and ancestor, i.e. u ∈ an(u),u ∈ ds(u).

A reverse directed path from u to v is a sequence u = u1, . . . ,un = v of distinct
vertices such that ui← ui+1 for all i = 1, . . . ,n−1.

A n-cycle is a sequence of u1, . . . ,un, with n > 3, such that un → u1 and
u1, . . . ,un is a directed path. A directed graph is acyclic if it contains no cycles.

Given an acyclic directed graph G, the relation 7→ defines a partial ordering
≺G on the set of vertices, in particular for any u,v ∈V we have that if u ∈ an(v),
then u≺G v, while if u ∈ ds(v), then v≺G u.

3.1 L-graphs and logical constraints
In Section 2 the relationship between logical independence and stochastic cs-
independence has been shown, so we need to visualize which variables are linked
by a logical constraint, and for this purpose we refer to the family B of subsets of
vertices. Since, given a random vector X = (X1, . . . ,Xn), a vertex i is associated
with each random variable Xi, by means of the boxes B ∈ B , we visualize the sets
of random variables linked by a logical constraint (more precisely, a logical con-
straint involves the events of the partitions generated by the random variables).
Recall that the partitions E1, . . . ,En are logically independent if for every choice
Ci ∈ Ei, with i = 1, ...,n, the conjunction C1∧ . . .∧Cn 6= /0.

Obviously, if n partitions are logically independent, then arbitrary subsets of
these partitions are logically independent.

However, n partitions E1, . . . ,En need not be logically independent, even if
every n−1 partitions can be logically independent; it follows that there is a log-
ical constraint such that an event of the kind C1 ∧ . . .∧Cn is impossible, with
Ci ∈ Ei. For example, suppose E1 = {A,Ac}, E2 = {B,Bc} and E3 = {C,Cc} are
three distinct partitions of Ω with A∧B∧C = /0. All the couples of that partitions
are logically independent, but they are not logically independent. Actually, the
partition E1 is not logically independent of the partition generated by {E2,E3}.
The same conclusion is reached replacing E1 by E2 or E3.

Given n partitions and some logical constraints among such partitions, it is
possible, for each constraint, to find the minimal subset {E1, . . . ,Ek} of partitions
generating it. Actually, E1, . . . ,Ek are such that C1 ∧ . . .∧Ck = /0, with Ci ∈ Ei,
and, in addition, for all j = 1, . . . ,k, C1∧ . . .∧C j−1∧C j+1∧ . . .∧Ck 6= /0. Such set
of partitions {E1, . . . ,Ek} is said the minimal set generating the given logical con-
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straint, and it is singled-out graphically by the box B = {1, . . . ,k}, which includes
exactly the vertices associated to the corresponding random variables X1, . . . ,Xk.
Then, in the sequel we call the boxes B ∈ B logical components.

4 Separation criterion for directed acyclic graphs
To represent conditional cs-independence models we need to recall L-separation
criterion . In fact, the classic separation criterion for directed acyclic graphs (see
[14]), known as d-separation (where d stands for directional), is not suitable for
our purposes, because it induces a graphoid structure, and so it is not useful to
describe a model where symmetry property may not hold (see Example 1).

Definition 5 Let G be an acyclic directed graph. A path u1, . . . ,un, n≥ 1 in G is
blocked by a set of vertices S⊂V, whenever there exists 1 < i < n such that one
of the following three condition holds:

1. ui+1→ ui→ ui−1 (i.e. ui−1,ui,ui+1 is the reverse directed path) and ui ∈ S

2. ui−1← ui→ ui+1 and ui ∈ S

3. ui−1→ ui← ui+1 and ds(ui) 6∈ S

The three conditions of Definition 5 are illustrated by Figure 1 (the grey vertices
belong to S).

i

iu

u

i+1

i−1
u

i+1 u u

uu
u

u
ds(u  )

i

ii−1

i−1

i+1

Figure 1: Blocked paths

Note that the definition of blocked path strictly depends on the direction of
the path, in fact the main difference between our notion and that used in d-
separation criterion [14] consists essentially in condition 1. of Definition 5. The
path ui−1,ui,ui+1 drawn in the left-side of Figure 1 is blocked by ui, while its
reverse is not blocked by ui because of the direction. Hence, the reverse path of a
blocked one is not necessarily blocked according to our definition, so the blocking
path notion does not satisfy the symmetry property.

The second and third cases of Definition 5 are like in d-separation criterion.
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Definition 6 Let G be a directed acyclic l-graph and let U, W and S be three
pairwise disjoint sets of vertices of V . We say that U is L-separated from W by
S in G and write symbol (U,W |S)l

G, whenever every path in G from U to W is
blocked by S and moreover, the following “logical separation” condition holds

∀B ∈ B s.t. B⊆U ∪W ∪S one has either B∩U = /0 or B∩W = /0. (2)

Figure 2 clarifies when condition (2) holds (the set of vertices Vi and S are repre-
sented as ovals).

V1 V2S

B1

B2

V1 S V2

B

Figure 2: Representation of logical components: in the left-side V1 and V2 are not
connected, in the right-side they are connected by B

Since the notion of blocked path is not necessarily symmetric, it follows that
(U,W |S)l

G 6⇒ (W,U |S)l
G. Actually, the lack of symmetry property depends on the

notion of blocked path and not on the condition of logical separation (2).

Theorem 3 [17] Let G = (V,E,B) be a graph. The following properties hold
1. (Decomposition property)

(U,W ∪Z|S)l
G =⇒ (U,W |S)l

G

2. (Reverse decomposition property)
(U ∪Z,W |S)l

G =⇒ (U,W |S)l
G

3. (Weak union property)
(U,W ∪Z|S)l

G =⇒ (U,W |Z∪S)l
G

4. (Reverse weak union property)
(U ∪Z,W |S)l

G =⇒ (U,W |Z∪S)l
G.

5. (Contraction property)
(U,W |S)l

G & (U,Z|W ∪S)l
G =⇒ (U,W ∪Z|S)l

G

6. (Reverse contraction property)
(U,W |S)l

G & (Z,W |U ∪S)l
G =⇒ (U ∪Z,W |S)l

G

7. (Intersection property)
(U,W |Z∪S)l

G & (U,Z|W ∪S)l
G =⇒ (U,W ∪Z|S)l

G

8. (Reverse intersection property)
(U,W |Z∪S)l

G & (Z,W |U ∪S)l
G =⇒ (U ∪Z,W |S)l

G
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5 Minimal I-map
Given an independence model M over a set of variables (possibly) linked by a
set of logical constraints, we look for a directed acyclic l-graph G describing all
the statements T in M and localizing the set of variables involved in some logi-
cal constraint. But, generally, it is not always feasible to have such graph G (i.e.
describing all the independence statements) for a given M as shown by the fol-
lowing example.

Example 1. Let (X1,X2,X3,X4) be a random vector such that the range of Xi is
{0,1}, let us denote Ai = (Xi = 1) (so Ac

i = (Xi = 0)), and suppose that A1 ⊂ A2.
Consider the following coherent conditional probability

P(A1A2) = 1
5 , P(Ac

1A2) = 3
10 , P(Ac

1Ac
2) = 1

2 ,

P(A3A4|A1A2) = P(A3A4|Ac
1A2) = P(A3Ac

4|A1A2) = P(A3Ac
4|Ac

1A2) = 0,

P(Ac
3A4|A1A2) = 2

5 = P(Ac
3A4|Ac

1A2),

P(Ac
3Ac

4|A1A2) = 3
5 = P(Ac

3Ac
4|Ac

1A2),

P(A4|A2A3) = 2
5 , P(A4|Ac

2A3) = 3
20 , P(A2|A3) = 1

5 ,

P(A1|A2A3A4) = 1
2 , P(A1|A2A3Ac

4) = 2
5 .

Since P(A1|A2) = 2
5 , it follows from condition (b) 3. of Theorem 2 the validity of

the statements A3A4⊥⊥csA1|A2 and A3Ac
4⊥⊥csA1|A2; moreover from condition (a)

of the same theorem it follows that also Ac
3A4⊥⊥csA1|A2 and Ac

3Ac
4⊥⊥csA1|A2 hold,

so we have (by Definition 3 and Definition 4) that (X3,X4)⊥⊥csX1|X2.
While, the statement X1⊥⊥cs(X3,X4)|X2 does not hold under P, in fact we have

P(A1|A2A3A4) = 1
2 6= P(A1|A2).

The validity of the two conditional independence statements X3⊥⊥csX4|X2 and
X4⊥⊥csX3|X2 follows from these equalities P(A3|A2A4) = 0 = P(A3|A2Ac

4) and
P(A4|A2) = 0.4 = P(A4|A2A3) = P(A4|A2Ac

3).
Note that P(A3|A4) = 0 = P(A3|Ac

4) and P(A4) = 0.2 = P(A4|A3) = P(A4|Ac
3),

so X4⊥⊥csX3 and its symmetric statement hold under P.
Therefore, the independence model MP (which has a-graphoid structure)

contains the statements (X3,X4)⊥⊥csX1|X2 , X3⊥⊥csX4|X2 , X3⊥⊥csX4|(X1,X2) ;
X4⊥⊥csX3|X2 , X4⊥⊥csX3|(X1,X2) , X3⊥⊥csX4 , X4⊥⊥csX3.

Note that MP is not completely representable by a directed acyclic l-graph.

Hence, we need to introduce, analogously as in [14], the notion of I-map.

Definition 7 A directed acyclic l-graph G is an I-map for a given independence
model M iff every independence statement represented by means of L-separation
criterion in G is also in M .

Thus an I-map G for M may not represent every statement of M , but the ones
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it represents are actually in M , it means that the set MG of statements described
by G is contained in M .

An I-map G for M is said minimal if removing any arrow from the l-graph G
the obtained l-graph will no longer be an I-map for M .

Given an independence model M over a random vector (X1, ...,Xn), let
π = (π1, ...,πn) be any ordering of the given variables, and, in addition, for any
j, let Uπ j = {π1, ...,π j−1} be the set of indexes before π j, and Dπ j the minimal
subset of Uπ j such that Xπ j⊥⊥csXRπ j

|XDπ j
where Rπ j = Uπ j \Dπ j ; moreover, let

Wπ j = {v ∈Uπ j : v ∈ Dπk ∩Dπi , i 6= k , i≤ j , k ≤ j} and Sπ j the maximal subset
of Uπ j such that XSπ j

⊥⊥csXπ j |XWπ j
.

The subset Θπ = {Xπ j⊥⊥csXRπ j
|XDπ j

, XSπ j
⊥⊥csXπ j |XWπ j

: j = 1, ...n} is said
the basic list of M relative to π. From the basic list Θπ and the set of logical
components B , a directed acyclic l-graph G (related to π) is obtained by draw-
ing the boxes B ∈ B and designating Dπ j as parents of vertex π j (for any vertex
v ∈ Dπ j , an arrow goes from v to π j), moreover, for any vertex πi ∈Uπ j \Sπ j such
that πi ∈ ds(w), with w ∈Wπ j , but πi 6∈ an(π j) draw an arrow from πi to π j.

This construction of G from the basic list differs from the classic construc-
tion given for directed acyclic graphs with d-separation [14] essentially for the
second part, which is useful to avoid the introduction of symmetric statements
not in the given independence model. For example, consider the independence
model M = {X1⊥⊥csX3|X2} and considering the ordering π = (2,3,1), the related
directed acyclic l-graph is obtained following these steps: draw an arrow from 2 to
3, then consider the vertex 1 and draw an arrow from 2 to 1; now since 3 ∈ ds(2)
(i.e. D3 = {2}), but 3 6∈ an(1) and, since the statement X3⊥⊥csX1|X2 is not in M ,
we must draw an arrow from 3 to 1.

Now, we must prove that such directed acyclic l-graph obtained from the basic
list Θπ is an I-map for M .

Theorem 4 Let M be an independence model over a set of random variables
linked by a set of logical constraints. Given an ordering π on the random vari-
ables, if M is an a-graphoid, then the directed acyclic l-graph G generated by the
basic list Θπ is an I-map for M .

Proof: For an a-graphoid of one variable it is obvious that the directed acyclic
l-graph is an I-map. Suppose for a-graphoid structure with less than k variables
that the directed acyclic l-graph is an I-map.

Let M be an independence model under k variables. Given an ordering π on
the variables, let Xn be the last variable according to π (n denotes the vertex in G
associated to Xn), M ′ the a-graphoid formed by removing all the independence
statements involving Xn from M and G′ the directed acyclic l-graph formed by
removing n and all the arrows going to n (they cannot depart from n because is
the last vertex) in G.

Since Xn is the last variable in the ordering π, it cannot appear in any set of
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parents Dπ j (with j < k), and the basic list Θ′ = Θ \ {Xn⊥⊥csXRn |XDn} generates
G ′. Since M ′ has k−1 variables, G ′ is an I-map of it.

G is an I-map of M iff the set MG of the independence statements represented
in G by L-separation criterion is also in M .

If Xn does not appear in T , then, being T = (XI⊥⊥csXJ |XK) ∈MG , T must be
represented also in G ′, if it were not, then there would be a path in G ′ from I to
J that is not blocked (according to L-separation) by K. But then it must be not
blocked also in G, since the addition of a vertex and some arrows going to the
new vertex cannot block a path. Since G ′ is an I-map for of M ′, T must be an
element of it, but M ′ ⊂M , so T ∈M .

Otherwise (if Xn appears in T ), T falls into one of the following three situa-
tions:

1. suppose that T = ((XI ,Xn)⊥⊥csXJ|XK) ∈MG, let Xn⊥⊥csXRn |XDn ∈M (by
construction). Obviously J and Dn have no vertices in common, otherwise
we would have a path from a vertex in j ∈ J ∩Dn pointing to n, so by
L-separation n would not be separated from J given K in G.

Since there is an arrow from every vertex in Dn to n and every path from n
to J is blocked by K in G, then every path from Dn to J must be blocked by
K in G. Therefore, every path from both Dn and I to J are blocked by K in
G. Now, if there is a logical component B ∈ B such that B⊆ Dn∪ I∪J∪K
and both B∩(Dn∪ I) and B∩J are not empty, then remove a suitable vertex
in B from Dn, w.l.g. Hence, the statement (XI ,XDn)⊥⊥csXJ |XK belongs to
MG. This statement does not contain the variable Xn, hence, being G′ an
I-map for M ′ ⊂M , then (XI ,XDn)⊥⊥csXJ |XK ∈M .

Since M is closed under a-graphoid properties, (by weak union property)
Xn⊥⊥csXJ |(XI ,XDn ,XK)∈M and it follows (XI ,XDn ,Xn)⊥⊥csXJ |XK ∈M (us-
ing reverse contraction property), so (XI ,Xn)⊥⊥csXJ |XK ∈M by decompo-
sition property.

2. suppose that T = (XI⊥⊥cs(XJ ,Xn)|XK) ∈MG, it means, by definition of L-
separation and from the assumption that n is the last vertex in the ordering,
that every path going from I to J∪n is L-separated by K. Therefore, if there
is no path as in condition 1. of Definition 5, then in the remaining two cases,
also the statement T1 = ((XJ ,Xn)⊥⊥csXI |XK) ∈MG, so the proof goes in the
same line of that in step 1.

Otherwise, (if there is a path as in condition 1 of Definition 5), then
I 6⊆ an(n). Therefore, there is a subset Wn⊆Un such that every path between
n and I∪K is blocked by Wn. Note that, Wn = W 1 ∪W 2 (W 1 or W 2 can be
empty) with W 2 ⊆ Dn and W 1 ⊆ an(Dn). Moreover, let J = J1 ∪ J2 ∪ J3

(J1 or J2 or J3 can be empty) with J1 ⊆ ds(W )∩ an(K), while J2 ⊆W
and J3 = J \ (J1 ∪ J2), so for any j ∈ J3 one has that either j ∈ an(W)
or j ∈ ds(W )∩an(n).
By construction, one has that every path between n∪ J3 and I ∪K ∪ J1 is
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blocked by Wn. Hence, one has that (XI ,XK ,XJ1)⊥⊥cs(Xn,XJ3)|XWn and its
symmetric statement belong to M .

Therefore, one has XI⊥⊥cs(Xn,XJ3)|(XWn ,XK ,XJ1)∈M by weak union prop-
erty. Since also T2 = (XI⊥⊥cs(XWn ,XJ1 )|XK) ∈MG and since that statement
T2 does not involve n, T2 ∈M , so the statement XI⊥⊥cs(Xn,XWn ,XJ1 ,XJ3)|XK)
belong to M (by contraction property), and it follows that XI⊥⊥cs(Xn,XJ)|XK
belongs to M (by reverse decomposition).

3. suppose that T = (XI⊥⊥csXJ |(XK ,Xn)) ∈MG. It must be the case that I is
L-separated by J given K in G for if it were not, then there would be a path
from some vertex in I to some vertex in J not passing trough K. But I is
separated by J given n and K, so this path would pass through n; but n is
the last vertex in the ordering, so all arrows go on it. Hence, it cannot block
any unblocked path, and so T1 = (XI⊥⊥csXJ|XK) ∈MG.

The statements T1 and T imply that either (XI ,Xn)⊥⊥csXJ |XK or
XI⊥⊥cs(XJ ,Xn)|XK holds in G: in fact, if both I and J are connected to n,
since n is the last vertex (from n an arrow cannot leave), then there is a
directed path from I to n and another from J to n, so that one would get
XI⊥⊥csXJ |(XK ,Xn) 6∈MG. So, the conclusion follows by step 1 and 2.

2

Example 1 (continued) – The following pictures show the minimal I-map ob-
tained by means of the proposed procedure for two possible orderings: (1,2,3,4)
on the left-side and (3,4,1,2) on the right-side

2

4

1

4

3 3

12

Figure 3: Two possible I-Maps for the independence model MP of Example 1

Actually, the picture in the left-side represents the independence statements
(X3,X4)⊥⊥csX1|X2 , X3⊥⊥csX4|X2 , X4⊥⊥csX3|X2 and those implied by a-graphoid
properties; while that one on the right-side describes the statement X3⊥⊥csX4 and
its symmetric one. Note that these two graphs actually are minimal I-maps; in fact
removing any arrow from them, we may read independence statements not in MP.
The block B = {1,2} localizes the logical constraint A1 ⊂ A2.

If for a given independence model over n variables there exists a perfect map
G, then (at least) one of n! orderings among the variables will generate the l-graph
G. More precisely, such orderings, which give rise to G, are all the orderings
compatible with the partial order induced by G.
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6 Conclusions
The L-separation criterion for directed acyclic graphs has been recalled together
with its main properties. This is very useful for effective description of indepen-
dence models induced by different uncertainty measures [1, 2, 4, 5, 6, 13, 16,
18, 19]. In fact, these models cannot be represented efficiently by the well-known
graphical models [12, 14], because the related separation criteria satisfy the sym-
metry property.

In this paper, we have considered the L-separation criterion introduced in [16],
which satisfies asymmetric graphoid properties. We have shown that for some
independence models there is not a perfect map even using L-separation criterion.

Therefore, the notion of minimal I-map has been redefined in this context and
we have shown how to build it given an ordering on the variables. In addition, we
have proved that for any ordering on the variables there is a minimal I-map for a
given independence model obeying to asymmetric graphoid properties.
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