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Abstract

We design an iterative proportional fitting procedure (parameterized by a
continuous t-norm) for computation of multidimensional possibility distri-
butions from its marginals, and discuss its basic properties.
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1 Introduction
The complexity of practical problems that are of primary interest in the field of
artificial intelligence usually results in the necessity to construct models with the
aid of a great number of variables: more precisely, hundreds or thousands rather
than tens. However, distributions of such dimensionality are usually not available;
the global knowledge (joint distribution) must be integrated on the basis of its
local pieces (marginal distributions). This problem type is often referred to as a
marginal problem. More precisely, the marginal problem addresses the question of
whether or not a common extension exists for a given set of marginal distributions.

In [14] we introduced a possibilistic marginal problem and found necessary
and sufficient conditions, respectively. This contribution is a natural continuation
of our work — it tries to solve a practical problem: how to compute the values of
an extension. Its aim is to introduce a possibilistic version of Iterative Proportional
Fitting Procedure and to discuss its basic properties.

Iterative Proportional Fitting Procedure (IPFP) was originally designed by
Deming and Stephan [3] in 1940 for adjustment of frequencies in contingency
tables. Later, IPFP was applied to several problems in different domains; e.g. for
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Grant No. A1075104.

577



578 ISIPTA ’03

maximum likelihood estimate in a hierarchical model, or for computation of val-
ues of joint probability distributions in a probabilistic expert system [6] (for other
applications see [9]).

This contribution is organized as follows. First an overview, followed by the
basic notions (Section 2); then in Section 3 we briefly recall a possibilistic marginal
problem, introduce possibilistic IPFP and demonstrate, on a simple example, how
its computations are performed. In Section 4 we find a sufficient condition for its
convergence and present two counterexamples.

2 Basic Notions
The purpose of this section is to give, as briefly as possible, an overview of basic
notions of De Cooman’s measure-theoretical approach to possibility theory [2],
necessary for understanding the paper. We will start with the notion of a triangular
norm, since most notions in this paper are parameterized by it.

2.1 Triangular Norms
A triangular norm (or a t-norm) T is an isotonic, associative and commutative
binary operator on [0,1] (i.e. T : [0,1]2→ [0,1]) satisfying the boundary condition:
for any x ∈ [0,1]

T (1,x) = x.

Let x,y ∈ [0,1] and T be a t-norm. We will call an element z ∈ [0,1]
T-inverse of x w.r.t. y if

T (z,x) = T (x,z) = y. (1)

It is obvious that if x≤ y then there are no T -inverses of x w.r.t. y. The T -residual
y4T x of y by x is defined as

y4T x = sup{z ∈ [0,1] : T (z,x)≤ y}.

A t-norm T is called continuous if T is a continuous function. Within this
paper, we will only deal with continuous t-norms, since for continuous t-norms
y4T x is the greatest solution of the equation (1) in z (if it exists).

Example 1 The most important examples of continuous t-norms are:

(i) Gödel’s t-norm: TG(x,y) = min(x,y);
(ii) product t-norm: TΠ(x,y) = x · y;

(iii) Lukasziewicz’s t-norm: TL(x,y) = max(0,x+ y−1);

and the corresponding residuals for x > y (otherwise y4T x = 1 for any t-norm):

(i) y4TG x = y;
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(ii) y4TΠ x = y
x ;

(iii) y4TL x = y− x+1.

Because of its associativity, any t-norm T can be extended to an n-ary operator
T n : [0,1]n→ [0,1], namely in the following way

T 2(a1,a2) = T (a1,a2),

T n(a1, . . . ,an) = T (T n−1(a1, . . .an−1),an),

for n≥ 3.

2.2 Possibility Measures and Distributions
Let X be a finite set called universe of discourse which is supposed to contain
at least two elements. A possibility measure Π is a mapping from the power set
P (X) of X to the real unit interval [0,1] satisfying the following requirement: for
any family {A j, j ∈ J} of elements of P (X)

Π(
[

j∈J

A j) = max
j∈J

Π(A j)
1.

Π is called normal if Π(X) = 1. Within this paper we will always assume that Π
is normal.

For any Π there exists a mapping π : X→ [0,1], called a distribution of Π,
such that for any A ∈ P (X), Π(A) = maxx∈A π(x). This function is a possibilistic
counterpart of a density function in probability theory. In the remaining part of
this contribution we will deal with distributions rather than with measures.

Let X1 and X2 denote two finite universes of discourse provided by possibility
measures Π1 and Π2 (with distributions π1 and π2), respectively. The possibility
distribution π on X1×X2 is called T -product possibility distribution of π1 and π2
if for any (x1,x2) ∈ X1×X2

π(x1,x2) = T (π1(x1),π2(x2)). (2)

Considering an arbitrary possibility distribution π defined on a product uni-
verse of discourse X×Y, its marginal possibility distribution on X is defined by
the equality

πX(x) = max
y∈Y

π(x,y) (3)

for any x ∈ X.

1max must be substituted by sup if X is not finite.
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2.3 Conditioning
Let T be a t-norm on [0,1]. For any possibility measure Π on X with distribution
π, we define the following binary relation on the set G(X) = {h : X −→ [0,1]}
of all fuzzy variables on X: For h1 and h2 in G(X) we say that h1 and h2 are

(Π,T )-equal almost everywhere (and write h1
(Π,T )
= h2) if for any x ∈ X

T (h1(x),π(x)) = T (h2(x),π(x)).

This notion is very important for the definition of conditional possibility dis-
tribution, which is defined (in accordance with [2]) as any solution of the equation

πXY (x,y) = T (πY (y),πX|
T

Y (x|
T

y)), (4)

for any (x,y) ∈ X×Y. Continuity of a t-norm T guarantees the existence of a so-
lution of this equation. This solution is not unique (in general), but the ambiguity
vanishes when almost-everywhere equality is considered. We are able to obtain a
representative of these conditional possibility distributions (if T is a continuous
t-norm) by taking the residual πXY (x, ·)4T πY (·) since

πX|
T

Y (x|
T
·) (ΠY ,T )

= πXY (x, ·)4T πY (·). (5)

This way of conditioning brings a unifying view on several conditioning rules
[4, 5, 7], i.e., its importance from the theoretical viewpoint is obvious. On the
other hand, its practical meaning is not so substantial. Although De Cooman [2]
claims that conditional distributions are never used per se, there exist situations
in which it is necessary to be careful to choose an appropriate representative of
the set of solutions (cf. Example 5 in [14]). Therefore, in this contribution we also
use residuals rather than general conditionals.

2.4 Independence
Two variables X and Y (taking their values in X and Y, respectively) are possi-
bilistically T -independent [2] if for any FX ∈ X−1(P (X)), FY ∈ Y−1(P (Y)),

Π(FX ∩FY ) = T (Π(FX),Π(FY )),

Π(FX ∩FC
Y ) = T (Π(FX),Π(FC

Y )),

Π(FC
X ∩FY ) = T (Π(FC

X ),Π(FY )),

Π(FC
X ∩FC

Y ) = T (Π(FC
X ),Π(FC

Y )),

where AC denotes the complement of A.
From this definition it immediately follows that the independence notion is

parameterized by T . More specifically, it means that if X and Y are independent
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with respect to Gödel’s t-norm, they need not be, for example, independent with
respect to product t-norm. This fact is reflected in most definitions and assertions
that follow.

In [11] we generalized this notion and in the following way: Given a possibil-
ity measure Π on X×Y×Z with the respective distribution π(x,y,z), variables
X and Y are possibilistically conditionally T -independent2 given Z (in symbols
IT (X ,Y |Z)) if, for any pair(x,y) ∈ X×Y,

πXY |
T

Z(x,y|
T
·) (ΠZ ,T )

= T (πX|
T

Z(x|
T
·),πY |

T
Z(y|

T
·)). (6)

Let us stress again that we do not deal with the pointwise equality but with the
almost everywhere equality. This definition unifies, in a sense, several notions
of conditional noninteractivity and that of conditional independence (for more
details see [12]). Although it may seem to be controversial from the epistemic
point of view [1], it is very suitable for our purpose, since it is closely connected
(for more details see [13]) with a principal notion of multidimensional models —
the notion of factorization.

We will say that a possibility distribution π factorizes3 with respect to a system
A and a t-norm T , if, for all complete subsets A ∈ A , there exist fuzzy variables
fA of xA such that π has the form

π(x) = T |A|( fA1(xA1), . . . , fA|A|(xA|A|)). (7)

The functions fA are not uniquely determined (in general), since they can be “mul-
tiplied” in several ways, cf. Example 14 in [13].

3 Iterative Proportional Fitting Procedure
In this section we define (in the most general way) an iterative proportional fitting
procedure for possibility distributions and show, on a simple example, how it
works.

Before doing that, let us recall what is possiblistic marginal problem.

3.1 Possibilistic Marginal Problem
Let us assume that Xi, i ∈ N, 1≤ |N|< ∞ are finite universes of discourse, K is a
system of nonempty subsets of N and S = {πK ,K ∈K } is a family of possibility
distributions, where each πK is a distribution on a product space

XK =×i∈KXi.

2Let us note that a similar definition of conditional independence can be found in [8].
3Factorization is usually defined with respect to a graph, but this definition is more appropriate for

the purpose of this contribution.
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The problem we are interested in is the existence of an extension, i.e., a distribu-
tion π on

X =×i∈NXi.

whose marginals are distributions from S ; or, more generally, the set

P = {π(x) : π(xK) = πK(xK),K ∈ K }

is of interest.
The necessary condition (but not sufficient, as shown in [14]) for the existence

of an extension is the pairwise projectivity of distributions from S . Let us recall
that two possibility distributions πI and πJ are projective if they have common
marginals, i.e. if

πI(xI∩J) = πJ(xI∩J).

Since IPFP is able to solve a marginal problem (if a solution exists) within a
probabilistic setting, it seems to be useful to design an analogous procedure for
possibility distributions.

3.2 Design of Iterative Proportional Fitting Procedure
Let S = {πi, i = 1, . . .m} be a sequence of low-dimensional normal possibility
distributions, which will be referred to as an input sequence. Let

ρ(0) ∈ R = {ρ : X−→ [0,1];max
x∈X

ρ(x) = 1}

be an initial possibility distribution.
The iterative proportional fitting procedure with respect to a t-norm T

(IPFP(T )) is a computational process defined for x ∈ X and for j = 1,2, . . . and
k = ((( j−1) mod m)+1) by the following formula:

ρ( j)(x) = T (ρ( j−1)(x)4T ρ( j−1)(xKk ),πk(xKk )). (8)

Formula (8) has the following meaning: at every step j we udate distribution
ρ( j−1) simply by “multiplying” the marginal πk, k = ((( j− 1) mod m) + 1) by
the residual of ρ( j−1) in order to obtain distribution ρ( j) such that

ρ( j)(xKk ) = πk(xKk).

It is completely analogous to probability theory, where (8) has form

Q( j)(x) = Pk(xKk )
Q( j−1)(x)

Q( j−1)(xKk )
,

which is a generalization of the original procedure by Deming and Stephan [3].
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3.3 Example
The following simple example illustrates how the computations of IPFP(T ) are
performed.

Example 2 Let X1,X2 and X3 be three binary variables with values in X1, X2
and X3, respectively (X1 = X2 = X3 = {0,1}), and let the input sequence con-
sist of two possibility distributions π1(x1,x2) and π2(x2,x3) on X{1,2} and X{2,3},
respectively.

• The initial distribution ρ(0) ∈ R is the least informative distribution on
X{1,2,3}, i.e. ρ(0) ≡ 1 (initial and input distributions can be found at Fig-
ure 1).

ρ(0)(x1,x2,x3)
1

1 1

1 1

1

1 1

π1(x1,x2)
1 .5

.8 .3

π2(x2,x3)

.7

1

.8

.4

Figure 1: Initial and input distributions of IPFP(T )

• The operation of fitting the first input distribution π1(x1,x2) brings joint
possibility distribution ρ(1) such that

ρ(1)(x1,x2) = π1(x1,x2),

as can be seen from Figure 2.

• Fitting the second input distribution π2(x2,x3) gives the joint possibility
distribution

ρ2(x1,x2,x3) = T (π2(x2,x3),ρ(1)(x1,x2,x3)4T ρ(1)(x2,x3))

with the property ρ(2)(x2,x3) = π2(x2,x3) (cf. Figure 3).

From Figure 3 one can see that due to the projectivity of π1 and π2, ρ(2)

preserves its marginal from previous step, i.e.

ρ(2)(x1,x2) = ρ(1)(x1,x2) = π1(x1,x2).
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ρ(1)(x1,x2,x3)
1

1 .5

.8 .3

.5

.8 .3

ρ(1)(x1,x2)
1 .5

.8 .3

ρ(1)(x2,x3)

1

1

.8

.8

Figure 2: Joint distribution ρ(1) and its marginals after fitting π1

ρ(2)(x1,x2,x3)
1

.7 .5

.8 .3

.5

.4 .3

ρ(2)(x1,x2)
1 .5

.8 .3

ρ(2)(x2,x3)

.7

1

.8

.4

Figure 3: Joint distribution ρ(2) (with respect to Gödel’s t-norm) and its marginals
after fitting π1 and π2

1

.7 .35

.8 .3

.5

.4 .15

1

.7 .2

.8 .3

.5

.4 0

Figure 4: Joint distribution ρ(2) (with respect to product and Lukasziewicz’ t-
norms, respectively) after fitting π1 and π2
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It is evident that there is no reason to fit π1(x1,x2) again, since it cannot bring any
change to ρ(2).

From this simple example, one can conclude that if the input set consists of
two projective possibility distributions and the initial possibility distribution is
ρ(0) ≡ 1, IPFP(T ) stops after one cycle for any continuous t- norm T . Neverthe-
less, the resulting distribution depends on the choice of the t-norm, which can be
seen from Figures 3 and 4.

4 On Convergence of Possibilistic IPFP
In this section we will generalize the observation from the end of the foregoing
section and find a sufficient condition for the convergence of possibilistic IPFP.
Before doing that, let us briefly recall the notions of operators of composition of
possibility distributions (introduced in [10]), which seem to be a useful technical
tool for proofs.

4.1 Operators of Composition
Considering a continuous t-norm T , two subsets K1,K2 of N and two normal
possibility distributions π1(xK1) and π2(xK2),

4 we define the operator of right
composition of these possibilistic distributions by the expression

π1 (xK1).T π2 (xK2) = T (π1 (xK1) ,π2 (xK2)4T π2 (xK1∩K2)) ;

analogously the operator of left composition is defined by the expression

π1 (xK1)/T π2 (xK2) = T (π1 (xK1)4T π1 (xK1∩K2) ,π2 (xK2)) .

If K1∩K2 = /0 then obviously

π1 (xK1).T π2 (xK2) = π1 (xK1)/T π2 (xK2) = T (π1 (xK1) ,π2 (xK2)) ,

which means that the operators of composition generalize, in a sense, T - product
possibility distributions defined by (2).

It is evident that both π1 .T π2 and π1 /T π2 are (generally different) possibility
distributions of variables (Xi)i∈K1∪K2 . In fact, the first one is an extension of π1,
while the second of π2, in a special case of both, as the following lemma suggests.

Lemma 1 Consider two distributions π1(xK1) and π2(xK2). Then

(π1 .T π2)(xK1∪K2) = (π1 /T π2)(xK1∪K2)

for any continuous t-norm T if and only if π1and π2 are projective.
4Let us stress that for the definition of these operators we do not require projectivity of distributions

π1 and π2.
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The following lemma (proven in [14]) expresses the relationship between the
operators of composition and conditional T -independence.

Lemma 2 Let T be a continuous t-norm and π1 and π2 be projective possibility
distributions on XK1 and XK2 , respectively. Then the distribution π of XK1∪K2

π(xK1∪K2) = π1 (xK1).T π2 (xK2) = π1 (xK1)/T π2 (xK2)

if and only if XK1\K2 and XK2\K1 are conditionally independent, given XK1∩K2 .

4.2 Perfect Sequences
Now, we will recall how to apply the operators iteratively. Consider a sequence of
distributions π1(xK1),π2(xK2), . . . ,πm(xKm) and the expression

π1 .T π2 .T . . . .T πm.

Before presenting its properties, let us note that in the part that follows, we always
apply the operators from left to right, i.e.,

π1 .T π2 .T π3 .T . . . .T πm = (. . . ((π1 .T π2).T π3).T . . . .T πm).

This expression defines a multidimensional distribution on XK1∪...∪Km . There-
fore, for any permutation i1, i2, . . . , im of indices 1, . . . ,m the expression

πi1 .T πi2 .T . . . .T πim

determines a distribution on the same universe of discourse. However, for different
permutations these distributions can differ from one another. Some of them seem
to possess the most advantageous properties.

An ordered sequence of possibility distributions π1,π2, . . . ,πm is said to be
T-perfect if for any j = 2, . . . ,m

π1 .T · · ·.T π j = π1 /T · · ·/T π j.

The notion of T -perfectness suggests that a sequence perfect with respect to
one t-norm needn’t be perfect with respect to another t-norm, similarly to (condi-
tional) T -independence.

Let us present two assertions, which will be used later.

Lemma 3 Let T be a continuous t-norm. The sequence π1,π2, . . . ,πm is T -perfect,
if and only if the pairs of distributions (π1 .T · · ·.T πk−1) and πk are projective for
all k = 2,3, . . . ,m.

Theorem 1 The sequence π1,π2, . . . ,πm is T -perfect if and only if all the distri-
butions π1,π2, . . . ,πm are marginal to distribution π1 .T π2 .T . . . .πm.
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Now, let us recall the notion of running intersection property (RIP) and the
related results from [14]. A sequence of sets K1,K2, . . . ,Kn is said to meet RIP if

∀i = 2, . . . ,n ∃ j(1≤ j < i) (Ki∩ (K1∪ . . .∪Ki−1))⊆ K j.

Lemma 4 If π1,π2, . . . ,πm is a sequence of pairwise projective low-dimensional
distributions such that K1, . . . ,Km meets RIP, then this sequence is T -perfect for
any continuous t-norm T .

4.3 Convergence of IPFP(T )
Theorem 2 If there is an ordering π1, . . . ,πm of possibility distributions from S
such that π1, . . . ,πm form a T-perfect sequence for some continuous t-norm T
and ρ(0)≡ 1, then IPFP(T) converges in one cycle. Furthermore, distribution ρ(m)

factorizes with respect to K and T .

Proof. First, let us note that (8) for π1, . . . ,πm can be rewritten using an operator
of left composition, i.e.,

ρ( j)(x) = T (ρ( j−1)(x)4T ρ( j−1)(xKk ),πk(xKk ))

= ρ( j−1)(x)/T πk(xKk )

for any j = 1, . . .; especially for j = 1, . . . ,n (which means that k = j) we obtain

ρ( j)(x) = ρ( j−1)(x)/T π j(xK j )

= (ρ( j−2)(x)/T π j−1(xK j−1))/T π j(xK j )

· · ·
= (. . .(ρ(0)(x)/T π1(xK1))/T . . . /T π j−1(xK j−1))/T π j(xK j )

= (. . .T (ρ(0)(xN\∪ j
k=1Kk

),π1(xK1))/T . . . /T π j−1(xK j−1))/T π j(xK j ),

since ρ(0) ≡ 1. In particular we have

ρ(m)(x) = (. . .(π1(xK1)/T π2(xK2) . . . /T πm−1(xKm−1))/T πm(xKm). (9)

Since π1, . . . ,πm is a T -perfect sequence of possibility distributions, every πk is a
marginal to the distribution on the right-hand side of (9). Therefore,

ρ(m)(xKk ) = πk(xKk )

for all k = 1, . . . ,m, which implies

ρ( j)(xKk ) = ρ(m)(xKk )

for any j = m + 1, . . .. To prove factorization it is enough to find fuzzy variables
fK1 , . . . , fKm such that

ρ(m)(x) = T m( fK1 (xK1), . . . , fKm (xKm)).
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But, due to T -perfectness of π1, . . . ,πm

ρ(m)(x) = π1(xK1).T π2(xK2).T . . . .πm(xKm),

which can be rewritten in the form

ρ(m)(x) = T m(π1(xK1),π2(xK2)4T π2(xK2∩K1), . . .

. . . ,πm(xKm)4T πm(xKm∩(K1∪...∪Km−1)),

which concludes the proof.
First, let us stress that perfectness with respect to a t-norm implies conver-

gence with respect to the same t-norm (and not with respect to any) as can be
seen from the following simple example.

Example 3 Let X1,X2 and X3 be three binary variable as in Example 2 and π1,π2
and π3 on X{1,2},X{2,3} and X{1,3} be defined by Table 1.

π1 X2 0 1
X1 = 0 1 .8
X1 = 1 .6 .4

π2 X3 0 1
X2 = 0 1 .5
X2 = 1 .3 .8

π3 X3 0 1
X1 = 0 1 .8
X1 = 1 .6 .5

Table 1: Distributions forming min-perfect sequence

ρ( j) j
(x1,x2,x3) 0 1 2 3 4 5 6
(0,0,0) 1 1 1 1 1 1 1
(0,0,1) 1 1 .5 .5 .5 .5 .5
(0,1,0) 1 .8 .8 .8 .8 .8 .8
(0,1,1) 1 .8 .8 .8 .8 .8 .8
(1,0,0) 1 .6 .6 .6 .6 .6 .6
(1,0,1) 1 .6 .5 .5 .5 .5 .5
(1,1,0) 1 .4 .3 .3 .3 .3 .3
(1,1,1) 1 .4 .4 .4 .4 .4 .4

Table 2: Convergence of IPFP with respect to Gödel’s t-norm

Sequence π1,π2,π3 is min-perfect (due to Lemma 3), since π1(x2) = π2(x2)
and (π1 .TG π2)(x1,x3) = π3(x1,x3). Starting from ρ(0) ≡ 1, IPFP(TG) converges
after one cycle as can be seen from Table 2 while IPFP(TΠ) and IPFP(TL) converge
after four and five cycles, respectively (cf. Tables 3 and 4).

Corollary 1 If there is a permutation Ki1 , . . . ,Kin of sets from K such that Ki1 , . . . ,Kin
meets RIP, {πi1 , . . . ,πin} is an input sequence of pairwise projective possibility
distributions and ρ(0) ≡ 1 then IPFP(T) converges in one cycle for any continu-
ous t-norm T and ρ(m) factorizes with respect to the corresponding t-norm T .
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ρ( j) j
(x1,x2,x3) 0 1 2 3 4, 5 6 7, 8 9 10,11,12
(0,0,0) 1 1 1 1 1 1 1 1 1
(0,0,1) 1 1 .5 .5 .5 .5 .5 .5 .5
(0,1,0) 1 .8 .3 .3 .3 .3 .3 .3 .3
(0,1,1) 1 .8 .8 .8 .8 .8 .8 .8 .8
(1,0,0) 1 .6 .6 .6 .6 .6 .6 .6 .6
(1,0,1) 1 .6 .3 .375 .375 .46875 .46875 .5 .5
(1,1,0) 1 .4 .15 .15 .12 .096 .096 .096 .09
(1,1,1) 1 .4 .4 .5 .4 .5 .4 .427 .4

Table 3: Convergence of IPFP with respect to product t-norm

ρ( j) j
(x1,x2,x3) 0 1 2 3 4, 5 6 7, 8 9 10, 11 12 13, 14, 15

(0,0,0) 1 1 1 1 1 1 1 1 1 1 1
(0,0,1) 1 1 .5 .5 .5 .5 .5 .5 .5 .5 .5
(0,1,0) 1 .8 .3 .3 .3 .3 .3 .3 .3 .3 .3
(0,1,1) 1 .8 .8 .8 .8 .8 .8 .8 .8 .8 .8
(1,0,0) 1 .6 .6 .6 .6 .6 .6 .6 .6 .6 .6
(1,0,1) 1 .6 .1 .2 .2 .3 .3 .4 .4 .5 .5
(1,1,0) 1 .4 .0 .0 .0 .0 .0 .0 .0 .0 .0
(1,1,1) 1 .4 .4 .5 .4 .5 .4 .5 .4 .5 .4

Table 4: Convergence of IPFP with respect to Lukasziewicz’ t-norm

Proof follows directly from Theorem 2 and Lemma 4.
Let us also mention that ρ(0) ≡ 1 is not only a technical requirement that

makes the proof of Theorem 2 so simple; it may be substantial for convergence as
can be seen from the following example.

Example 4 Let X1,X2,X3 and π1(x1,x2), π2(x2,x3) be as in Example 2 and ρ(0)

be defined as follows:

ρ(0)(0,0,0) = ρ(0)(0,1,1) = ρ(0)(1,0,1) = ρ(0)(1,1,0) = 1,

values of remaining combinations being equal to α ∈ [0,1]. The convergence de-
pends on the value of α — the results of our experiments can be found in Table 5.

The reason for this behaviour lies in the tendency of IPF procedure to find a
distribution with given marginals which, moreover, factorizes with respect to the
system K and is “as close as possible” to ρ(0). It is evident that ρ(0)≡ 1 factorizes
with respect to any system of cliques. Therefore, it is the “safe”, although perhaps
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α Convergence of IPFP(T )
TG TΠ TL

1 1 1 1
.5 2 2 2
.1 cycles 4 3
0 cycles cycles 3

Table 5: Convergence of IPFP(T ) depends on α

not always an optimal, initial distribution. The more “distant” the structure of
the starting distribution is from factorization with respect to K and T , the more
problematic the convergence of IPFP(T ) is.

5 Conclusions
We introduced a possibilistic version of IPF procedure with the aim of using it
as a tool for marginal problem solving. This procedure is parameterized by a
continuous t-norm and its behaviour (convergence) is strongly dependent on it.
Another important finding is that convergence of IPFP(T ) substantially depends
on the choice of an input distribution.

Nevertheless, there are still many problems that remain to be solved. The most
important is the proof of the convergence of IPFP(T ) in a general case. Another
question is whether the resulting distribution is independent of the ordering of
input distributions. We should also study the behaviour of IPFP(T ) in inconsistent
cases.
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[9] L. Rüschendorf, Convergence of the iterative proportional fitting procedure.
Ann. Statist. 24 (1995), pp. 1160–1174.
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[12] J. Vejnarová, Conditional independence relations in possibility theory. Int.
J. Uncertainty, Fuzziness and Knowledge-Based Systems 8 (2000), pp. 253–
269.
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