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Abstract

We extend Buja’s concept of “pseudo-capacities”, which comprises the
neighbourhood models for classical probabilities commonly used in robust
statistics. Although systematically developing various directions for general-
izing that model, we especially show that robust statistics can be freed from
the severe restriction to 2-monotone capacities by employing the more natu-
ral framework of coherent or F-probabilities. Our main new tool for doing
this is to use bi-elastic instead of convex functions.
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1 Introduction
The major concept in robust statistics for “robustifying” statements concerning
classical distributions is to construct neighbourhoods of precise probabilities,
which are called central distributions in this context. There is a famous method,
due to Buja, accommodating, up to now, many of the corresponding neighbour-
hood models: Let p be some fixed classical probability, let f : [0; 1]→ [0; 1] be a
function with f (0) = 0 and f (1) = 1, and define

L = f ◦ p. (1)

By Denneberg (see [4], p. 17), a set function L constructed like this, is called a
distorted probability, if f is increasing. In case f (x)≤ x, ∀x∈ [0; 1], L can be seen
as the lower bound of an interval probability, which creates a neighbourhood of
p in the sense that L(A)≤ p(A)≤U(A) := 1−L(¬A) for all events A.

Now in robust statistics the standard requirement concerning f is to be indeed
convex. We suspect that nobody knows a reasonable philosophical argument, why
this strong assumption is made. Instead it seems to have mere mathematical ori-
gins: “Only if f is convex, then L becomes an algebraic pushover.” We want to
convince the reader that not even this technical argument is true. Strictly speaking,
the word “Only” should be replaced by “Not only”.
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If f is convex, then by Buja (cf. [3]) a set function L constructed in accordance
with (1) is called a pseudo-capacity.1 Now every pseudo-capacity is a 2-monotone
set function (see Theorem 1, model 5, and also [4], p. 17), and this fact seems
to be the technical advantage. But from a philosophical point of view there are
no visible reasons to restrict the frameworks of interval probability as well as
of robust statistics to 2-monotonicity. Instead it is more natural to consider the
wider class of Walley’s coherent probabilities (cf. [8]), which are closely related
to F-probabilities in the sense of Weichselberger (see [10] or [11]).

We will show that the formulation (1) is also useable for constructing the
lower bound L of an F-probability, which is not necessarily 2-monotone. For this
we have to weaken the condition of convexity for f and replace it by a new as-
sumption: bi-elasticity.

Just as there exist 2-monotone set functions L, which cannot be described
by (1) using convex functions f , we, of course, are not able to produce the whole
class of F-probabilities by only employing the definition (1), letting p vary over all
classical probabilities and f vary over all bi-elastic functions. But we will explain
that bi-elasticity is exactly the appropriate requirement when defining F-proba-
bilities via (1) (see Section 6). Moreover, from an algebraical point of view the
generated subclass of F-probabilities is as easy manageable as the corresponding
subclass of 2-monotone set functions, i.e. the class of pseudo-capacities.

In Section 2 we introduce the notion of bi-elasticity. In Section 3 a language
for interval probability is fixed: As far as needed, we outline Weichselberger’s
formal and methodological framework. But this should be no restriction. Since,
in particular, σ-additivity (instead of additivity) of classical probabilities does not
play any role, the concepts developed could also be applied to other theories of
imprecise probabilities, especially to Walley’s theory. In Section 4 we go into
the details of the convex and bi-elastic neighbourhood models described above,
resulting in Theorem 1. There we, in fact, will not use the phrasing of equation
(1): Since sometimes it is necessary to apply methods of robustness to interval
probability itself2 and, anyway, it is a natural mathematical task to look for closure
properties, we consider the more generalized form

L = f ◦L0, (2)

where L0 is the lower bound of some given interval-valued central distribution.
Learning from Theorem 1, we also deal with a modified version of it, which is
stated in Theorem 2. Its formulation serves, in essence, as a motivation for Section
5, i.e. for Theorems 3 and 4, which significantly generalize the neighbourhood
models developed before. Section 6 is reserved for concluding remarks.

To give reasons for the successive steps, the structure of this technical paper
is rather heuristic. Hence the proofs are postponed repeatedly — until the proof
of the last theorem.

1See [2] for more detailed information.
2See [1], pp. 229ff, for a discussion of this topic.
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2 Convex and Bi-elastic Functions
What is bi-elasticity? Suppose we concentrate on a function f : [0; 1]→ [0; 1]
with f (0) = 0 and f (1) = 1 and imagine that three points of f ’s graph, namely
(x, f (x)), (y, f (y)), and (z, f (z)) with 0 ≤ x < y < z ≤ 1, are standing in convex
position. Obviously, by this terminology we mean that the following local com-
parison of quotients of differences is valid:

f (y)− f (x)
y− x

≤ f (z)− f (y)
z− y

. (3)

If this inequality is globally true, i.e. for all such x, y, z, we usually say that f is
convex. Now fix x = 0, and let just y and z vary. Then it is easily seen that we get
equivalently

f (y)
y
≤ f (z)

z
, ∀y, z with 0 < y≤ z≤ 1, (4)

i.e. that the average of f is increasing. In economic sciences this behaviour of f
is called elastic (e.g. see [5]).

So, what’s bi-elasticity? For this new concept (introduced in [9], Chapter 6),
let first f be elastic, and secondly set z = 1 in (3) and let x and y vary. After simple
transformations we get

1− f (x)
1− x

≤ 1− f (y)
1− y

, ∀x, y with 0≤ x≤ y < 1, (5)

as an equivalent form, which, in turn, is equivalent to

1− f (1− y)
y

≤ 1− f (1− x)
x

, ∀x, y with 0 < x≤ y≤ 1. (6)

Thus, additionally, the conjugate function of f , i.e. x 7→ 1− f (1− x), has to have
decreasing average. We summarize:

Definition 1 Let f : [0; 1]→ [0; 1] with f (0) = 0 and f (1) = 1. Then f is called
1. convex, if (3) holds for all x, y, z with 0≤ x < y < z≤ 1,

2. bi-elastic, if (4) and (6) are valid. 2

Corollary 1 Let f : [0; 1]→ [0; 1] with f (0) = 0 and f (1) = 1.
1. f is convex iff f ((1−λ)x+λy)≤ (1−λ) f (x)+λ f (y), ∀x, y, λ ∈ [0; 1].

2. f is bi-elastic iff f (λx)≤ λ f (x) and λ(1− f (1−x))≤ 1− f (1−λx), ∀x, λ∈
[0; 1].

3. If f is convex, then f is bi-elastic.

4. If f is bi-elastic, then f (x)≤ x, ∀x ∈ [0; 1].3 2

Proof. 1.) and 2.) can be shown straightforwardly. For 3.) see above, for 4.) put y = x and
z = 1 in (4). 2

3Moreover, every bi-elastic function is monotone in [0; 1] and continuous in [0; 1[.
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Figure 1: An example of a bi-elastic function f . Bi-elasticity of f can be described equiva-
lently as follows: For each point A = (xA, f (xA)) on the graph of f , the graph of f between
0 and xA nowhere is lying above the line between (0, 0) and A, and between xA and 1 it
nowhere is lying above the line between A and (1, 1).

3 Basic Definitions of Interval Probability accord-
ing to Weichselberger

Here we report the main concepts of Weichselberger’s theory of interval proba-
bility (see [10] or [11]), adding some slight modifications. For the following let Ω
be a fixed sample space and A a fixed σ-algebra over Ω. Hence (Ω; A) is fixed
measurable space.

Definition 2 A set function p: A → [0; 1] is called a K-function (classical proba-
bility) on (Ω; A), if it satisfies the axioms of Kolmogorov. The set of all K-func-
tions on (Ω; A) is denoted by K (Ω; A). 2

Definition 3
1. A triple O = (Ω; A ; L) is called an adjusted O-field, if L: A→ [0; 1] is a set

function, which is normed, i.e. L( /0) = 0 and L(Ω) = 1. The set M (O) =
{p ∈ K (Ω; A) | L(A)≤ p(A), ∀A ∈ A} is called the structure of O.

2. An adjusted O-field R is called an adjusted R-(probability) field, if
M (R ) 6= /0.
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3. An adjusted R-field F = (Ω; A ; L) is called an F-(probability) field, if it
satisfies the axiom L(A) = infp∈M (F ) p(A), ∀A ∈ A .4

4. An adjusted R-field F = (Ω; A ; L) is called an F0-(probability) field, if it
satisfies the axiom L(A) = minp∈M (F ) p(A), ∀A ∈ A .

5. An adjusted O-field (Ω; A ; L) is called a CA-field, if L is 2-monotone, i.e.
L(A)+L(B)≤ L(A∪B)+L(A∩B), ∀A, B ∈ A .

6. A CA-field is called a C-(probability) field, if it is an F-field.

7. A CA-field is called a C0-(probability) field, if it is an F0-field.

8. A triple (Ω; A ; p) is called a K-(probability) field, if p is a K-function. 2

Since (Ω; A) is fixed, every adjusted O-field O = (Ω; A ; L) is determined by
the “lower bound” L. Subsequently we always “associate” the “upper bound” U
of O via conjugation of L, i.e. U(.) = 1−L(¬.).

Some comments on Definition 3 are useful:

• Weichselberger’s original definition of an R-field is that of a quadruple
R = (Ω; A ; L, U) having a non-empty structure M (R ) = {p ∈K (Ω; A) |
L(A) ≤ p(A) ≤U(A), ∀A ∈ A}. In this setting neither L is normed neces-
sarily, nor L and U have to be conjugate, what both is not appropriate for
our purposes.

• In [1], Corollary 2.13, it is shown that every continuous F-field is an
F0-field. (Hence, in particular, every F-field on a finite measurable space
has the F0-property.) Since, on the one hand, we don’t want to discuss
topological features here, but, on the other hand, intend to deal with clo-
sure properties concerning F-fields as well as F0-fields, we distinguish both
cases by introducing these two terms.

• It is known that every CA-field is a C0-field, and hence a C-field, in case the
sample space Ω is finite. For the general case, usually additional topolog-
ical assumptions are made to enforce the F-(or F0-)property, in particular,
for defining 2-monotone capacities (cf. [7]). But, as mentioned above, we
want to abstain from topological aspects here. So the CA-property, i.e., es-
sentially, the 2-monotonicity of the lower bound, should be considered as
the extracted pure algebraic part of the definition of C-(or C0-)fields. There
are some closure properties, we want to emphasize later, only concerning
this algebraic part. Therefore the definitions of CA-, C-, and C0-fields are
organized as stated.

4The definitions of adjusted R-fields and of F-fields are closely related to Walley’s avoiding sure
loss and coherence respectively (cf. [8]).
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For later use we record the following corollary, which can be proven straight-
forwardly.

Corollary 2
1. If O = (Ω; A ; L) is an adjusted O-field and U(.) = 1−L(¬.), then M (O) =
{p ∈ K (Ω; A) | p(A)≤U(A), ∀A ∈ A}.

2. If (Ω; A ; L) is an F- or a CA-field, then L and its conjugate U are mono-
tone, i.e., for Ψ ∈{L, U} we have ∀A, B ∈ A: A⊆ B =⇒Ψ(A)≤Ψ(B).

3. If O1 = (Ω; A ; L1) and O2 = (Ω; A ; L2) are adjusted O-fields, then

L1(.)≤ L2(.) =⇒M (O2)⊆M (O1). 2

As a mnemonic device concerning the definitions above, we get the following
clear picture:

CA-f.∧F0-f.⇒ F0-field
m ⇓

K-field ⇒ C0-field F-field ⇒ adj. R-field ⇒ adj. O-field.
⇓ ⇑

C-field ⇔ CA-f.∧F-f.

4 Convex and Bi-elastic Neighbourhood Models
For constructing neighbourhoods of classical probabilities, in robust statistics
mainly metrics are used to define appropriate topologies over the space K (Ω;A)
(e.g. see [6]). Here we do not rely on the term “neighbourhood” in some topolog-
ical sense, and that is why we give the trivial

Definition 4 For adjusted O-fields O0 = (Ω; A ; L0), O = (Ω; A ; L) and a K-func-
tion p, we say that

• O is a neighbourhood of O0, if L(.)≤ L0(.),

• O is a neighbourhood of p, if O is a neighbourhood of (Ω; A ; p). 2

Therefore, O is a neighbourhood of the K-function p iff simply p is an element
of the structure of O, and hence O is an adjusted R-field. In general, we have
M (O0)⊆M (O), if O is a neighbourhood of O0 (cf. Corollary 2, 3.)).

Now we come to a first category of neighbourhood models motivated in Sec-
tion 1. Inspired by the notions of pseudo-capacities (the starting point of our de-
velopments), bi-elastic functions (generalizing convex functions), and interval-
valued central distributions (including precise central distributions as a specific
case), we get
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Theorem 1 (First class of neighbourhood models) Let L0: A → [0; 1] be a set
function, f : [0; 1]→ [0; 1] a function with f (0) = 0 and f (1) = 1, L = f ◦ L0,
O0 = (Ω; A ; L0), and O = (Ω; A ; L). Then we have:5

1. If O0 is an adjusted O-field, then so is O.

2. If f (x)≤ x, ∀x ∈ [0; 1], and O0 is an adjusted R-field, then so is O.

3. If f is bi-elastic, and O0 is an F-field, then so is O.

4. If f is bi-elastic, and O0 is an F0-field, then so is O.

5. If f is convex, and O0 is a CA-field, then so is O.

6. If f is convex, and O0 is a C-field, then so is O.

7. If f is convex, and O0 is a C0-field, then so is O.
Moreover, in the cases 2.)–7.) O is a neighbourhood of O0. 2

Proof. 1.) and 2.) are obvious. For 3.)–7.) see Theorem 2 below.6 The “Moreover”-
statement follows from Corollary 1, 3.) and 4.). 2

From now on we concentrate on the most interesting cases, namely F-, F0-,
CA-, C-, and C0-fields. Our goal is to generalize models 3–7 of Theorem 1 in two
steps, which leads to Theorems 2, 3, and 4.

The first step is just a small one and is based on an elementary observation.
Let us for the moment consider model 5 of Theorem 1: In order to maintain the
2-monotonicity, we, in essence, made two assumptions: the definition of L, i.e.
L = f ◦L0, and the convexity of f . By Definition 1, 1.), this implies

L(B)−L(A)

L0(B)−L0(A)
≤ L(C)−L(B)

L0(C)−L0(B)
, (7)

for all A, B, C ∈ A with L0(A) < L0(B) < L0(C). Now it is natural to suspect
that it doesn’t matter, how f is defined on [0; 1] \ {L0(A) | A ∈ A}. It should
be sufficient for our CA-model to presuppose the inequalities (7). Similarly, we
expect that models 3 and 4 of Theorem 1 could be modified analogously: The
corresponding inequalities given by bi-elasticity are (cf. (4) and (5))

L(A)

L0(A)
=

f (L0(A))

L0(A)
≤ f (L0(B))

L0(B)
=

L(B)

L0(B)
,

for all A, B ∈ A with 0 < L0(A) ≤ L0(B), and, additionally, using U0(.) = 1−
L0(¬.) and U(.) = 1−L(¬.),
U(B)

U0(B)
=

1−L(¬B)

1−L0(¬B)
=

1− f (L0(¬B))

1−L0(¬B)
≤ 1− f (L0(¬A))

1−L0(¬A)
=

1−L(¬A)

1−L0(¬A)
=

U(A)

U0(A)
,

for all A, B ∈A with L0(¬B)≤ L0(¬A) < 1, i.e., equivalently, 0 <U0(A)≤U0(B).
These considerations are summed up in

5Models 5–7 reflect the concept of pseudo-capacities, in case of a precise central distribution O0.
6For the moment, we can say that 6.) is a consequence of 3.) and 5.), and 7.) is a consequence of

4.) and 5.), since convexity implies bi-elasticity (cf. Corollary 1, 3.)).
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Theorem 2 (Second class of neighbourhood models) Let O0 = (Ω; A ; L0) and
O = (Ω; A ; L) be adjusted O-fields, U0(.) = 1−L0(¬.), and U(.) = 1−L(¬.).

1. Suppose that O0 is an F-field and that the following two conditions hold:

(a) L(A) ·L0(B)≤ L0(A) ·L(B), ∀A, B ∈ A with L0(A)≤ L0(B); (8)

(b) U0(A) ·U(B)≤U(A) ·U0(B), ∀A, B ∈ A with U0(A)≤U0(B). (9)

Then O is an F-field, too.

2. Suppose that O0 is an F0-field and that conditions (8) and (9) hold. Then O
is an F0-field, too.

3. Suppose that O0 is a CA-field and that the following condition holds:7

(L(B)−L(A)) · (L0(C)−L0(B)) ≤ (L0(B)−L0(A)) · (L(C)−L(B)),

∀A, B, C ∈ A with L0(A)≤ L0(B)≤ L0(C).
(10)

Then O is a CA-field, too.

4. Suppose that O0 is a C-field and that condition (10) holds. Then O is a
C-field, too.

5. Suppose that O0 is a C0-field and that condition (10) holds. Then O is a
C0-field, too.

Moreover, in all five cases we have: O is a neighbourhood of O0, and the
“functional connection”

∀A, B ∈ A : L0(A) = L0(B) =⇒ L(A) = L(B) (11)

between L0 and L is valid. 2

Proof. It is straightforward that from condition (10) we can derive conditions (8) and (9)
(for (8) put A = /0 in (10), for (9) set C = Ω in (10)8). Hence, on the one hand, 4.) is a direct
consequence of 1.) and 3.), and 5.) is a consequence of 2.) and 3.). On the other hand, the
“Moreover”-statement can be deduced from (8): By putting B = Ω, we get

L(A)≤ L0(A), ∀A ∈ A, (12)

which is the statement that O is a neighbourhood of O0. To prove (11), let L0(A) = L0(B).
By (12), we can assume L0(B) > 0. But then, two applications of (8) lead to L(A) ·L0(B) =
L0(A) ·L(B) = L0(B) ·L(B), thus L(A) = L(B).

Summarizing, we have shown all parts of Theorem 2 — with the exception of its heart:
statements 1.), 2.), and 3.). For this we refer to Theorem 3 below, since in the situations
of 1.), 2.), and 3.) the set functions L0 and U0 are monotone (cf. Corollary 2, 2.)). To be
complete, we have to prove the additional premise (15) in Theorem 3. But this is an easy
result of (11) (just set B = Ω), which is proved already. 2

7In (10) it’s not sufficient to use quotients as above, excluding the possibility that the denominator
is 0.

8We can argue in a manner similar to the proof sketch, given at the beginning of Section 2, where
we deduced bi-elasticity from convexity.
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Clearly, the most important case of Theorem 2 is that the central distribution
O0 is some K-field (Ω; A ; p0). For this we give an example, which — historically
— led to all generalized neighbourhood models presented here.

Example 1 Let (Ω; A) = (Ωk; P (Ωk)) be a finite measurable space, where
|Ωk|= k ∈ IN and P (Ωk) is the power set of Ωk. We consider the consequences of
Theorem 2 for the case O0 = (Ωk; P (Ωk); pk

0), in which pk
0 is the classical uniform

probability on (Ωk; P (Ωk)), i.e. pk
0(A) = |A|

k , ∀A ⊆ Ωk. Let O = (Ωk; P (Ωk); L)
be some adjusted O-field. From (11) we conclude

∀A, B⊆Ωk : |A|= |B| =⇒ L(A) = L(B), (13)

which means that the only possibility in generating O as a neighbourhood of pk
0

with the methods of Theorem 2, we have to restrict ourselves to uniform interval
probability. Hence we assume (13) and write for i = 0, . . . , k: L(i) = L(A), if i = |A|
for some A⊆Ωk, and consistently U (i) = 1−L(k−i). Additionally, we concentrate
on considering models 1 and 2 of Theorem 2, the F- and the F0-model, which are
the same, since Ωk is finite. Conditions (8) and (9) are equivalent to the chain

L(1)

1
≤ L(2)

2
≤ ·· · ≤ L(k−1)

k−1
≤ 1

k
≤ U (k−1)

k−1
≤ ·· · ≤ U (2)

2
≤ U (1)

1
. (14)

Therefore, model 1 of Theorem 2 says: Every adjusted uniform O-field O =
(Ωk; P (Ωk); L) is an F-field — an “uniform F-field” —, if it obeys the chain (14).
In [11], Lemma 4.3.5, it is shown over and above that, that (14) is also necessary
for O to be an uniform F-field on (Ωk; P (Ωk)). 2

Theorem 2 is only a very slight generalization of the models 3–7 in Theorem
1. For example, if condition (10) holds, it always is possible to construct a convex
function f : [0; 1] → [0; 1] with f (0) = 0 and f (1) = 1 such that L = f ◦ L0.
Similarly for (8) and (9) on the one hand and bi-elastic functions defined on [0; 1]
on the other hand.

Theorem 2 should rather be seen as a motivation for Theorem 3 given in the
next section.

5 Generalized Convex and Bi-elastic Neighbour-
hood Models

The inequalities, working as premises in conditions (8), (9), and (10) do not seem
to be very natural. For example, in (8) it would be nice to replace “L0(A)≤ L0(B)”
by “A ⊆ B”, since then, e.g., we would have a connection to conditional interval
probability (see Section 6).

Let us formulate this big second step of generalizing the neighbourhood mod-
els, fundamentally first presented in [9], Chapter 6:
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Theorem 3 (Third class of neighbourhood models, part 1) Let O0 = (Ω; A ; L0)
and O = (Ω; A ; L) be adjusted O-fields, U0(.) = 1−L0(¬.), and U(.) = 1−L(¬.).
Assume additionally that we have9

∀A ∈ A : L0(A) = 1 =⇒ L(A) = 1. (15)

1. Suppose that O0 is an F-field and that the following two conditions hold:

(a) L(A) ·L0(B)≤ L0(A) ·L(B), ∀A, B ∈ A with A⊆ B; (16)

(b) U0(A) ·U(B)≤U(A) ·U0(B), ∀A, B ∈ A with A⊆ B. (17)

Then O is an F-field, too.

2. Suppose that O0 is an F0-field and that conditions (16) and (17) hold. Then
O is an F0-field, too.

3. Suppose that O0 is a CA-field and that the following condition holds:

(L(B)−L(A)) · (L0(C)−L0(B)) ≤ (L0(B)−L0(A)) · (L(C)−L(B)),

∀A, B, C ∈ A with A⊆ B⊆C.
(18)

Then O is a CA-field, too.

4. Suppose that O0 is a C-field and that condition (18) holds. Then O is a
C-field, too.

5. Suppose that O0 is a C0-field and that condition (18) holds. Then O is a
C0-field, too.

Moreover, in all five cases we have: O is a neighbourhood of O0, and the
“functional connection”

∀A, B ∈ A : A⊆ B ∧ L0(A) = L0(B) =⇒ L(A) = L(B) (19)

between L0 and L is valid. 2

Proof. Let O0 and O be adjusted O-fields as denoted. First we prove:

1. (16) =⇒ L(A)≤ L0(A), ∀A ∈ A .

2. (16) =⇒
(
∀A, B ∈ A : A⊆ B ∧ L0(A)≤ L0(B) =⇒ L(A)≤ L(B)

)
.

3. (15) ∧ (16) ∧ (17) =⇒ (19).

9It can easily be seen that the models don’t work, if we drop this additional condition. (15) is
equivalent with ∀A ∈ A : U0(A) = 0⇒U(A) = 0, and hence with

∀A ∈ A : (∀p0 ∈M (O0). p0(A) = 0) =⇒ (∀p ∈M (O). p(A) = 0),

which means that O is absolutely continuous with respect to O0.
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For a), just let B = Ω in (16). For b) assume A ⊆ B and L0(A) ≤ L0(B), where by
a) w.l.o.g. L0(A) > 0. Together with (16) we get L(A) · L0(A) ≤ L(A) · L0(B) ≤ L0(A) ·
L(B), hence L(A)≤ L(B). For c) suppose (15), (16), (17), A⊆ B, and L0(A) = L0(B), thus
also ¬B⊆ ¬A and U0(¬A) = U0(¬B). By (15), w.l.o.g. we can assume L0(B) < 1, hence
U0(¬B) > 0. Now (17) gives U0(¬B) ·U(¬A)≤U(¬B) ·U0(¬A) = U(¬B) ·U0(¬B), thus
U(¬A)≤U(¬B), i.e. L(B)≤ L(A). Together with b) we infer L(A) = L(B).

Now we give the proof of Theorem 3. First it can easily be seen that (18) implies
(16) and (17) (let A = /0 or C = Ω in (18)). Therefore, on the one hand, the “Moreover”-
statement is a trivial conclusion of a) and c), and, on the other hand, 4.) is a consequence
of 1.) and 3.), and 5.) is a consequence of 2.) and 3.).

For 1.) and 2.) we refer to Theorem 4 (see below).
So here we just have to prove 3.), i.e., we have to show that condition (18) transfers

2-monotonicity from L0 to L. For this, let (18) be valid and L0 be 2-monotone. Then,
according to Corollary 2, 2.), L0 is monotone 2, and by b) we also infer the monotonicity
of L. Now let A, B ∈ A be given. We have to show that

L(A)+L(B)≤ L(A∪B)+L(A∩B). (20)

If L0(A∩B) = L0(A), then by (19) L(A∩B) = L(A), hence (20) follows from the mono-
tonicity of L. Thus we assume L0(A∩B) < L0(A) and, symmetrically, L0(A∩B) < L0(B).
But then, by the 2-monotonicity of L0 we have L0(A) < L0(A∪B) and L0(B) < L0(A∪B).
Together with (18), we infer for X ∈ {A, B}:

0 ≤ x(X) :=
L(X)−L(A∩B)

L0(X)−L0(A∩B)
≤ L(A∪B)−L(X)

L0(A∪B)−L0(X)
=: y(X).

Now, by symmetric reasons, we suppose that y(A) ≤ y(B), hence x(A) ≤ y(B). Finally,
the 2-monotonicity of L0 leads to L(A)−L(A∩B) = x(A) · (L0(A)−L0(A∩B)) ≤ x(A) ·
(L0(A∪B)−L0(B))≤ y(B) · (L0(A∪B)−L0(B)) = L(A∪B)−L(B), thus (20) holds. 2

The proof of Theorem 3 is not complete, because models 1 and 2 are waiting
for verification. The reason for this is that we want to emphasize that these models
are, in fact, local models with respect to the F- and F0-property respectively.10

This is the content of the following Theorem 4, the last one in the sequence of
theorems.

Definition 5 Let A ∈ A be fixed. An adjusted R-field R = (Ω; A ; L) is called

1. an F(A)-field, if it satisfies the axiom L(A) = infp∈M (R ) p(A),

2. an F0(A)-field, if it satisfies the axiom L(A) = minp∈M (R ) p(A). 2

The trivial connection with Definition 3, 3.) and 4.), is given by

Corollary 3 Let R = (Ω; A ; L) be an adjusted R-field. Then we have:

1. R is an F-field iff for all A ∈ A , R is an F(A)-field.

2. R is an F0-field iff for all A ∈ A , R is an F0(A)-field. 2

10This also is true for the F- and F0-models in Theorems 1 and 2.
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Theorem 4 (Third class of neighbourhood models, part 2) Let A ∈ A be fixed.
Let O0 = (Ω; A ; L0) and O = (Ω; A ; L) be adjusted O-fields, U0(.) = 1−L0(¬.),
and U(.) = 1−L(¬.). Assume that (15), (16), and (17) hold. Then we have:

1. If O0 is an F(A)-field, then so is O.

2. If O0 is an F0(A)-field, then so is O.
Moreover, in both cases O is a neighbourhood of O0, and the “functional

connection” (19) between L0 and L is valid. 2

Proof. The “Moreover”-statement can be shown like a) and c) in the proof of Theorem 3.
So we only have to prove statements 1.) and 2.), where we restrict ourselves to model 1.11

For this let all the corresponding premises be given, especially let A ∈ A be fixed and O0
be an F(A)-field. Since O is a neighbourhood of O0, we have

L(.)≤ L0(.) and U0(.)≤U(.), and thus M (O0)⊆M (O). (21)

(Hence the R-property moves from O0 to O.) Now we concentrate on proving the F(A)-pro-
perty of O, where by (21) w.l.o.g. we assume L(A) < L0(A). Together with (15) we infer

U(¬A) > U0(¬A) > 0. (22)

Let ε > 0, w.l.o.g.
ε < U(¬A)−U0(¬A). (23)

We have to show that there exists p ∈M (O) with p(A)≤ L(A)+ ε. Define

δ =
U0(¬A)

U(¬A)
· ε. (24)

Then, by (22), δ > 0. Since O0 is an F(A)-field, there is

p0 ∈M (O0) with p0(A)≤ L0(A)+δ. (25)

Together with (22), (23), and (24) we get by easy calculations

0 < U0(¬A)−δ ≤ p0(¬A) ≤ U0(¬A) < U(¬A)− ε ≤ 1. (26)

Therefore

1 ≤ U(¬A)− ε
p0(¬A)

≤ U(¬A)− ε
U0(¬A)−δ

=
U(¬A)

U0(¬A)
, (27)

where (24) is used for the equality. In addition, (26) implies that p0(A) and p0(¬A) have
positive values, and hence it is possible to define the classical conditional probabilities

p0(. | A) =
p0(A∩ .)

p0(A)
and p0(. | ¬A) =

p0(¬A∩ .)

p0(¬A)
.

Now we let
p(.) = (L(A)+ ε) · p0(. | A)+(U(¬A)− ε) · p0(. | ¬A), (28)

which (using (26)) is a convex combination of p0(. | A) and p0(. | ¬A). Hence p is a
well-defined K-function on (Ω; A). Moreover, we have p(A) = L(A)+ ε.

To verify that p is an element of the structure of O, let B ∈ A . We have to prove
that p(B)≥ L(B), where w.l.o.g. L(B) > 0. But then, by (21) we also have L0(B) > 0. In
addition, L0(A∪B) > 0.12 From (16) we derive L(A∪B)

L0(A∪B) ≥
L(B)
L0(B) , thus with (25),

11Modifying the following arguments by setting ε = δ = 0, we also get a proof of model 2.
12Note that we are not able to infer this inequality from L0(B) > 0 by monotonicity of L0, since
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p0(B) · L(A∪B)

L0(A∪B)
≥ L(B). (29)

Furthermore, using the abbreviation

∆ = U0(¬A∩¬B)− p0(¬A∩¬B) = p0(A∪B) − L0(A∪B), (30)

we get the following inequalities, where (31) follows from (27) and (17), (32) is a conse-
quence of (25), and (33) is implied by (27) and (21):

U0(¬A∩¬B) ·U(¬A)− ε
p0(¬A)

≤ U(¬A∩¬B) , (31)

∆ ≥ 0 , (32)

U(¬A)− ε
p0(¬A)

≥ L(A∪B)

L0(A∪B)
. (33)

If L(A)+ε
p0(A) >

L(A∪B)
L0(A∪B) ,13 we calculate

p(B)
(28)
= p0(A∩B) · L(A)+ ε

p0(A)
+ p0(¬A∩B) ·U(¬A)− ε

p0(¬A)

(33)
≥ p0(A∩B) · L(A∪B)

L0(A∪B)
+ p0(¬A∩B) · L(A∪B)

L0(A∪B)

= p0(B) · L(A∪B)

L0(A∪B)

(29)
≥ L(B).

Therefore, we can assume
L(A)+ ε

p0(A)
≤ L(A∪B)

L0(A∪B)
. (34)

Now we receive

p(B) = 1 − p(¬B)

(28)
= 1 − (L(A)+ ε) · p0(A∩¬B)

p0(A)
− (U(¬A)− ε) · p0(¬A∩¬B)

p0(¬A)

(30)
= 1 −U0(¬A∩¬B) ·U(¬A)− ε

p0(¬A)
+ ∆ · U(¬A)− ε

p0(¬A)
− p0(A∩¬B) · L(A)+ ε

p0(A)

(31)–(34)
≥ 1 −U(¬A∩¬B) + ∆ · L(A∪B)

L0(A∪B)
− p0(A∩¬B) · L(A∪B)

L0(A∪B)

(30)
= p0(B) · L(A∪B)

L0(A∪B)

(29)
≥ L(B).

Hence Theorem 4 is proven. 2

we did not presuppose this monotonicity. But we can argue as follows: Assume L0(A∪B) = 0. Then
U0(¬A∩¬B)= 1, thus by (21), U(¬A∩¬B)= 1. Using (17), we get U(¬A)=U0(¬A∩¬B) ·U(¬A)≤
U(¬A∩¬B) ·U0(¬A) = U0(¬A), contradicting (22).

13Concerning the modified proof of model 2 mentioned above, note that due to (16) this case does
not occur, if ε = 0.
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6 Concluding Remarks
To start with a topic raised in Section 1, consider again equation (2), that is
L = f ◦L0, with the standard assumption that f : [0; 1]→ [0; 1] is a function with
f (0) = 0 and f (1) = 1. Already in [2], Proposition 5.2, it is shown that via (2)
every convex f transfers any given F-field O0 = (Ω; A ; L0) to a neighbourhood
O = (Ω; A ; L), which is an F-field too. But in a strict sense, this neighbourhood
model is not “appropriate”, since by Theorem 1, model 3, there is a weaker con-
dition on f doing the same — namely the condition of bi-elasticity. The question
arises, whether this requirement is “appropriate” instead. Indeed, bi-elasticity is
even the weakest assumption on f ensuring that via (1), i.e. L = f ◦ p, every
K-function p ∈ K (Ω; A) is transfered to an F-neighbourhood O = (Ω; A ; L), if
we are allowed to vary the underlying measurable space (Ω; A). For this, there is
a quick argument, if additionally it is assumed that our functions f are continuous
on ]0; 1[. In this case it is even sufficient to consider all finite measurable spaces
and, for each of them, only one central distribution p “testing” equation (1):

Let f be fixed, being continuous on ]0; 1[ and having the above-mentioned
property of generating F-neighbourhoods via (1). We restrict ourselves in deriving
condition (4), where, by continuity, it is possible to assume that in there y and z
are rational numbers: y = i

k and z = j
k for 0 < i≤ j ≤ k. Now, for this k ∈ IN, we

walk up to the finite measurable space (Ωk; P (Ωk)) and employ the corresponding
classical uniform probability p = pk

0 as central distribution, generating via (1) an
F-neighbourhood O = (Ωk; P (Ωk); L) (cf. Example 1). Hence O is an uniform
F-field on (Ωk; P (Ωk)), which — according to the last sentence in Example 1 —
obeys the chain (14), especially its left part. Finally, an easy transformation leads
to the desired inequality in (4).

Apart from this — last — positive result given here, many questions concern-
ing the role of bi-elasticity within the theory of interval probability remain open.
For example, the concept of conditional interval probability is still debated (see
[10] or [12] and the references therein). In particular, Weichselberger’s notion of
the canonical concept has the disadvantage that some constructions are not closed
w.r.t. the F-property. Using the corresponding notation Ψ(A | B) = Ψ(A)

Ψ(B)
for every

A, B ∈A with A⊆ B such that Ψ(B) 6= 0, where Ψ can be a K-function as well as
the lower or the upper bound of a probability field, it is possible to rephrase sen-
sitively Theorem 3, models 1 and 2, and Theorem 4. Considering the outcome, it
perhaps is feasible to modify these theorems in a way, which is profitable for a
better understanding of the phenomenon of conditional interval probability.

Summarizing, the results presented in this article can be seen as the formal ba-
sis for joining together robust statistics and interval probability in its most expres-
sive form, i.e., the concept of coherent or F-probabilities. The systematic develop-
ment of distorted probabilities should be able to initiate a variety of applications
in robust statistics and beyond.
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