3rd International Symposium on
Imprecise Probabilities and Their Applications

ISIPTA '03

University of Lugano
Lugano, Switzerland
14-17 July 2003

ELECTRONIC PROCEEDINGS

Radim Jirousek

On approximating multidimensional probability distributions by compositional models

Abstract

Because of computational problems, multidimensional probability distributions must be approximated by distributions which can be defined by a reasonable number of parameters. As a rule, distributions with a special dependence structure (i.e., complying with a system of conditional independence relations) are considered; graphical Markov models and especially Bayesian networks are often used. This paper proposes application of compositional models for this puropose. In addition to a theoretical background, a heuristic algorithm is presented. Its basic idea, construction of an approximation exploiting informational content of given low-dimensional distributions in a maximal possible way, was proposed by Albert Perez as early as in 1977.

Keywords. Multidimensional Distributions, Approximations, Conditional Independence, Operator of Composition

Paper Download

The paper is availabe in the following formats:

Authors addresses:

Pod vodarenskou vezi 4
182 08 Praha 8

E-mail addresses:

Radim Jirousek radim@utia.cas.cz


[ back to the Proceedings of ISIPTA '03 home page 
Send any remarks to the following address: smc@decsai.ugr.es